函数的概念教学设计

合集下载

《3.1函数的概念》教学设计教学反思-2023-2024学年中职数学高教版21基础模块上册

《3.1函数的概念》教学设计教学反思-2023-2024学年中职数学高教版21基础模块上册

《函数的概念》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的三要素。

2. 能够正确描述函数关系,理解自变量和因变量的关系。

3. 培养运用函数观点看待问题的意识。

二、教学重难点1. 教学重点:理解函数的概念,掌握描述函数关系的方法。

2. 教学难点:理解自变量和因变量的关系,掌握函数的三要素。

三、教学准备1. 准备教学用具:黑板、白板、笔、函数图表等。

2. 准备教学内容:设计案例,帮助学生理解函数概念。

3. 复习相关知识:在讲授新课前,简要复习方程、等式、变量等预备知识。

4. 确定教学方法:采用案例教学、小组讨论、课堂互动等方法,引导学生积极参与,加深理解。

四、教学过程:本节课的主要教学目标是帮助学生理解函数的概念,培养他们的数学思维能力和抽象思维能力。

在教学过程中,我们将通过以下几个环节来实施:1. 引入环节:首先,我们会通过一些具体的实例,让学生直观地了解函数的概念和性质。

这些实例可以包括商品价格与时间的关系、路程与时间的关系等等。

通过这些实例,学生可以初步感受到函数在现实生活中的应用,从而激发他们的学习兴趣。

2. 讲解环节:在引入环节之后,我们将进入讲解环节。

在这个环节中,我们会详细解释函数的定义,包括定义域、值域、对应法则等概念。

同时,我们还会引导学生理解函数的三要素,即定义域、值域和对应法则。

通过这些讲解,学生可以更加深入地理解函数的概念。

3. 探究环节:为了帮助学生更好地理解和掌握函数的概念,我们将组织学生进行探究活动。

这些活动可以包括小组讨论、案例分析等等。

通过这些活动,学生可以更加深入地思考函数的问题,从而培养他们的数学思维能力和抽象思维能力。

4. 反馈与评价:在教学过程中,我们会及时收集学生的反馈,了解他们对知识的掌握情况。

同时,我们还会通过课堂小测验、课后作业等方式,对学生的掌握情况进行评估。

根据学生的反馈和评估结果,我们会及时调整教学策略,确保教学效果的优化。

高中数学函数概论教案模板

高中数学函数概论教案模板

高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。

二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。

四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。

以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。

函数概念教学设计

函数概念教学设计

函数概念教学设计、指导思想与理论依据:函数是高中数学的重要内容,他不仅是对前面学习的集合知识的巩固和发展,而且是学好后继知识的基础和工具。

函数与代数式,方程,不等式,数列,三角函数以及导数的关系非常密切,函数基础知识在现实生活,经济,生产,科技等领域有着广泛的应用;函数概念以及其反应出的数学思想方法已经广泛渗透到数学的各个领域;因此,函数概念是高中数学最重要的概念之一。

本节课的设计指导思想是:从实例出发,让学生对函数概念有充分的感性基础,再让学生通过观察分析,去发现并归纳出函数的概念,从而更好的理解函数的概念,进而为能熟练的应用概念解决问题做好准备,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识.二、教学背景分析:学习内容:函数是高中数学的重要内容,在学生学习用集合与对应的语言刻画函数之前,学生已经学会把函数看成变量之间的依赖关系,掌握了一次函数,反比例函数,二次函数。

函数的概念比较抽象,但函数现象大量存在学生周围,因此教科书采用了从实际例子中抽象概括出用集合与对应的语言定义函数的方式接受函数概念,这样不仅为学生理解函数概念打下感性基础,而且注重培养学生的抽象概括能力,启发学生利用函数模型表述、思考和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.学生情况:本节课的授课对象是示范高中高一年级实验班的学生,学生综合素质较高,数学基础好,有较强的理解能力和学习交流能力,思维活跃,在初中时学过的几类函数掌握的比较到位,但是对函数的认识很不全面,比较习惯的是用解析式表示函数。

