天津市静海县2019-2020学年高考数学模拟试题含解析

合集下载

天津市静海县2019-2020学年高考数学三模试卷含解析

天津市静海县2019-2020学年高考数学三模试卷含解析

天津市静海县2019-2020学年高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数2()ln(1)f x x x-=+-,则函数(1)=-y f x 的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题.2.设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =u u u v u u u v,且1OQ AB ⋅=u u u v u u u v ,则点P 的轨迹方程是( )A .()223310,02x y x y +=>> B .()223310,02x y x y -=>>C .()223310,02x y x y -=>> D .()223310,02x y x y +=>> 【答案】A 【解析】 【分析】设,A B 坐标,根据向量坐标运算表示出2BP PA =u u u r u u u r,从而可利用,x y 表示出,a b ;由坐标运算表示出1OQ AB ⋅=u u u r u u u r,代入,a b 整理可得所求的轨迹方程.【详解】设(),0A a ,()0,B b ,其中0a >,0b >2BP PA=u u u r u u u r Q ()(),2,x y b a x y ∴-=--,即()22x a x y b y ⎧=-⎨-=-⎩ 30230x a b y ⎧=>⎪∴⎨⎪=>⎩ ,P Q Q 关于y 轴对称 (),Q x y ∴-()(),,1OQ AB x y a b ax by ∴⋅=-⋅-=+=u u u r u u u r ()223310,02x y x y ∴+=>>故选:A 【点睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程. 3.已知a>0,b>0,a+b =1,若 α=11a b a bβ+=+,,则αβ+的最小值是( ) A .3 B .4C .5D .6【答案】C 【解析】 【分析】根据题意,将a 、b 代入αβ+,利用基本不等式求出最小值即可. 【详解】∵a>0,b>0,a+b=1,∴211111152a b a bab a b αβ+=+++=+≥+=+⎛⎫⎪⎝⎭, 当且仅当12a b ==时取“=”号. 答案:C 【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.4.设复数z 满足|3|2z -=,z 在复平面内对应的点为(,)M a b ,则M 不可能为( ) A .(2,3) B .(3,2) C .(5,0) D .(4,1)【答案】D 【解析】 【分析】依题意,设z a bi =+,由|3|2z -=,得22(3)4a b -+=,再一一验证.【详解】 设z a bi =+, 因为|3|2z -=, 所以22(3)4a b -+=, 经验证(4,1)M 不满足, 故选:D. 【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.5.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不正确...的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行 D .三棱锥1F ABD -的体积为定值【答案】C 【解析】 【分析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断. 【详解】对于A ,设平面1AD E 与直线BC 交于点G ,连接AG 、EG ,则G 为BC 的中点 分别取1B B 、11B C 的中点M 、N ,连接AM 、MN 、AN ,11//A M D E Q ,1A M ⊂/平面1D AE ,1D E ⊂平面1D AE , 1//A M ∴平面1D AE .同理可得//MN 平面1D AE , 1A M Q 、MN 是平面1A MN 内的相交直线∴平面1//A MN 平面1D AE ,由此结合1//A F 平面1D AE ,可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上上的动点.A ∴正确.对于B ,Q 平面1//A MN 平面1D AE ,BE 和平面1D AE 相交, 1A F ∴与BE 是异面直线,B ∴正确.对于C ,由A 知,平面1//A MN 平面1D AE , 1A F ∴与1D E 不可能平行,C ∴错误.对于D ,因为//MN EG ,则F 到平面1AD E 的距离是定值,三棱锥1F AD E -的体积为定值,所以D 正确; 故选:C . 【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.6.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则A B =I ( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-【答案】A 【解析】 【分析】解出集合B ,利用交集的定义可求得集合A B I . 【详解】因为{}{}2212530253032B x x x x x x x x ⎧⎫=-++>=--<=-<<⎨⎬⎩⎭,又{}1,0,1,2A =-,所以{}0,1,2A B ⋂=.故选:A. 【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题. 7.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( ) A . B .C .D .【答案】A 【解析】 【分析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值. 【详解】 抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A .