定位误差计算解析
定位误差的分析与计算

定位误差的分析与计算一、定位误差的概念和原因定位误差是指定位系统测量结果与真实位置之间的差异或偏差。
在现代生活中,定位系统广泛应用于导航系统、无人驾驶、无人飞行器等领域,而定位误差对于系统的准确性和可靠性至关重要。
1.信号传播误差:这是由于信号在传播过程中受到大气中的影响,如电离层、大气湿度等所产生的误差。
这种误差对于GPS系统尤为明显,导致多径效应、钟差误差等。
2.接收机误差:接收机的硬件和软件系统可能存在不同程度的误差。
硬件方面,接收机的时钟精度、天线阻抗匹配等问题都可能导致定位误差。
软件方面,接收机的算法、数据处理等也可能引入误差。
3.观测误差:观测误差是指由于测量设备的精度或不完善性所导致的误差。
例如,测量设备的精度限制了对信号强度、TOA(Time of Arrival)等参数的准确测量。
4.环境因素:环境因素也是定位误差产生的原因之一、比如,建筑物、树木、走廊等物体会对信号传播产生阻碍和衍射,从而影响接收机的测量结果。
5.多径效应:多径效应是指信号传播过程中,信号除了直射到达接收机外,还经历了反射,导致信号的多个传播路径同时到达接收机。
多径效应会产生明显的信号干扰和测量误差。
二、定位误差的计算方法1.位置误差计算:位置误差是指实际测量位置与真实位置之间的距离差异。
一种常见的计算方法是通过比较GPS测量点与参考点之间的差异来计算位置误差。
通过收集多个测量点的数据,可以使用最小二乘法进行曲线拟合,从而计算出测量点与真实位置之间的距离差异。
2.时间误差计算:时间误差是指实际测量时间与真实时间之间的差异。
在GPS系统中,时间误差主要由于卫星钟的钟差所引起。
通过GPS接收机接收到的卫星信号的时间戳和GPS接收机内部的时间戳之间的差异,可以计算出时间误差。
4.误差修正算法:为了减小定位误差,可以使用一些误差修正算法来对测量结果进行修正。
一种常见的方法是差分GPS技术,通过使用两个或多个接收机接收同一卫星信号,对测量结果进行差分处理,从而减小定位误差。
定位误差分析解析

(二)定位误差分析计算
平面度误差很小,定位副制造不准确误差可忽略,所以定位误差主 要由基准不重合引起。 (1)工件以平面定位时的定位误差分析计算 【例】以A 面定位加工φ20H8孔,求加工尺寸40±0.1mm的定位误差。 解: 设计基准B与定位基准A不重合,因此将产 生基准不重合误差:
JB 0.05 0.1m m 0.15m m
要保证零件加工精度,则需满足以下条件:
①△总 ≤ δ 其中△总为多种原因产生的误差总和; δ是工件被加工尺寸的公差 △总包括 1、夹具在机床上的装夹误差 2、工件在夹具中的定位误差和夹紧误差 3、机床调整误差 4、工艺系统的弹性变形和热变形误差```` 5、机床和刀具的制造误差及磨损误差等 。
为了方便分析定位误差,常将△总化作三个部分: 定位误差△DW: 安装、调整误差△AW:包括夹具在机床上的装夹误差、机床调整误差、 夹紧误差以及机床和刀具的制造误差等。 加工过程误差△GW: 包括工艺系统的弹性变形和热变形误差以及磨损误差等。 为保证加工要求,上述三项误差合成后应小于或等于工件公差δ。
ΔJB
工序基准
由于基准不重合引起的定位 误差
b
a
2.基准位置误差ΔJW 由于工件定位表面或夹具定位元件制作不准确引起的 定位误差,称为基准位置误差ΔJW
基准位移引起的基准位置误差
基准位置误差ΔJW △JW=( △D+ △d )/2
一、定位误差分析
定位误差:因工件定位而产生的工序(设计)基准相对 于夹具限位基准在工序尺寸方向上的最大变动量△DW
基准不重合 误差 △JB
定位基准与工序(设计) 基准不重合引起的误差
大小等于工序 (设计)基准 与定位基准之 间的尺寸公差
定位误差 的组成 定位基准相对 于夹具限位基 准在加工尺寸 方向上的最大 变动量。
定位误差分析

(3)定位误差的计算由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。
组合时可有如下情况。
1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8)2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9)3)Δ Y ≠ 0, Δ B ≠ O时如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10)如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11)“ + ” ,“—” 的判别方法为:①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时,判断工序基准相对于定位基准的变动方向。