学生对函数符号y =f(x)会比较难理解,认为对应关系f就是解析式,但在不少问题中对应关系f不便用或不能用解析式表示,这时,必须采用其他方式,如图像或表格等,这是学生不易理解的.教学方式:背景教学,诱思教学本节课的教学中,我以学生作为活动的主体,创设恰当的问题情境,引导学生积极思考,大胆探索,从而去发现问题、提出问题和解决问题.注重培养他们的观察、分析和解决问题的能力,培养他们的逻辑思维能力及抽象概括能力.教学手段:多媒体教学教学准备:学生利用导学案自主学习20分钟.三、教学目标:1、知识与技能通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型;通过问题的讨论、归纳与对关键词的分析让学生尝试用集合与对应的语言刻画函数的概念,并了解构成函数的三要素及函数符号的深刻含义。

函数的概念教学设计

函数的概念教学设计

《函数的概念》教学设计【教学目标】一、使学生明白得函数的概念,明确决定函数的概念域、值域和对应法那么三个要素;二、明白得函数符号的含义,能依照函数表达式求出概念域、值域;3、使学生能够正确利用“区间”、“无穷大”的记号;4、使学生明白静与动的辩证关系,激发学生学习数学的爱好和踊跃性。

【教学重点】函数的概念,函数的三要素。

【教学难点】函数概念及符号y=f(x)的明白得。

【教具预备】多媒体教学【教学设计】初中概念从运动转变的观点动身,把函数看成是变量之间的依托关系。

从历史上看,初中给出的概念来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们慢慢意识到概念域与值域的重要性,而要说清楚变量和两个变量间转变的依托关系,往往先要弄清各个变量的物理意义,这就使研究受到了必然的限制。

若是只依照变量观点,那么有些函数就很难进行深切研究。

例如:对那个函数,若是用变量观点来讲明,会显得十分勉强,也说不出x的物理意义是什么。

但用集合、对应的观点来讲明,就十分自然。

因此有必要引入高中的函数概念。

这节课以教师教学为主,运用引导、对照的手法,启发学生进行针对性反复比较几个概念的异同,并通过师生的一起讨论来帮忙学生深刻明白得,使学生真正对函数概念有很准确的熟悉。