【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.8.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .【答案】D 【解析】 【分析】讨论x 的取值范围,然后对函数进行求导,利用导数的几何意义即可判断. 【详解】当0x ≥时,sin y x x =+,则cos 10y x '=+≥, 所以函数在[]0,2π上单调递增, 令()cos 1g x x =+,则()sin g x x '=-, 根据三角函数的性质,当[]0,x π∈时,()sin 0g x x '=-<,故切线的斜率变小, 当[],2x ππ∈时,()sin 0g x x '=->,故切线的斜率变大,可排除A 、B ;当0x <时,sin y x x =-+,则cos 10y x '=-+≥, 所以函数在[]2,0π-上单调递增, 令 ()cos 1h x x =-+,()sin h x x '=,当[]2,x ππ∈--时,()sin 0h x x '=>,故切线的斜率变大, 当[],0x π∈-时,()sin 0h x x '=<,故切线的斜率变小,可排除C , 故选:D 【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题. 9.若复数211iz i=++(i 为虚数单位),则z 的共轭复数的模为( ) A 5 B .4C .2D 5【答案】D 【解析】 【分析】由复数的综合运算求出z ,再写出其共轭复数,然后由模的定义计算模.【详解】()()()212112111i i iz i i i i -=+=+=+++-Q ,2,z i z ∴=-∴=故选:D . 【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.10.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D 【解析】 【分析】 【详解】试题分析:由m ⊥平面α,直线l 满足l m ⊥,且l α⊄,所以//l α,又n ⊥平面β,,l n l β⊥⊄,所以l β//,由直线,m n 为异面直线,且m ⊥平面,n α⊥平面β,则α与β相交,否则,若//αβ则推出//m n ,与,m n 异面矛盾,所以,αβ相交,且交线平行于l ,故选D .考点:平面与平面的位置关系,平面的基本性质及其推论.11.在ABC V 中,角、、A B C 的对边分别为,,a b c ,若tan 2sin()a B b B C =+.则角B 的大小为( ) A .π3B .π6C .π2D .π4【答案】A 【解析】 【分析】由正弦定理化简已知等式可得sin tan 2sin sin A B B A =,结合sin 0A >,可得tan 2sin B B =,结合范围()0,B π∈,可得sin 0B >,可得1cos 2B =,即可得解B 的值. 【详解】解:∵()tan 2sin 2sin a B b B C b A =+=, ∴由正弦定理可得:sin tan 2sin sin A B B A =, ∵sin 0A >, ∴tan 2sin B B =,∵()0,B π∈,sin 0B >, ∴1cos 2B =, ∴3B π=.故选A . 【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.12.已知双曲线2222:1(0,0)x y C a b a b-=>>的一个焦点为F ,点,A B 是C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过F 且交C 的左支于,M N 两点,若|MN|=2,ABF ∆的面积为8,则C 的渐近线方程为( ) A.y = B.y x = C .2y x =± D .12y x =±【答案】B 【解析】 【分析】由双曲线的对称性可得'ABF AFF S S ∆∆=即8bc =,又222b MN c==,从而可得C 的渐近线方程.【详解】设双曲线的另一个焦点为'F ,由双曲线的对称性,四边形'AFBF 是矩形,所以'ABF AFF S S ∆∆=,即8bc =,由22222221x y c x yab ⎧+=⎪⎨-=⎪⎩,得:2b yc =±,所以222b MN c ==,所以2b c =,所以2b =,4c =,所以a =C的渐近线方程为y x =. 故选B 【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考二诊数学试题含解析

天津市静海县2019-2020学年高考二诊数学试题含解析

天津市静海县2019-2020学年高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若双曲线222:14x y C m-=的焦距为C 的一个焦点到一条渐近线的距离为( )A .2B .4CD .【答案】B【解析】【分析】根据焦距即可求得参数m ,再根据点到直线的距离公式即可求得结果.【详解】因为双曲线222:14x y C m-=的焦距为故可得(224m +=,解得216m =,不妨取4m =;又焦点()F ,其中一条渐近线为2y x =-,由点到直线的距离公式即可求的4d ==.故选:B.【点睛】 本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.2.设a r ,b r ,c r 是非零向量.若1()2a cbc a b c ⋅=⋅=+⋅r r r r r r r ,则( ) A .()0a b c ⋅+=r r rB .()0a b c ⋅-=r r rC .()0a b c +⋅=r r rD .()0a b c -⋅=r r r【答案】D【解析】 试题分析:由题意得:若a c b c ⋅=⋅r r r r ,则()0a b c -⋅=r r r ;若a c b c ⋅=-⋅r r r r ,则由1()2a cbc a b c ⋅=⋅=+⋅r r r r r r r 可知,0a c b c ⋅=⋅=r r r r ,故()0a b c -⋅=r r r 也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.3.