函数概念教案
函数的概念与性质教案

函数的概念与性质教案一、教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 能够运用函数的性质解决问题。
二、教学内容:1. 函数的概念:函数的定义、函数的表示方法(列表法、解析法、图象法)。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数性质的应用:解决实际问题。
三、教学重点与难点:1. 重点:函数的概念与表示方法,函数的性质及其应用。
2. 难点:函数的单调性、奇偶性、周期性的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数的性质。
2. 利用数形结合法,直观展示函数的性质。
3. 运用实例分析法,让学生学会运用函数的性质解决实际问题。
五、教学准备:1. 教学课件:包含函数的概念、性质及其应用的实例。
2. 教学素材:包括函数图象、实际问题等。
3. 学生用书、练习题。
【导入】(此处简要介绍本节课的教学目标和内容,引导学生进入学习状态。
)【新课导入】1. 函数的概念:(1)引导学生回顾数学中的变量概念,引入函数的定义。
(2)讲解函数的表示方法:列表法、解析法、图象法。
2. 函数的性质:(1)单调性:讲解函数单调递增和单调递减的概念,引导学生通过图象观察函数的单调性。
(2)奇偶性:讲解函数奇偶性的定义,引导学生通过图象观察函数的奇偶性。
(3)周期性:讲解函数周期性的定义,引导学生通过图象观察函数的周期性。
【课堂练习】1. 让学生自主完成教材中的练习题,巩固所学内容。
2. 选取部分学生进行答案展示,并讲解答案的得出过程。
【实例分析】1. 给出实际问题,让学生运用函数的性质解决问题。
2. 引导学生总结解题思路和方法,并进行讲解。
【小结】1. 让学生回顾本节课所学内容,总结函数的概念、性质及其应用。
2. 强调函数在实际问题中的重要性。
【作业布置】1. 让学生完成课后作业,巩固所学内容。
2. 鼓励学生进行自主学习,提前预习下一节课的内容。
八年级数学函数教案【精选6篇】

八年级数学函数教案【精选6篇】八班级数学函数教案篇1一、教学内容:本节内容是人教版教材八班级上册,第十四章第2节乘法公式的其次课时——完全平方公式。
二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算学问的升华,它是在同学学习整式乘法后,对多项式乘法中消失的一种特别的算式的总结,体现了从一般到特别的思想方法。
完全平方公式是同学后续学好因式分解、分式运算的必备学问,它还是配方法的基本模式,为以后学习一元二次方程、函数等学问奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在同学把握了平方差公式的基础上,讨论完全平方公式的推导和应用,公式的发觉与验证为同学体验规律探究供应了一种较好的模式,培育同学逐步形成严密的规律推理力量。
完全平方公式的学习对简化某些代数式的运算,培育同学的求简意识很有关心。
使同学了解到完全平方公式是有力的数学工具。
重点:把握完全平方公式,会运用公式进行简洁的计算。
难点:理解公式中的字母含义,即对公式中字母a、b 的理解与正确应用。
三、教学目标(1)经受探究完全平方公式的推导过程,把握完全平方公式,并能正确运用公式进行简洁计算。
(2)进一步进展同学的符号感和推理力量,了解公式的几何背景,感受数与形之间的联系,学会独立思索。
(3)通过推导完全平方公式及分析结构特征,培育同学观看、分析、归纳的.力量,学会与他人合作沟通,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发同学的学习爱好;在自主探究、合作沟通的学习过程中获得体验胜利的喜悦,增加学习数学的自信念。
四、学情分析与教法学法学情分析:课程标准提出数学教学活动必需建立在同学的认知进展水平和已有的学问阅历基础之上,本节课就是在前面的学习中,同学已经把握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳力量。
另外,14岁的中同学布满了奇怪心,有较强的求知欲、制造欲、表现欲,所以只有能调动同学的学习热忱,本节内容才较易把握。
《函数的概念》教学教案

《函数的概念》教学教案一、教学目标1. 理解函数的定义及概念。
2. 掌握函数的表示方法,包括列表法、图象法、解析式法。
3. 能够判断两个变量之间的关系是否为函数。
4. 理解函数的性质,如单调性、奇偶性等。
二、教学内容1. 函数的定义及概念。
2. 函数的表示方法:列表法、图象法、解析式法。
3. 判断两个变量之间的关系是否为函数。
4. 函数的性质:单调性、奇偶性。
三、教学重点与难点1. 教学重点:函数的定义及概念,函数的表示方法,函数的性质。
2. 教学难点:函数的性质的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、思考、探究来理解函数的概念。
2. 利用多媒体课件,展示函数的图象,帮助学生直观地理解函数的性质。
3. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考函数的概念。
2. 讲解函数的定义及概念,解释函数的基本要素:自变量、因变量、对应关系。