【教学进程】一、温习引入1.用集合、对应概念函数问题1同窗们在初中已经学习过“函数”,请你举几个函数的具体例子。

设计用意:通过具体例子,让学生回忆初中学习过的函数概念,把握内涵。

教师依照所举例子的具体情形,引导学生列举别离用解析式、图象、表格表示对应关系的函数。

若是学生所列举的例子都是用解析式表示的,教师那么问:“函数关系都是能够用解析式表示的吗?”引导学生开阔思路,再列举些用图象、表格表示对应关系的函数。

教师能够举例:例1下面哪些对应能够表示函数?例2 图1的兰色曲线记录的是2020年2月20日自上午9:30至下午3:00上海证券交易所的股票指数的情形。

股票指数是时刻的函数吗?图2 例3 国际上经常使用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。

数学核心素养下函数概念的教学设计

数学核心素养下函数概念的教学设计

数学核心素养下函数概念的教学设计教学目标:1.了解函数的定义和性质。

2.掌握函数的图像、函数的增减性。

3.能够利用函数解决实际问题。

教学内容:1.函数的定义和性质。

2.函数的图像和性质。

3.函数的增减性。

4.利用函数解决实际问题。

教学过程:引入部分:1.利用教具或幻灯片展示函数的概念,引起学生的兴趣和思考。

2.进行简单的讨论,让学生说出他们对函数的理解和认识。

第一部分:函数的定义和性质(约30分钟)1.通过具体的例子,引导学生理解函数的定义。

2.谈及函数的定义域、值域和对应关系,帮助学生理解函数的基本性质。

3.引导学生发现函数的奇偶性、周期性等特征,加深学生对函数性质的理解。

第二部分:函数的图像和性质(约40分钟)1.利用电子白板或幻灯片,展示不同函数的图像。

2.讲解函数的图像上的重要点,如最大值、最小值、拐点等,并指导学生如何通过图像得出函数的性质。

3.给学生一些简单的函数,让他们根据图像判断函数的单调性和凹凸性。

第三部分:函数的增减性(约30分钟)1.通过具体的例子,引导学生理解函数的增减性。

2.引入导数的概念,解释导数与函数的增减性之间的关系。

3.通过图像和导数的关系,帮助学生理解函数的增减性。

第四部分:利用函数解决实际问题(约20分钟)1.展示一些实际问题,并引导学生思考如何建立与解决函数方程。

2.引导学生利用函数解决实际问题,如经济问题、几何问题等。

3.让学生在小组合作中解决一些实际问题,并展示他们的解决方法。

总结部分:1.对本节课的要点进行总结,并强调函数的重要性和应用范围。

2.鼓励学生根据自己的实际情况继续学习和应用函数的知识。

教学策略:1.启发式教学策略:通过引导式的提问和讨论,激发学生的学习兴趣和思考能力。

2.情境教学策略:通过提供实际问题的情境,引导学生利用函数解决实际问题,培养学生的应用能力和创新思维。

教学评价:1.利用课堂小测验检查学生对函数的定义和性质的理解程度。

2.观察学生在小组合作中解决实际问题的能力。

函数概念的教学设计

函数概念的教学设计

函数概念的教学设计教学目标:1.了解函数的概念和作用;2.掌握函数的定义和使用;3.能够灵活运用函数解决问题。

教学内容:1.函数的概念和作用;2.函数的定义和调用;3.函数的参数和返回值;4.函数的递归调用;5.函数的作用域和局部变量。

教学步骤:第一步:导入问题引入问题:在日常生活中,我们常常需要将一系列操作封装成一个整体,以便在需要时调用。

那么,你知道如何实现这个功能吗?第二步:引入函数的概念1.通过实例引入函数的概念:比如,在日常生活中,我们常常会使用机器来完成一些操作,比如洗衣机用来洗衣服,电视遥控器用来控制电视,那么这些机器和遥控器其实就是函数的概念。

2.定义函数:引导学生定义函数,即封装一系列操作的代码块,以便在需要时调用。

第三步:函数的定义和调用1.函数的定义:通过示范将一个简单的操作封装成一个函数的示例,如求两个数的和。

2.函数的调用:通过示范调用已定义的函数来实现封装的功能。

第四步:函数的参数和返回值1.函数的参数:引导学生通过例子,引入函数参数的概念,并进行函数定义和调用。

2.函数的返回值:通过例子引导学生理解函数的返回值,并进行函数定义和调用。

第五步:函数的递归调用1.引导学生理解递归的概念和原理;2.通过实例展示函数的递归调用,并指导学生进行实践。

第六步:函数的作用域和局部变量1.通过示例引导学生理解变量的作用域;2.通过函数和外部变量的示例引导学生理解函数的作用域和局部变量。

第七步:综合练习与巩固结合实际问题和练习题进行实践,巩固学生对函数概念和使用的理解。

第八步:总结与扩展1.总结函数的概念和作用、定义与调用、参数和返回值、递归调用、作用域与局部变量;2.引导学生思考函数的扩展应用,并引入匿名函数等扩展内容。

教学评价:在教学过程中,可以通过让学生进行问题解决和程序设计的实践,评价学生对函数概念的掌握程度以及能否熟练地使用函数解决问题。

可以通过课堂练习和作业、小组讨论等方式进行评价,确保学生掌握函数的概念和使用。

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。

《函数的概念》教学设计

《函数的概念》教学设计

《函数的概念》教学设计【课时目标】了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号的意义; (为常数与的区别与联系;会求一些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.【重点】函数概念的形成,正确理解函数的概念.【难点】发展学生的抽象思维能力,对函数概念本质的理解.【教法】问题导向式教学【学法】探究式学法【教学用具】黑板板书为主结合多媒体来辅助教学。