若()()()20192019012019111x a a x a x -=+++++L ,x ∈R ,则22019122019333a a a ⋅+⋅++⋅L 的值为( )A .201912--B .201912-+C .201912-D .201912+【答案】A【解析】【分析】取1x =-,得到201902a =,取2x =,则2201901220193331a a a a +⋅+⋅++⋅=-L ,计算得到答案. 【详解】取1x =-,得到201902a =;取2x =,则2201901220193331a a a a +⋅+⋅++⋅=-L . 故22019201912201933312a a a ⋅+⋅++⋅=--L . 故选:A .【点睛】本题考查了二项式定理的应用,取1x =-和2x =是解题的关键.4.曲线24x y =在点()2,t 处的切线方程为( )A .1y x =-B .23y x =-C .3y x =-+D .25y x =-+【答案】A【解析】【分析】将点代入解析式确定参数值,结合导数的几何意义求得切线斜率,即可由点斜式求的切线方程.【详解】 曲线24x y =,即214y x =, 当2x =时,代入可得21124t =⨯=,所以切点坐标为()2,1, 求得导函数可得12y x '=, 由导数几何意义可知1212k y ='=⨯=, 由点斜式可得切线方程为12y x -=-,即1y x =-,故选:A.【点睛】本题考查了导数的几何意义,在曲线上一点的切线方程求法,属于基础题.5.函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则其图象向左平移6π个单位长度后得到的函数的一条对称轴是( )A .4x π= B .3x π= C .56x π= D .1912x π= 【答案】D【解析】【分析】 由三角函数的周期可得23πω=,由函数图像的变换可得, 平移后得到函数解析式为244sin 39y x π⎛⎫=+ ⎪⎝⎭,再求其对称轴方程即可. 【详解】 解:函数()4sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期是3π,则函数2()4sin 33f x x π⎛⎫=+ ⎪⎝⎭,经过平移后得到函数解析式为2244sin 4sin 36339y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+∈Z ,当1k =时,1912x π=. 故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.6.已知复数1cos23sin 23z i =+o o 和复数2cos37sin37z i =+o o ,则12z z ⋅为A .122-B .12i +C .12+D 12i - 【答案】C【解析】【分析】利用复数的三角形式的乘法运算法则即可得出.【详解】z 1z 2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=122+. 故答案为C .【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.7.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( )A .1B .2C .4D .8 【答案】C【解析】【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫ ⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A 点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】 设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫ ⎪⎝⎭,对称轴为x 轴,准线为2p x =-, ∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点,又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =, 又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p p DP p =+-==, ∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C.【点睛】 本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.8.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,,A B 是C 的左、右顶点,点P 在过1F 且PAB △为等腰三角形,120ABP ∠=︒,则C 的渐近线方程为( )A .12y x =±B .2y x =±C .y x =D .y =【答案】D【解析】【分析】根据PAB △为等腰三角形,120ABP ∠=︒可求出点P 的坐标,又由1PF 的斜率为34可得出,a c 关系,即可求出渐近线斜率得解.【详解】如图,因为PAB △为等腰三角形,120ABP ∠=︒,所以||||2PB AB a ==,60PBM ∠=︒,||cos602,||sin603P P x PB a a y PB a ∴=⋅︒+==⋅︒=,又1303PF a k -==,2a c ∴=223a b ∴=,解得3ba =,所以双曲线的渐近线方程为3y x =±,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.9.