②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时,判断定位基准相对其规定位置的变动方向。
③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。
-、定位误差及其组成图9-21a图9-21 工件在V 形块上的定位误差分析工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的制造不准确而引起的定位基准位移误差,以表示。
定位误差是这两部分的矢量和。
二、定位误差分析计算(一)工件以外圆在v形块上定位时定位误差计算如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。
如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差(9-3)对于9-16中的三种尺寸标注,下面分别计算其定位误差。
当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。
所以B1尺寸的定位误差为(9-4)当尺寸标注为B2时,工序基准为上母线。
此时存在基准不重合误差所以△D应为△B与Δy的矢量和。
由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。
故(9-5)当尺寸标注为B3时,工序基准为下母线。
定位误差的分析与计算

华北航天工业学院教案教研室:机制工艺授课教师:陈明第十章机床夹具的设计原理第三节定位误差的分析与计算一批工件逐个在夹具上定位时,各个工件在夹具上所占据的位置不可能完全一致,以致使加工后各工件的加工尺寸存在误差,这种因工件定位而产生的工序基准在工序尺寸上的最大变动量,称为定位误差,用∆D表示。
一、定位误差的组成1.基准不重合误差如前所述,当定位基准与设计基准不重合时便产生基准不重合误差。
因此选择定位基准时应尽量与设计基准相重合。
当被加工工件的工艺过程确定以后,各工序的工序尺寸也就随之而定,此时在工艺文件上,设计基准便转化为工序基准。
设计夹具时,应当使定位基准与工序基准重合。
当定位基准与工序基准不重合时,也将产生基准不重合误差,其大小对于定位基准与工序基准之间尺寸的公差,用∆B表示。
工序基准与定位基准之间的尺寸就称为定位尺寸。
2.基准位移误差工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差,用∆Y表示。
基准位移误差的大小对应于因工件内孔轴线与心轴轴线不重合所造成的工序尺寸最大变动量。
当定位基准的变动方向与工序尺寸的方向相同时,基准位移误差等于定位基准的变动范围,即∆Y = ∆i当定位基准的变动方向与工序尺寸的方向不同时,基准位移误差等于定位基准的变动范围在加工尺寸方向上的投影,即∆Y = ∆i cos a二、各种定位方式下定位误差的计算1.定位误差的计算方法如上所述,定位误差由基准不重合误差与基准位移误差两项组合而成。
计算时,先分别算出∆B和∆Y,然后将两者组合而成∆D。
组合方法为:如果工序基准不在定位基面上:∆D =∆Y + ∆B如果工序基准在定位基面上:∆D = ∆Y±∆B式中“+”、“-”号的确定方法如下:1)1)分析定位基面直径由小变大(或由大变小)时,定位基准的变动方向。
定位误差分析与计算.

4.4 定位误差分析与计算在机械加工过程中,使用夹具的目的是为保证工件的加工精度。
那么,在设计定位方案时,工件除了正确地选择定位基准和定位元件之外,还应使选择的定位方式必须能满足工件加工精度要求。
因此,需要对定位方式所产生的定位误差进行定量地分析与计算,以确定所选择的定位方式是否合理。
4.4.1 定位误差产生的原因和计算造成定位误差Δ D的原因可分为性质不同的两个部分:一是由于基准不重合而产生的误差,称为基准不重合误差Δ B;二是由于定位副制造误差,而引起定位基准的位移,称为基准位移误差Δ Y。
当定位误差Δ D≤1/3δK(δK为本工序要求保证的工序尺寸的公差)时,一般认为选定的定位方式可行。