【教学过程】2020年6月23日,我国著名的北斗三号压轴卫星成功发射,我们时刻关注着北斗系统的第30颗卫星离地面的距离随时间是如何变化的,数学上可以用来描述这种运动变化中的数量关系.1.回忆旧知,引出困惑问题一:初中函数的定义是什么?是函数吗?学生活动:学生思考并回答.2.创设情境,形成概念实例一:一枚炮弹发射后,经过落到地面击中目标.炮弹的射高为,且炮弹距地面的高度(单位:)随时间(单位:)变化的规律是:.问题二:1.的范围是什么?的范围是什么?2.和有什么关系?这个关系有什么特点(师生共同完成)实例二:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.时间(年)1991199219931994199519961997199819992002001恩格尔系数(%53.852.950.149.949.948.646.444.541.939.237.9)通过先对两个实例的学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题三:实例一、实例二、实例三的对应关系在呈现方式上有什么不同?问题四:以上三个实例有什么相同的特征?学生活动:学生分组讨论交流,总结归纳出:共同特点:①都有两个非空数集;②两个数集之间都有一种确定的对应关系;③对于数集中的每一个,按照某种对应关系,在数集中都有唯一确定的值和它对应.问题五:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(学生回答老师补充)引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数.你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?函数概念:设是非空的数集,如果按某种确定的对应关系,使对于集合中的任意一个数,在集合中都有唯一确定的数和它对应,那么就称为集合到集合的一个函数,记作 .其中,叫做自变量,的取值范围叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合叫做函数的值域.显然,值域是集合B的子集.问题六:请同学们根据现在函数的定义说说前面三个实例是否表示两个集合的函数关系?问题七:是函数吗?问题八:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时让学生判断这些平移和旋转中的弧是否表示函数图象.方法引导:如何判断给定的两个变量间是否具有函数关系?依据定义中的哪几个要点?要注意函数概念中的哪些关键词?3.质疑解惑,剖析概念问题九:请同学们画出概念中的关键词,并用简洁的语言说明.通过交流得出以下几点:①都是非空的数集;②任意性与唯一性;③确定的对应关系,对应关系可以是解析式、图象、表格.问题十:函数由几部分组成?怎样理解符号 ?三要素:定义域、值域、对应法则,缺一不可.在法则下,所对应的函数值,并结合生活实例说明.4.讨论研究,深化理解【例1】已知函数,(1)求函数的定义域;(2)求的值;(3)当时,求的值.想一想:函数的定义域该怎么求?符号 (为常数)与有哪些区别与联系? (学生思考、计算,老师提问,师生共同完成)5.即时训练,巩固新知练习1.求函数的定义域:练习2.已知函数求的值.学生活动:两位学生板书后,师生共同评价完善.6.总结反思,提高认识(学生思考并回答,老师补充.)我们在初中函数定义的基础上,运用集合与对应的语言重新刻画了函数,比较两个函数的定义,同学们有什么新的认识.7.分层作业,自主探究作业:一、举出生活中函数的例子(两个以上),并用集合与对应的语言来描述函数;二、必做:P24 1、2、3;选做:P25 1题.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念教学设计张世君一、教学目标1、知识与技能通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;④理解f(x)与f(a)(a为常数)的区别与联系;⑤会求一些简单函数的定义域。

2.过程与方法在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

二、教学重点、难点重点:函数的概念以及构成函数的三要素;难点:函数概念的形成及理解。

三、学法与教学方法1、学法:采用学生动手实践、独立思考、自主探究与合作交流相结合的学习方式。

2、教学方法:有效教学的课堂模式四、教学过程(一)创设情景、提出问题提问1:初中时函数的概念是如何定义的?[设计意图:通过提问,学生复习了初中函数的概念,为提问2打下铺垫,为引入本节课题,并为学习高中阶段函数的概念作好准备。

]生:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y 都有唯一的值与它对应,那么就说x是自变量,y是x的函数.提问2: y=1是函数吗? y=x 与 xx y 2是相同的函数吗?【学情预设:学生可能回答的不尽相同】[设计意图:通过提问,学生发现利用初中的概念很难回答这两个问题,从而理解了从更深的高度学习函数概念的必要,从而引出了本节课题。