如图,2AB =是圆O 的一条直径,,C D 为半圆弧的两个三等分点,则()AB AC AD ⋅+=u u u r u u u r u u u r ()A.52B.4C.2D.13+【答案】B【解析】【分析】连接CD、OD,即可得到60CAB DOB︒∠=∠=,1AC=,再根据平面向量的数量积及运算律计算可得;【详解】解:连接CD、OD,CQ,D是半圆弧的两个三等分点,//CD AB∴,且2AB CD=,60CAB DOB︒∠=∠=所以四边形AODC为棱形,1cos1212AC AB AC AB BAC∴=∠=⨯⨯=u u u r u u u r u u u r u u u rg g∴()11222AB AC AD AB AC AC AB AB AC AB⎡⎤⎛⎫⎛⎫+=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g2122AC AB AB=+u u u r u u u r u u u rg.2121242=⨯+⨯=故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.10.公差不为零的等差数列{a n}中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列{a n}的公差等于( ) A.1 B.2 C.3 D.4【答案】B【解析】【分析】设数列的公差为,0d d≠.由12513a a a++=,125,,a a a成等比数列,列关于1,a d的方程组,即求公差d. 【详解】设数列的公差为,0d d≠,125113,3513a a a a d ++=∴+=Q ①.125,,a a a Q 成等比数列,()()21114a d a a d ∴+=+②,解①②可得2d =.故选:B .【点睛】本题考查等差数列基本量的计算,属于基础题.11.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .34【答案】B【解析】【分析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x 元,y 元,z 元,记为(,,)x y z ,则基本事件有(1,1,4),(1,4,1) ,(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2),共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为310, 故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型. 12.设双曲线22221y x a b-=(0a >,0b >)的一条渐近线与抛物线213y x =+有且只有一个公共点,且椭圆22221x y a b+=的焦距为2,则双曲线的标准方程为( ) A .22143x y -= B .22143y x -= C .22123x y -= D .22132y x -= 【答案】B【解析】【分析】设双曲线的渐近线方程为y kx =,与抛物线方程联立,利用0∆=,求出k 的值,得到a b的值,求出,a b 关系,进而判断,a b 大小,结合椭圆22221x y a b+=的焦距为2,即可求出结论. 【详解】设双曲线的渐近线方程为y kx =, 代入抛物线方程得2103x kx -+=,依题意240,3k k ∆=-==,a ab b ∴==>, ∴椭圆22221x y a b+=的焦距2=, 22222411,3,433b b b b a -====, 双曲线的标准方程为22143y x -=. 故选:B.【点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考适应性测试卷数学试题(3)含解析

天津市静海县2019-2020学年高考适应性测试卷数学试题(3)含解析

天津市静海县2019-2020学年高考适应性测试卷数学试题(3)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向左平移5π12个长度单位 【答案】D【解析】 55cos(2)sin(2)sin(2)sin 2()332612y x x x x πππππ=+=++=+=+,所以要的函数cos(2)3y x π=+的图象,只需将函数sin 2y x =的图象向左平移512π个长度单位得到,故选D 2.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( ) A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D【解析】【分析】 由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】 根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小;而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅ 由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得()2221lg 13lg12lg14lg13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅ 221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅ ()()lg13lg 168lg13lg 1680lg12lg13+⋅-=>⋅ 所以a c >,综上可知a c b >>,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.3.复数的()12z i i =--为虚数单位在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】所对应的点为(-1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.4.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .【答案】B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S 的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i <5时退出,故选B .5.