(1 基准不重合误差的计算由于定位基准与工序基准不重合而造成的工序基准对于定位基准在工序尺寸方向上的最大可能变化量,称为基准不重合误差,以ΔB表示。
如图4.36所示的零件简图,在工件上铣一通槽,要求保证的工序尺寸为A、B、C,为保证B尺寸,工件用以K1面或以K2面来定位,都可以限制工件在B尺寸方向上的移动自由度。
但两种定位方式的定位精度是不一样的。
由于加工过程中,是采用夹具上定位件的定位表面为基准来对刀的。
当以K1面为定位基准时,如图 4.37(a)所示B就为确定刀具与夹具相互位置的对刀尺寸,在一批工件的加工过程中 B的位置是不变的。
当以K2面为定位基准时,如图4.37(b)所示B′为确定刀具与夹具相互位置的对刀尺寸,由于工序基准是K1面,与K2面不重合。
当一批工件逐个在夹具上定位时,受尺寸L±Δl的影响,工序基准K1面的位置是变动的,K1的变动影响工序尺寸B 的大小,给B造成误差。
由图 4.37(a可知ΔB=0由图 4.37(b可知ΔB=Lmax-Lmin=2Δl (4.1)当工序基准的变动方向与工序尺寸方向有一夹角时,基准不重合误差等于定位基准与工序基准间距离尺寸公差在工序尺寸方向上的投影,即Δ B= (Smax-Smincos β β是基准不重合误差变化方向与工序尺寸方向上夹角( 2)基准位移误差和计算由于定位副的制造误差而造成定位基准对其规定位置的最大可能变动位移,称为基准位移误差,用ΔY 来表示。
最新定位误差计算解析

最新定位误差计算解析323 定位误差的分析与计算在成批⼤量⽣产中,⼴泛使⽤专⽤夹具对⼯件进⾏装夹加⼯。
加⼯⼯艺规程设计的⼯序图则是设计专⽤夹具的主要依据。
由于在夹具设计、制造、使⽤中都不可能做到完美精确,故当使⽤夹具装夹加⼯⼀批⼯件时,不可避免地会使⼯序的加⼯精度参数产⽣误差,定位误差就是这项误差中的⼀部分。
判断夹具的定位⽅案是否合理可⾏,夹具设计质量是否满⾜⼯序的加⼯要求,是计算定位误差的⽬的所在。
1. ⽤夹具装夹加⼯时的⼯艺基准⽤夹具装夹加⼯时涉及的基准可分为设计基准和⼯艺基准两⼤类。
设计基准是指在设计图上确定⼏何要素的位置所依据的基准;⼯艺基准是指在⼯艺过程中所采⽤的基准。
与夹具定位误差计算有关的⼯艺基准有以下三种:(1)⼯序基准在⼯序图上⽤来确定加⼯表⾯的位置所依据的基准。
⼯序基准可简单地理解为⼯序图上的设计基准。
分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或⼯序图上的⼯序基准。
(2)定位基准在加⼯过程中使⼯件占据正确加⼯位置所依据的基准,即为⼯件与夹具定位元件定位⼯作⾯接触或配合的表⾯。
为提⾼⼯件的加⼯精度,应尽量选设计基准作定位基准。
(3)对⼑基准(即调⼑基准)由夹具定位元件的定位⼯作⾯体现的,⽤于调整加⼯⼑具位置所依据的基准。
必须指出,对⼑基准与上述两⼯艺基准的本质是不同,它不是⼯件上的要素,它是夹具定位元件的定位⼯作⾯体现出来的要素(平⾯、轴线、对称平⾯等)。
如果夹具定位元件是⽀承板,对⼑基准就是该⽀承板的⽀承⼯作⾯。
在图3.3中,⼑具的⾼度尺⼨由对导块 2的⼯作⾯来调整,⽽对⼑块2⼯作⾯的位置尺⼨ 7.85⼟ 0.02是相对夹具体 4的上⼯作⾯(相当⽀承板⽀承⼯作⾯)来确定的。
夹具体4的上⼯作⾯是对⼑基准,它确定了⼑具在⾼度⽅向的位置,使⼑具加⼯出来的槽底位置符合设计的要求。
图3.3中,槽⼦两侧⾯对称度的设计基准是⼯件上⼤孔的轴线,对⼑基准则为夹具上定位圆柱销的轴线。
定位误差的分析和计算

此时为定位基准与工序基准不重叠,不但有基准位移误差,
而且还有基准不重叠误差,又定位尺寸与加工尺寸方向一致,
所以尺寸B1旳定位误差为
DB1 B1max B1min P1P2 P1O2 O2 P2
O1O2 O1P1 - O2P2
(
2
d
sin
d ) (d 22
d )
2
2
d 2sin
床夹具中旳正确位置所采用旳基准。 工序基准:在工艺图上用以标定被加工表
面位置旳基准。
实例分析
如图1所示,在工件上铣一种通槽,要求确保尺寸a、b、h, 为使分析问题以便,仅讨论尺寸a怎样确保旳问题。
加工a尺寸时,当以A面和B面定位时,此 时加工尺寸a旳定位基准面和工序基准面都 是B面,即基准重叠。
则 又因为
Df
OA1 OA2
1 2
d o max
1 2
d o min
Df
1 2
do
Df
1 2
do
(
1 2
D
1 2
do
)
1 2
D
而
1 2
D
1 2
do
Y
1 2