3. 介绍函数的表示方法,包括列表法、图象法、解析式法,并通过实例进行展示。
4. 讲解如何判断两个变量之间的关系是否为函数,引导学生通过实例进行分析。
5. 讲解函数的性质,如单调性、奇偶性,并通过图象进行展示。
6. 开展小组讨论,让学生通过合作交流,加深对函数概念的理解。
7. 总结本节课的主要内容,布置课后作业,巩固所学知识。
六、教学评估1. 课后作业:要求学生完成相关的习题,巩固函数的基本概念和性质。
2. 课堂问答:通过提问的方式,检查学生对函数概念的理解程度。
3. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
七、教学反思1. 教师需要在课后对自己的教学进行反思,考虑是否有清晰地传达函数的概念和性质。
2. 反思教学方法的有效性,是否激发了学生的兴趣和参与度。
3. 根据学生的反馈和作业情况,调整教学计划和方法,以便更有效地帮助学生理解函数。
八、拓展与延伸1. 鼓励学生探索更复杂的函数性质,如周期性、连续性等。
中职数学函数的概念教案

中职数学函数的概念教案第一章:函数的概念与性质1.1 函数的定义引入函数的概念,通过实例让学生理解函数的定义。
讲解函数的表示方法,包括函数表格、函数图像和函数表达式。
1.2 函数的性质讲解函数的单调性、奇偶性、周期性等基本性质。
通过实例让学生理解函数的性质,并学会如何判断函数的性质。
第二章:函数的图像2.1 函数图像的绘制讲解如何绘制函数的图像,包括直线、二次函数、指数函数等。
通过实例让学生学会绘制函数图像,并理解函数图像与函数性质的关系。
2.2 函数图像的性质讲解函数图像的性质,包括对称性、单调性、极值等。
通过实例让学生理解函数图像的性质,并学会如何分析函数图像。
第三章:一次函数与二次函数3.1 一次函数讲解一次函数的定义和性质,包括斜率和截距的概念。
通过实例让学生理解一次函数的图像和性质,并学会解一次方程组。
3.2 二次函数讲解二次函数的定义和性质,包括开口方向、顶点、对称轴等。
通过实例让学生理解二次函数的图像和性质,并学会解二次方程。
第四章:函数的极限与连续性4.1 函数的极限讲解函数极限的概念,包括左极限和右极限。
通过实例让学生理解函数极限的性质,并学会计算函数极限。
4.2 函数的连续性讲解函数连续性的概念,包括连续函数的性质和判定条件。
通过实例让学生理解函数连续性的重要性,并学会判断函数的连续性。
第五章:函数的导数与微分5.1 函数的导数讲解函数导数的概念和计算方法,包括导数的定义和导数的计算规则。
通过实例让学生理解函数导数的意义,并学会计算常见函数的导数。
5.2 函数的微分讲解函数微分的概念和计算方法,包括微分的定义和微分的计算规则。
通过实例让学生理解函数微分的应用,并学会计算函数的微分。
第六章:函数的积分与累积6.1 定积分的概念讲解定积分的定义和性质,包括定积分的几何意义和计算方法。
通过实例让学生理解定积分的概念,并学会计算常见函数的定积分。
6.2 定积分的应用讲解定积分在几何和物理中的应用,包括面积和体积的计算。
中职数学函数的概念教案

中职数学函数的概念教案一、教学目标:1.知识目标:掌握数学函数的概念、函数的定义域、值域、反函数以及函数的图象特性。
2.能力目标:能够正确理解和运用函数的概念和相关定理,解决函数相关的问题。
3.情感目标:培养学生对于数学函数的兴趣,增强他们的自学能力和数学思维能力。
二、教学重难点:1.重点:函数的概念、定义域、值域、反函数以及函数的图象特性。
2.难点:函数的图象特性。
三、教学过程:Step 1:导入新知(10分钟)1.让学生回顾一元二次方程的函数图像,回顾函数的概念。
2.提问:什么是函数?回答学生提出的问题,引导学生思考。
Step 2:概念解释与讲解(15分钟)1.讲解函数的定义:函数是一个有序对集合的规律关系,即每个自变量(x)只对应一个唯一的因变量(y)。
2.讲解函数的记号:y=f(x)表示函数,y是因变量,x是自变量,f(x)是函数名称。
3.通过例题解释函数的概念,让学生理解函数的定义。
Step 3:函数的定义域和值域(15分钟)1.讲解定义域:定义域是自变量可能取值的集合,记作D(f)。
2.讲解值域:值域是因变量可能取值的集合,记作R(f)。
3.通过例题解释定义域和值域的概念,让学生掌握如何确定函数的定义域和值域。
Step 4:反函数(15分钟)1.讲解反函数的概念:如果函数f的定义域和值域分别为D(f)和R(f),则对于任意y∈R(f),都存在唯一的x∈D(f)使得f(x)=y。
此时,由y关于x的关系式y=f(x)确定一个关于y的函数g,称为函数f的反函数。
2.通过例题,让学生理解反函数的概念,掌握如何求反函数。
Step 5:函数的图象特性(20分钟)1.讲解函数图象的基本概念:函数图象是反映函数f(x)经过点(x,f(x))的轨迹。
2.讲解函数图象的性质:单调性、奇偶性、周期性、最值点等。
3.通过例题,让学生掌握函数图象的特性及如何根据函数图象确定函数的性质。
Step 6:练习与巩固(15分钟)1.分发练习题,让学生根据所学知识完成练习。
函数的概念 教案

函数的概念教案函数是数学中的一个重要概念,它在数学理论和实际问题中都有着广泛的应用。
本教案将介绍函数的定义、性质以及常见的函数类型。