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b << 【答案】C【解析】【分析】可设[]0,1x ∈,根据()f x 在R 上为偶函数及(2)()f x f x +=-便可得到:()()(2)f x f x f x =-=-+,可设1x ,[]20,1x ∈,且12x x <,根据()f x 在[]1,2上是减函数便可得出12()()f x f x <,从而得出()f x 在[]0,1上单调递增,再根据对数的运算得到a 、b 、c 的大小关系,从而得到()()(),,f a f b f c 的大小关系.【详解】解:因为ln1ln 2ln e <<,即01a <<,又12124b -⎛⎫== ⎪⎝⎭,12log 21c ==- 设[]0,1x ∈,根据条件,()()(2)f x f x f x =-=-+,[]21,2x -+∈;若1x ,[]20,1x ∈,且12x x <,则:1222x x -+>-+;()f x Q 在[]1,2上是减函数;12(2)(2)f x f x ∴-+<-+;12()()f x f x ∴<;()f x ∴在[]0,1上是增函数;所以()()()20f b f f ==,()()()11f c f f =-=∴()()()f b f a f c <<故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设12x x <,通过条件比较1()f x 与2()f x ,函数的单调性的应用,属于中档题.6.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩…若()0f x ax a -+…恒成立,则实数a 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦ B .[0,1] C .[1,)+∞ D .[0,2]【答案】D【解析】【分析】 由()0f x ax a -+…恒成立,等价于|()|y f x =的图像在(1)y a x =-的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】 因为2ln(2),1,()1,1,x x f x x x -⎧=⎨->⎩…由()(1)f x a x -…恒成立,分别作出|()|y f x =及(1)y a x =-的图象,由图知,当0a <时,不符合题意,只须考虑0a …的情形,当(1)y a x =-与()(1)y f x x =…图象相切于(1,0)时,由导数几何意义,此时21(1)|2x a x '==-=,故02a 剟. 故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.7.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“UA B =∅I ð”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】作出韦恩图,数形结合,即可得出结论.【详解】如图所示,⊆⇒⋂=∅U A B A B ð,同时⋂=∅⇒⊆U A B A B ð.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.8.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .32【答案】B【解析】【分析】 由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。

天津市静海县2019-2020学年高考第二次大联考数学试卷含解析

天津市静海县2019-2020学年高考第二次大联考数学试卷含解析

天津市静海县2019-2020学年高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x<1},B={x|31x <},则 A .{|0}A B x x =<I B .A B R =U C .{|1}A B x x =>U D .A B =∅I【答案】A 【解析】∵集合{|31}x B x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A 2.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()A .B .C .D .【答案】A 【解析】 【分析】 由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解. 【详解】 由题意,直线经过椭圆的左焦点,令,解得,所以,即椭圆的左焦点为,且① 直线交轴于,所以,,因为,所以,所以,又由点在椭圆上,得 ②由,可得,解得,所以,所以椭圆的离心率为.故选A. 【点睛】本题考查了椭圆的几何性质——离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).3.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点()1,0A 作x 轴的垂线与曲线xy e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N【答案】D 【解析】【分析】利用定积分计算出矩形OABC 中位于曲线x y e =上方区域的面积,进而利用几何概型的概率公式得出关于e 的等式,解出e 的表达式即可. 【详解】在函数xy e =的解析式中,令1x =,可得y e =,则点()1,B e ,直线BC 的方程为y e =,矩形OABC 中位于曲线xy e =上方区域的面积为()()1101xxS e e dx ex e =-=-=⎰,矩形OABC 的面积为1e e ⨯=, 由几何概型的概率公式得1N M e =,所以,M e N=. 故选:D. 【点睛】本题考查利用随机模拟的思想估算e 的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.4.若函数()ln f x x =满足()()f a f b =,且0a b <<,则224442a b a b+-+的最小值是( )A .0B .1C .32D .