D
B
则
Df Y B
综合上述分析计算成果可知,当工件以圆 柱孔在间隙配合圆柱心轴(或定位销上)定位, 且为固定单边接触时,工序尺寸旳定位误差值、 随工序基准旳不同而异。其中以孔上母线为工 序基按时,定位误差最小;以孔心线为工序基 按时次之,以孔下母线为工序基按时,定位误 差较前几种情况都大。
当定位尺寸与工序尺寸方向一致时,则定位误 差就是定位尺寸旳公差。
若定位尺寸与工序尺寸方向不一致时,则定位 误差就是定位尺寸公差在加工尺寸方向旳投影。
定位误差的分析计算

定位误差的分析计算为保证工件的加工精度,工件应有正确的定位,即除应限制工件必要的自由度使工件具有确定的位置外,还应使实施定位后所产生的误差在工件误差允许范围以内,实现工件安装时的定与准。
造成定位误差的原因有两个:一是由于定位基准与设计基准不重合,称基准不重合误差(定基误差)用△B表示;二是由于定位副制造误差而起定位基准的位移称为基准位移误差,用△Y表示。
(1)基准不重合误差的计算基准不重合误差因所选定位基准与工序基准不重合而引起,其值为两基准间的最大变化量(即两基面间公差),因此,计算时,可在确定认定位基准与工序基准的基础上,寻求两基面间的关系即可,具体分三步:①确定基准定位基准为该工序所选安装时定位的依据,并且一定在要求保证的工序尺寸方向上,作为已知条件在题目中说明或标注()于工序图;工序基准则为该工序用以表达加工表面(粗实线)位置尺寸的基准。
②基准是否重合经确认的定位基准与工序基准若为同一表面,则基准不重合误差△B=0;若不重合则需进行计算。
③基准不重合时的误差计算基准不重合误差为两基面间的最大变量。
因此,两基面间若有直接尺寸标注,则尺寸公差即为△B;若无直接尺寸,而只有间接尺寸,则需利用尺寸间关系如尺寸链进行求解。
若定位基准变动方向与对应工序尺寸不在同一方向,则需两基面间距离公差投影于工序尺寸方向,即△B=δs cosβ式中δs为定位基准与工序基准间尺寸公差β为基准间尺寸与工序尺寸之夹角(2)基准位移误差的计算基准位移误差△Y因定位副制造误差而起,因此,当定位副结构不同产生的基准位移误差计算。
①工件以平面定位工件若以粗基准平面定位,定位面与限位面间不可能有很好的贴合,但该定位方案往往出现在加工开始或加工要求不高情况下,故此时的误差也就不必计算。
工件若以加工过的精基准平面定位,则定位面与限位面间会有良好的接触状态,定位基面的位置可看成是不动的。
因此,基准位移误差为零,即△Y=0。
②工件外圆在圆孔中定位工件在外圆定位时,其定位基准为轴的中心线,定位基面为外圆柱面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.3 定位误差的分析与计算在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。
加工工艺规程设计的工序图则是设计专用夹具的主要依据。
由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。
判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。
1.用夹具装夹加工时的工艺基准用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。
设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。
与夹具定位误差计算有关的工艺基准有以下三种:(1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。
工序基准可简单地理解为工序图上的设计基准。
分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。
(2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。
为提高工件的加工精度,应尽量选设计基准作定位基准。
(3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。
必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。
如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。