一、函数的定义函数是一个将每个元素都从一个集合(称为定义域)映射到另一个集合(称为值域)的规则。
简单来说,函数就是根据输入值得到输出值的过程。
记作:y = f(x),其中x为自变量,y为因变量。
f(x)表示函数f对x 的输出值。
二、函数的性质1. 定义域与值域:- 定义域是函数f中所有可能的输入值x的集合。
- 值域是函数f中所有可能的输出值y的集合。
2. 一一对应关系:- 函数f的每个输入对应唯一一个输出,即不同的输入得到不同的输出。
- 一个输出可能对应多个不同的输入(但不可逆)。
3. 符号化表示:- 对于给定的函数,可以通过数学符号来表示,如多项式函数、三角函数等。
三、常见的函数类型1. 线性函数:- 定义:一个函数是线性的,当且仅当它可表示为f(x) = ax + b的形式,其中a和b是常数。
- 例子:y = 2x + 3,y = -0.5x + 1等。
2. 幂函数:- 定义:一个函数是幂函数,当且仅当它可表示为f(x) = ax^b的形式,其中a和b是常数。
- 例子:y = 2x^3,y = 0.5x^2等。
3. 指数函数:- 定义:一个函数是指数函数,当且仅当它可表示为f(x) = a^x的形式,其中a是常数。
- 例子:y = 2^x,y = 0.5^x等。
4. 对数函数:- 定义:一个函数是对数函数,当且仅当它可表示为f(x) = loga(x)的形式,其中a是常数。
- 例子:y = log2(x),y = log10(x)等。
四、总结函数是数学中的一个重要概念,它描述了输入和输出之间的关系。
我们可以通过函数来解决各种实际问题,并且函数具有很多有用的性质和种类。
熟练掌握函数的概念和常见类型,有助于我们加深对数学的理解,并能更好地应用函数的知识解决实际问题。
函数的表示法教案三篇
函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
函数概念教案
函数概念教案一、教学目标1. 理解函数的概念;2. 掌握函数的定义与表示方法;3. 能够正确使用函数进行数学运算;4. 能够分析并解决与函数相关的实际问题。
二、教学内容1. 函数的定义与概念;2. 函数的表示方法与性质;3. 函数的运算与应用。
三、教学步骤步骤一:引入1. 开场导入:介绍函数的概念,以一个日常生活中的例子引入,如“每天早上起床后都要刷牙”,将这个过程比喻成函数的概念,即“起床刷牙”函数。
2. 引导学生思考一件事情或过程是否符合函数的定义,让学生尝试举其他例子。
步骤二:函数的定义与表示方法1. 讲解函数的定义:函数是一种将一个集合的元素映射到另一个集合的元素的特殊关系。
2. 引入函数的符号表示方法:f(x) = y,其中f(x)表示函数名称,x称为自变量,y称为因变量。
3. 举例解释函数的含义:比如f(x) = 2x,表示自变量x经过函数f(x)的运算后得到的结果是2倍的x。
步骤三:函数的性质与特点1. 介绍函数的定义域与值域概念:函数的定义域是自变量可能取值的集合,值域是函数的所有可能结果的集合。
2. 讲解函数的奇偶性:如果函数满足f(x) = f(-x),则称该函数为偶函数;如果函数满足f(x) = -f(-x),则称该函数为奇函数。
3. 给出一些例子并让学生判断函数的奇偶性。
步骤四:函数的运算与应用1. 讲解函数的四则运算规则:加法、减法、乘法、除法。
强调在进行运算时要根据函数的定义域与值域进行合理的运算。
2. 给出具体的函数表达式并进行运算练习,比如f(x) = 2x + 3,g(x) = x^2,让学生计算f(g(x))等。
3. 引导学生思考函数在实际生活中的应用,比如利用函数进行数据分析、计算预期收益等。
步骤五:练习与拓展1. 给学生一些函数的运算和应用题目进行练习,并讲解答案与解题思路。
2. 引导学生思考更多与函数相关的问题,如反函数、复合函数、函数的图像、函数的极限等。
函数概念教案
函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
《函数的概念及其表示》教案完美版
函数的概念及其表示》教案完美版函数的概念及其表示》教案第一课时:1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。
在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时 y 是 x 的函数,x 是自变量,y 是因变量。
表示方法有解析法、列表法、图象法。
二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A.一枚炮弹发射,经 26 秒后落地击中目标,射高为 845 米,且炮弹距地面高度 h(米)与时间 t(秒)的变化规律是h = 130t - 5t²。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见书 P16 页图)C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
(见书 P17 页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系?三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个 x,按照某种对应关系 f,在数集 B 中都与唯一确定的 y 和它对应,记作:f: A → B。