【答案】A 【解析】 【分析】由()()f a f b =推导出1b a =,且01a <<,将所求代数式变形为2244244222a b a b a b a b+-+=-++,利用基本不等式求得2a b +的取值范围,再利用函数的单调性可得出其最小值. 【详解】Q 函数()ln f x x =满足()()f a f b =,()()22ln ln a b ∴=,即()()ln ln ln ln 0a b a b -+=,0a b Q <<,ln ln a b ∴<,ln ln 0a b ∴+=,即()ln 01ab ab =⇒=,21ab a ∴=>,则01a <<,由基本不等式得122a b a a +=+≥=12a =时,等号成立.()()()()222224428442442222222a b ab a b a b a b a b a b a b a b+--+-+-+===-++++Q ,由于函数42x y x=-在区间)⎡+∞⎣上为增函数,所以,当2a b +=时,224442a b a b +-+取得最小值02=.故选:A. 【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.5.已知函数()sin3cos3f x x x =-,给出下列四个结论:①函数()f x 的值域是⎡⎣;②函数4f x π⎛⎫+ ⎪⎝⎭为奇函数;③函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦单调递减;④若对任意x ∈R ,都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为3π;其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】化()f x )4x π-可判断①,求出4f x π⎛⎫+ ⎪⎝⎭的解析式可判断②,由,32x ππ⎡⎤∈⎢⎥⎣⎦得353[,]444x πππ-∈,结合正弦函数得图象即可判断③,由()()()12f x f x f x ≤≤得12min 2Tx x -=可判断④.【详解】由题意,())4f x x π=-,所以()f x ∈⎡⎣,故①正确;4f x π⎛⎫+= ⎪⎝⎭)]44x ππ+-=)2x π+=x 为偶函数,故②错误;当,32x ππ⎡⎤∈⎢⎥⎣⎦时,353[,]444x πππ-∈,()f x 单调递减,故③正确;若对任意x ∈R ,都有 ()()()12f x f x f x ≤≤成立,则1x 为最小值点,2x 为最大值点,则12x x -的最小值为23T π=,故④正确. 故选:C. 【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.6.已知集合M ={x|﹣1<x <2},N ={x|x (x+3)≤0},则M∩N =( ) A .[﹣3,2) B .(﹣3,2) C .(﹣1,0] D .(﹣1,0)【答案】C 【解析】 【分析】先化简N ={x|x (x+3)≤0}={x|-3≤x≤0},再根据M ={x|﹣1<x <2},求两集合的交集. 【详解】因为N ={x|x (x+3)≤0}={x|-3≤x≤0}, 又因为M ={x|﹣1<x <2}, 所以M∩N ={x|﹣1<x≤0}. 故选:C 【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.7.在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC ∆的面为S ,且()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A .1B .2C D 【答案】D 【解析】 【分析】根据三角形的面积公式以及余弦定理进行化简求出C 的值,然后利用两角和差的正弦公式进行求解即可. 【详解】解:由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵ 2222cos a b c ab C +-=,∴ sin 2cos 2C ab C ab =+,cos 1C C -=即2sin 16C π⎛⎫-= ⎪⎝⎭,则1sin 62C π⎛⎫-= ⎪⎝⎭,∵ 0C π<<, ∴ 5666C πππ-<-<, ∴ 66C ππ-=,即3C π=,则sin sin sin cos cos sin 4343434C πππππππ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭12 故选D . 【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.8.在等腰直角三角形ABC 中,,2C CA π∠==,D 为AB 的中点,将它沿CD 翻折,使点A 与点B间的距离为ABCD 的外接球的表面积为( ).A .5πB .C .12πD .20π【答案】D 【解析】 【分析】如图,将四面体ABCD 放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径. 【详解】ABC ∆中,易知4AB =,2CD AD BD ===翻折后AB =(222221cos 2222ADB +-∴∠==-⨯⨯ ,120ADB ∴∠=o ,设ADB ∆外接圆的半径为r ,24r == ,2r ∴= , 如图:易得CD ⊥平面ABD ,将四面体ABCD 放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为R ,222221215R r =+=+= ,∴ 四面体ABCD 的外接球的表面积为2420S R ππ==.【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.9.已知等差数列{a n},则“a2>a1”是“数列{a n}为单调递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可.解:在等差数列{a n}中,若a2>a1,则d>0,即数列{a n}为单调递增数列,若数列{a n}为单调递增数列,则a2>a1,成立,即“a2>a1”是“数列{a n}为单调递增数列”充分必要条件,故选C.