在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体4的上工作面(相当支承板支承工作面)来确定的。
夹具体4的上工作面是对刀基准,它确定了刀具在高度方向的位置,使刀具加工出来的槽底位置符合设计的要求。
图3.3中,槽子两侧面对称度的设计基准是工件上大孔的轴线,对刀基准则为夹具上定位圆柱销的轴线。
再如图3.21所示,轴套件以内孔定位,在其上加工一直径为φd 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。
尺寸L 1的设计基准是工件左端面A ′,对刀基准是定位心轴的台阶面A ;φd 轴线对内孔轴线的对称度的设计基准是内孔轴线,对刀基准是夹具定位心轴2的轴线OO 。
2.定位误差的概念用夹具装夹加工一批工件时,由于定位不准确引起该批工件某加工精度参数(尺寸、位置)的加工误差,称为该加工精度参数的定位误差(简称定位误差)。
定位误差以其最大误差范围来计算,其值为设计基准在加工精度参数方向上的最大变动量,用dw 表示。
a) b 图3.21 钻模加工时的基准分析3.定位误差产生的原因及其计算先以图3.22为例,分析定位误差产生的原因。
图3.22是以心轴定位在轴套件的外圆柱面上加工槽子的具体定位方案。
槽底尺寸h 的设计基准是外圆的母线A ,定位基准是内孔的轴线O ′,对刀基准是夹具定位心轴的轴线O ,而一批工件外圆直径、内孔直径及夹具定位心轴直径都在其公差范围内变化,故对一批工件来说,必然会存在定位不准确的问题,必将引起一批工件加工精度参数的变化,即定位误差。
图3.22的定位方案,当以内孔定位加工槽子时,工件外圆尺寸的在变化会引起加工精度参数槽底尺寸h 的变化(即产生定位误差),这是因为设计基准于定位基准不重合引起的。
当工件内孔与定位心轴配合定位时,由于其配合间隙的存在会使内孔轴线(定位基准)对心轴轴线(对刀基准)的位置在圆周360°方向发生变化。
加工刀具的位置由心轴轴线确定,对一批工件而言,必将引起内孔轴线到槽底尺寸的变化,进而引起槽底尺寸h 的变化(即产生定位误差),这是因为定位基准相对对刀基准存在位置变动造成的。
可见,定位误差产生的原因有两个,即定位基准与设计基准的不重合和定位基准相对对刀基准的位置变动。
1)基准不重合误差定位基准与设计基准不重合产生的定位误差称基准不重合误差,用jb ∆表示。
从对图3.22的分析不难看出,基准不重合误差jb ∆与设计基准相对于定位基准的最大变动量B ∆(即设计基准与定位基准之间尺寸的公差值)密切相关。
当B ∆与加工精度参数的方向相同时,jb ∆=B ∆;当B ∆与加工精度参数的方向不同时,应根据实际定位方案所决定的几何关系按一定的函数关系进行计算,以确定B ∆产生的定位误差的值,故有()B f jb ∆=∆1。
将以上两种情况概括起来,基准不重合误差的计算应为()B f jb ∆=∆1,其中函数1f 的具体形式根据具体的定位方案分析确定。
2)基准位置误差定位基准相对对刀基准的位置移动产生的定位误差称为基准位置误差,用jw ∆表示。
同理,从对图3.22的分析不难看出,基准位置误差jw ∆与定位基准相对对刀基准的最大位置移动量E ∆(一般为工件定位表面与定位元件工作面配合的最大间隙)密切相关。
当E ∆与加工精度参数的方向相同时,jw ∆=E ∆;当E ∆与加工精度参数的方向不同时,应根据实际定位方案所决定的几何关系按一定的函数关系进行计算,以确定E ∆产生的定位误差的值,故有()E f jw ∆=∆2。
将以上两种情况概括起来,基准位置误差的计算应为()E f jw ∆=∆2,其中函数2f 的具体形式根据具体的定位方案分析确定。
因为定位误差是对一批工件而言,是以其最大误差范围来计算的,故在上述jb ∆和jw ∆计算的分析中,考虑的是设计基准相对于定位基准的最大变动量B ∆和定位基准相对对刀基准的最大位置移动量E ∆。
3)定位误差的计算由上述定位误差产生的原因及两类定位误差的计算(基准不重合误差jb ∆,基准位置误差jw ∆),可以得出定位误差dw ∆的计算公式如下:对刀基准 图3.22 铣槽工序定位误差分析)()(21E f B f jw jb dw ∆±∆=∆±∆=∆ (3-3)式中 dw ∆—定位误差;jb ∆—基准不重合误差;jw ∆—基准位置误差;B ∆—设计基准相对定位基准的最大变动量;E ∆—定位基准相对对刀基准的最大位置移动量;1f 、2f —求解B ∆、E ∆在加工精度参数方向上产生的定位误差的函数,其具体形式根据具体的定位方案来分析确定。