] (二)师生互动、探究新知 1、函数的有关概念师:下面我们共同看生活中的三个例子例1:一枚炮弹发射后,经过26 s 落到地面击中目标. 炮弹的射高为845 m,且炮弹距地面的高度h(单位: m)随时间t (单位: s)变化的规律是h=130t-5t2.例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.例3:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.时间(年)1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001对于这三个实例,我分别提出一个问题请同学们思考:问题1:从炮弹发射到炮弹落地的时间内,集合A 中是否存在某一时间t,在B 中没有高度h 与之相对应?是否有两个或多个高度与之相对应?问题2:从1979-2001年,集合A 中是否存在某一时间t,在B 中没有面积S 与之相对应?是否有两个或多个面积与之相对应?问题3:从1991-2001年,集合A 中是否存在某一时间t,在B 中没有恩格尔系数与之相对应?是否有两个或多个恩格尔系数与之相对应?[设计意图:通过三个问题的提问,着重向学生渗透集合与对应的观点,这样再用集合与对应的观点描述函数是显得不突兀]师:通过刚才的三个问题,请同学们总结出这三个实例的各自特点。

生1:炮弹飞行时间的变化范围是数集{026}A x x =≤≤,炮弹距地面的高度h 的变化范围是数集{0845}B h h =≤≤,对应关系21305h t t =- 。

从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系,在数集B 中都有唯一确定的高度h 和它对应。

生2:数集{19792001}A t t =≤≤,{026}B S S =≤≤,并且对于数集A 中的任意一个时间t ,按图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应。

生3:数集A={1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001},B={53.8,52.9,50.1,49.9,48.6,46.4,44.5,41.9,39.2,37.9}且对于数集A 中的每一个时间,按表格,在数集B 中都有唯一确定的恩格尔系数和它对应。

【学情预设:学生能根据问题回答出这三个实例的各自特点,但语言可能不精准,教师应根据学生回答的情况进行补充和修正,渗透集合和对应的观点】师:综合 3个例子的各自特点,我们能发现它们有什么共同特点? 生:对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 和它对应。

师:对,同学们总结的非常好,这就是函数的定义(板书),我们共同大声的把函数的定义读出来生(共同): 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与 x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.师:函数的概念既已形成,那么它的本质是什么呢?我们先看一个表格,请学号01-05的同学填写上次考试的数学成绩,之后回答下面3个问题:问题1:若学号构成集合A={01,02,03,04,05},成绩构成集合 B={132,135,120,125,122},f:上次考试数学成绩,由A 到B 能否构成函数?问题2:若将问题1中集合A 改为“A={杜杭,王丽,林晨晨,姚壮 ,田汶帅}”,其余条件不变,那么由A 到B 能否构成函数?问题3:若学号04的学生上次考试因病缺考,无成绩,那么学号与成绩能否构成函数?[设计意图:通过提问,使学生对函数概念中关键词的把握更准确,对函数概念的理解更直观,为下面总结函数概念的本质特征打下基础]师:通过对以上三个问题的分析和讨论,我们对函数概念的理解更直观,在此基础上,请同学们观察下面两种数集的对应关系,判断它们能否构成函数?[设计意图:对函数概念的理解由具体到抽象,螺旋上升]师:在我们理解了函数是非空数集到非空数集的一对一或多对一的对应关系后AB,对于函数的概念,我们应该强调以下几点: 1、A, B 都是非空数集; 2、A 中任意,B 中唯一;3、函数的定义域为 A ;函数的值域 {f(x)|x ∈A}⊆ B ;师:对于初中我们所学的一次函数,二次函数,反比例函数它们的定义域值域分别是什么呢?[设计意图:通过提问,学生既复习了初中所学函数的图像,又进一步加深了对定义域、值域概念的理解] 生:函数图像 定义域 值域 y=kx+b(k ≠0)y0 xRR)0(≠=k xky}0|{≠x x}0|{≠y yc bx ax y ++=2(a>0)y 0 xR}44|{2ab ac y y -≥师:由以上分析我们知道函数有几大要素?决定函数的主要因素是什么? 生:函数有三要素:定义域、对应关系和值域,而决定因素是定义域和对应关系。

(板书)师:回答的非常好!由同学们的回答我们可知:如果两个函数的定义域,对应关系完全一致,则两个函数相等,这是判断两函数相等的依据.(板书) 2、区间的概念 设a ,b 为实数,且a <b定义 名称 符号 数轴表示{|}x a x b ≤≤闭区间[a,b]oy x实数集R 可以用区间表示为(-∞,+∞),并且,我们把满足x ≥a,x>a,x ≤b,x<b 的实数x 的集合分别表示为[a,+∞),(a,+∞),(-∞,b],(-∞,b).提问:数集都可以用区间表示吗?(学生讨论) 生1:单元素集合不能 生2:离散的集合不能【师生互动:各种不能用区间表示的集合问题进行总结。