③定义:设 A、B 是非空数集,如果按照某种确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么称f: A → B 为从集合 A 到集合 B 的一个函数(n),记作:y = f(x),x∈A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念教案
各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。
一、教材分析
1、教材的地位和作用:
函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。
本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。
2、教学目标及确立的依据:
教学目标:
(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。
(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。
(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
教学目标确立的依据:
函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。
加强函数教学可帮助学生学好其他的数学内容。
而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:
教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。
教学难点:映射的概念,函数近代概念,及函数符号的理解。
重点难点确立的依据:
映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。
而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:
将映射的定义及类比手法的运用作为本课突破难点的关键。
函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。
为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。
三、教学方法和学法
教学方法:讲授为主,学生自主预习为辅。
依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。
学法:四、教学程序
一、课程导入
通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。
例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?
二. 新课讲授:
(1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:A→B,及原像和像的定义。
强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则f。
进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。
(2)巩固练习课本52页第八题。
此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。
例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B 是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:A→B记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈A}叫做函数的值域。
并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。
(函数是非空数集到非空数集的映射)。
再以让学生判断的方式给出以下关于函数近代定义的注意事项:
2. 函数是非空数集到非空数集的映射。
3. f表示对应关系,在不同的函数中f的具体含义不一样。
4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。
5. 集合A中的数的任意性,集合B中数的唯一性。
6. “f:A→B”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C (上函数值的集合且C∈B)。
三.讲解例题
例1.问y=1(x∈A)是不是函数?
解:y=1可以化为y=0*X+1
画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。
[注]:引导学生从集合,映射的观点认识函数的定义。
四.课时小结:
1. 映射的定义。
2. 函数的近代定义。
3. 函数的三要素及符号的正确理解和应用。
4. 函数近代定义的五大注意点。
五.课后作业及板书设计
书本P51 习题2.1的1、2写在书上3、4、5上交。
预习函数三要素的定义域,并能求简单函数的定义域。