考点:必要条件、充分条件与充要条件的判断.10.已知函数31,0()(),0x xf xg x x⎧+>=⎨<⎩是奇函数,则((1))g f-的值为()A.-10 B.-9 C.-7 D.1 【答案】B【解析】根据分段函数表达式,先求得()1f -的值,然后结合()f x 的奇偶性,求得((1))g f -的值. 【详解】因为函数3,0()(),0x x x f x g x x ⎧+≥=⎨<⎩是奇函数,所以(1)(1)2f f -=-=-,((1))(2)(2)(2)10g f g f f -=-=-=-=-.故选:B 【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.11.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+= ⎪⎝⎭( ) A .45B .45-C .35D .35-【答案】C 【解析】 【分析】利用诱导公式以及二倍角公式,将3sin 22πθ⎛⎫+⎪⎝⎭化简为关于tan θ的形式,结合终边所在的直线可知tan θ的值,从而可求3sin 22πθ⎛⎫+⎪⎝⎭的值. 【详解】因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+== ⎪+⎝⎭. 故选:C. 【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解22sin cos m n θθ+值的两种方法:(1)分别求解出sin ,cos θθ的值,再求出结果;(2)将22sin cos m n θθ+变形为222222sin cos tan sin cos tan 1m n m nθθθθθθ++=++,利用tan θ的值求出结果.12.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( ) A .[]1,1- B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1-【答案】D 【解析】 【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,xxf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,xxf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=, ()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减, ()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==,∴a 的取值范围为[]2ln 22,1-.故选:D 【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学五月模拟试卷含解析

天津市静海县2019-2020学年高考数学五月模拟试卷含解析

天津市静海县2019-2020学年高考数学五月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.某几何体的三视图如图所示,则该几何体中的最长棱长为( )A .32B .25C .26D .27【答案】C【解析】【分析】 根据三视图,可得该几何体是一个三棱锥S ABC -,并且平面SAC ⊥平面ABC ,AC BC ⊥,过S 作SD AC ⊥,连接BD ,2,2,2,2AD AC BC SD ====,再求得其它的棱长比较下结论.【详解】 如图所示:由三视图得:该几何体是一个三棱锥S ABC -,且平面SAC ⊥ 平面ABC ,AC BC ⊥, 过S 作SD AC ⊥,连接BD ,则2,2,2,2AD AC BC SD ==== ,所以=+=2220BD DC BC ,226SB SD BD =+=,2222SA SD AD =+=2225SC SD AC =+=,该几何体中的最长棱长为故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.2.下列说法正确的是( )A .“若1a >,则1a >”的否命题是“若1a >,则21a <”B .在ABC V 中,“A B >”是“sin sin A B >”成立的必要不充分条件C .“若tan 1α≠,则4πα≠”是真命题D .存在0(,0)x ∈-∞,使得0023x x <成立【答案】C【解析】【分析】A :否命题既否条件又否结论,故A 错.B :由正弦定理和边角关系可判断B 错.C :可判断其逆否命题的真假,C 正确.D :根据幂函数的性质判断D 错.【详解】解:A :“若1a >,则1a >”的否命题是“若1a ≤,则21a ≤”,故 A 错.B :在ABC V 中,2sin 2sin A B a b R A R B >⇔>⇔>,故“A B >”是“sin sin A B >”成立的必要充分条件,故B 错.C :“若tan 1α≠,则4πα≠”⇔“若=4πα,则tan =1α”,故C 正确. D :由幂函数(0)n y x n =<在()0+∞,递减,故D 错. 故选:C【点睛】考查判断命题的真假,是基础题.3.已知函数()()222ln 25f x a x ax =+++.设1a <-,若对任意不相等的正数1x ,2x ,恒有()()12128f x f x x x -≥-,则实数a 的取值范围是( ) A .()3,1--B .()2,1--C .(],3-∞-D .(],2-∞-【答案】D【解析】【分析】求解()f x 的导函数,研究其单调性,对任意不相等的正数12,x x ,构造新函数,讨论其单调性即可求解.【详解】()f x 的定义域为()0,∞+,()()2221224ax a a f x ax x x+++'=+=, 当1a <-时,()0f x '<,故()f x 在()0,∞+单调递减;不妨设12x x <,而1a <-,知()f x 在()0,∞+单调递减,从而对任意1x 、()20,x ∈+∞,恒有()()12128f x f x x x -≥-, 即()()12128f x f x x x -≥-,()()()12218f x f x x x -≥-,()()112288f x x f x x ≥++,令()()8g x f x x =+,则()2248a g x ax x+'=++,原不等式等价于()g x 在()0,∞+单调递减,即1240a ax x +++≤, 从而()222214122121x x a x x ---≤=-++,因为()22212221x x --≥-+, 所以实数a 的取值范围是(],2-∞-故选:D.