】 (三)合作探究、例题分析【师生互动】本节的例题和变式训练将采用小组讨论,合作探究的方式,由学生主讲,不足部分可以由其他同学补充,最后教师点评 类型一 函数概念的应用例1(1)下列图象具有函数关系的是( A D )A B CC D E[设计意图:考察对函数概念的理解,紧扣定义,验证对于定义域内的每一个x ,是否有唯一的函数值与之相对应](2)已知A ={x|0≤x ≤4},B ={y|1≤y ≤2},下列图形中不能表示从A 到B{|}x a x b << 开区间 (a,b) {|}x a x b <≤ 半开半闭区间 (a,b]{|}x a x b ≤<半开半闭区间[a,b)xyxyoxoy1y 1 oxoyxy o1 -1上的函数的是( A )A B[设计意图:考察在函数的概念中,集合A 就是函数的定义域,集合B 包含函数的值域这一知识点]师:如果把题目条件改为,“以A 为定义域,以B 为值域的函数选哪个选项?” 生:答案是D ,因为A 是定义域,B 就是值域,不能变化,只有D 符合条件 【学情预设:学生可能对B 、C 选项会有质疑】 (3)与函数y =x +1相等的函数是( B ).A .y =(x +1)0B .33(1)y x =+C y =(x +1)2D .y =|x +1| [设计意图:考察函数相等的条件,定义域和对应关系一致就是相等的函数,本题切入点是判断他们的定义域和对应关系是否一致]类型二 求函数的定义域 【例2】 求下列函数的定义域:(1)y =x +12x +1-1-x ;(2)[设计意图:函数问题首要考虑定义域,这贯穿了整个高中数学,是高考的重点,也是易漏点,本题设计目的让学生对函数的定义域有直观的认识,并能总结都有哪些类型的定义域问题]解:(1)要使函数有意义,∴ 即: ° •• y4 x o22 1 x4y 2 1 o• 21220-++⋅=x xx x y ⎩⎨⎧≥-≠+0101x x ⎩⎨⎧≤-≠11x x∴定义域为(-∞,-1)∪(-1,1](2)要使函数有意义,∴ 即:∴定义域为(-∞,-3)∪(-3,-2]∪(0,1)∪(1,+∞)【注:提示学生函数的定义域要用集合或区间的形式表示,不能用范围表示】师:对于函数的定义域,我们大家讨论一下我们目前学过的都有哪些类型? 经过学生讨论生1:1、如果f(x)是分式,那么函数的定义域是使分母不为0的实数的集合;2、如果f(x)为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;3、如果f(x)是0次方式,那么函数的定义域是底数不为0的实数的集合。

生2:我再补充一下:1、如果f(x)是整式,那么函数的定义域是实数集R ;2、如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合师:同学生总结的非常好,我们把求函数定义域的类型进行一下归总,有以下几类:1、如果f(x)是整式,那么函数的定义域是实数集R ;2、如果f(x)是分式,那么函数的定义域是使分母不为0的实数的集合;3、如果f(x)为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;4、如果f(x)是0次方式,那么函数的定义域是底数不为0的实数的集合;5、如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分 式子都有意义的实数的集合;6、如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 类型三 求函数值【例3】(1) 已知 ①求 的值;②当a>0时,求 f(a),f(a-1) 的值.解:① ⎪⎩⎪⎨⎧≠-+≠≥+021022x x x x ⎪⎩⎪⎨⎧-≠≠≠≥-≤31002x x x x x 且或,213)(+++=x x x f )32(),3(f f -.333832321332)32(;123133)3(+=+++=-=+-++-=-f f②因为a>0,所以f(a),f(a-1)有意义.[设计意图:本题考查求函数值的问题,要特别注意f(a)与f(x)的区别,其中f(x)表示x 对应的函数值,不是f 乘x ;而f(a)是指x=a 时的函数值。

相关文档
最新文档