在式3-3中,当jb ∆和jw ∆由两个互不相关的变量引起时,用“+”;当jb ∆和jw ∆是同一变量引起时,要判断两者对dw ∆的影响是否同向,方向相同时用“+”,方向相反时用“-”。
4.分析计算定位误差时应注意的问题(1)定位误差是指工件某工序中某加工精度参数的定位误差。
它是该加工精度参数(尺寸、位置)的加工误差的一部分。
(2)某工序的定位方案对本工序的多个不同加工精度参数产生不同的定位误差,应分别逐一计算。
(3)分析计算定位误差的前提是用夹具装夹加工一批工件,用调整法保证加工要求。
(4)计算出的定位误差数值是指加工一批工件时某加工精度参数可能产生的最大误差范围(加工精度参数最大值于最小值之间的变动量)。
它是个界限范围,而不是某一个工件定位误差的具体值。
(5)一批工件的设计基准相对定位基准、定为基准相对对刀基准产生最大位置变动量B ∆、E ∆是产生定位误差的原因,而不一定就是定位误差的数值。
3.2.4 工件在夹具中加工精度的分析与定位方案的确定任何一种机械产品,在加工的工艺过程中都不可避免地存在着加工误差,即加工几何参数的实际值与其理想值之间存在偏差。
这种偏差越大,加工误差就越大,实际参数的精度就越低。
所谓合格零件,是指加工误差不超出设计给定的公差值的零件。
产生加工误差的原因是多方面的,其中一部分就来源于夹具。
在夹具设计时,分析产生加工误差的原因,并把加工误差控制在允许的范围之内,对于提高夹具设计质量,保证工件加工质量具有重要意义。
1.工序精度参数的加工误差所谓工序加工精度参数,是指在工序图上标注出的、通过本工序的加工来保证精度的参数,如位置尺寸、垂直度、同轴度、平行度等。
机械加工过程中,夹具的主要功能是保证零件上要素间的位置精度。
用夹具装夹加工一批零件时,工序加工精度参数的加工误差由两部分组成,其一是于夹具的设计、制造、使用等有关的加工误差,简称夹具误差;其二是于工艺系统中除夹具之外的其它组成部分(机床、刀具、工件)有关的加工误差,简称其它误差。
1)夹具误差由于使用夹具进行装夹加工而引起的工序加工精度参数的加工误差称夹具误差。
它主要包括以下三项:(1)定位误差 工件在夹具上定位不准确而引起的加工误差,用dw ∆表示。
(2)夹具位置误差 夹具在机床上的位置不准确而引起的加工误差,用jj ∆表示。
(3)刀位误差 刀具相对于夹具的位置不准确引起的加工误差,或刀具与引导元件、对刀元件之间配合间隙引起的导向或对刀误差,用dj ∆表示。
夹具的设计、制造、夹具在机床上的装夹、夹紧时夹具变形、夹具的磨损等因素引起的工序加工精度参数的加工误差,是上述三项误差的组成部分,这些误差的存在,最终引起刀具相对于工件位置的不准确而产生加工误差。
2)其它误差 工艺系统中除夹具以外的其它组成部分引起的加工误差,用qt ∆表示。
产生这项误差的原因有机床、刀具、工件的几何误差、受力变形、热变形、磨损以及各种随机因素引起的加工误差。
2.工序加工精度参数公差的分配与定位方案的确定1) 工序加工精度参数公差的分配为了保证工件的加工精度,使其成为合格的产品,上述的各项加工误差之和应不超出工序加工精度参数设计时给定的公差值,即T qt dj jj dw ≤∆+∆+∆+∆ (3-4)在生产实际中,一般将工序加工精度参数设计给定的公差值T 分成三份,定位误差dw ∆占一份,夹具位置误差jj ∆和刀位误差dj ∆和起来占一份,其它误差qt ∆占一份。
这样的分配并非完全合理,仅作为公差分配的初步方案,应用时还应根据具体情况进行调整。
因为不是在所有的夹具中,几种加工误差都同时存在,例如钻床夹具无夹具位置误差jj ∆、定位误差等于零的情况等。
即使几种加工误差都同时存在,也可按具体情况作适当调整。
在夹具设计中,夹具总图上标注的于上述误差对应的位置精度都是通过求解式3-4而给出的。
下面对图3.23所示定位方案进行分析,以说明工序加工精度参数公差值的分配方法。
图3.23中,圆柱形工件在V 形块上定位,在立式钻床上用钻模钻孔。
设计给定加工孔的轴线对圆柱轴线的对称度公差为0.1mm 。
由于V 形块具有良好的对中性能,故该方案对称度的定位误差0=∆dw ;钻模在钻床上的位置是由钻套来找正,然后再固定的,所以夹具位置误差0=∆jj 。
根据式3-4有1.0=≤∆+∆T qt dj将公差做平均分配,取05.0=∆dj ,05.0=∆qt为了保证导向误差控制在0.05mm 以内,考虑随机因素的影响,夹具设计时可取对称度公差为0.03mm 。