【点睛】 此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目. 4.已知1sin 243απ⎛⎫+= ⎪⎝⎭,则sin α的值等于( ) A .79- B .29- C .29 D .79【答案】A 【解析】【分析】由余弦公式的二倍角可得,27cos()12sin 2249παπα⎛⎫+=-+= ⎪⎝⎭,再由诱导公式有cos()sin 2παα+=-,所以7sin 9α=- 【详解】 ∵1sin 243απ⎛⎫+= ⎪⎝⎭ ∴由余弦公式的二倍角展开式有27cos()12sin 2249παπα⎛⎫+=-+= ⎪⎝⎭ 又∵cos()sin 2παα+=- ∴7sin 9α=-故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题 5.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( )A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦D .9,2ln 2⎛⎫+∞⎪⎝⎭ 【答案】C【解析】【分析】由题可知,设函数()ln(1)f x a x =+,32()2g x x x =-,根据导数求出()g x 的极值点,得出单调性,根据32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,转化为()()f x g x >在区间(0,)+∞内的解集中有且仅有三个整数,结合图象,可求出实数a 的取值范围.【详解】设函数()ln(1)f x a x =+,32()2g x x x =-,因为2()34g x x x '=-,所以()0g x '=,0x ∴=或43x =,因为403x << 时,()0g x '<, 43x >或0x <时,()0g x '>,(0)(2)0g g ==,其图象如下:当0a …时,()()f x g x >至多一个整数根;当0a >时,()()f x g x >在(0,)+∞内的解集中仅有三个整数,只需(3)(3)(4)(4)f g f g >⎧⎨⎩…, 3232ln 4323ln 5424a a ⎧>-⨯∴⎨-⨯⎩…, 所以9322ln 2ln 5a <…. 故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.6.在复平面内,复数(2)i i +对应的点的坐标为( )A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-【答案】C【解析】【分析】利用复数的运算法则、几何意义即可得出.【详解】解:复数i (2+i )=2i ﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.7.a 为正实数,i 为虚数单位,2a i i +=,则a=( ) A .2 B .3C .2D .1 【答案】B【解析】 【分析】【详解】 2||21230,3a i a a a a i+=∴+=∴=±>∴=Q Q ,选B. 8.已知函数2,()5,x x x a f x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( )A .(0,1)[5,)+∞UB .6(0,)[5,)5+∞UC .(1,5]D .6(,5]5【答案】A【解析】【分析】分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出2y x x =-和5y x =-,4y x =的图像如下所示:函数()()4g x f x x =-有三个零点,等价于()y f x =与4y x =有三个交点,又因为0a >,且由图可知,当0x ≤时()y f x =与4y x =有两个交点,A O ,故只需当0x >时,()y f x =与4y x =有一个交点即可.若当0x >时,()0,1a ∈时,显然y =y (y )与y =4|y |有一个交点y ,故满足题意;1a =时,显然y =y (y )与y =4|y |没有交点,故不满足题意;()1,5a ∈时,显然y =y (y )与y =4|y |也没有交点,故不满足题意;[)5,a ∈+∞时,显然()y f x =与4y x =有一个交点C ,故满足题意.综上所述,要满足题意,只需a ∈(0,1)[5,)+∞U .故选:A.【点睛】本题考查由函数零点的个数求参数范围,属中档题.9.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225 B .1225- C .2425 D .2425- 【答案】D【解析】【分析】利用诱导公式和同角三角函数的基本关系求出2cos α,再利用二倍角的正弦公式代入求解即可.【详解】 因为3tan()4πα+=-, 由诱导公式可得,sin 3tan cos 4ααα==-, 即3sin cos 4αα=-, 因为22sin cos 1αα+=, 所以216cos 25α=, 由二倍角的正弦公式可得,23sin 22sin cos cos 2αααα==-, 所以31624sin 222525α=-⨯=-. 故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.10.已知复数31i z i -=-,则z 的虚部为( ) A .i -B .iC .1-D .1 【答案】C【解析】【分析】 先将31i z i-=-,化简转化为2z i =+,再得到2z i =-下结论. 【详解】 已知复数()()()()3132111i i i z i i i i -+-===+--+, 所以2z i =-, 所以z 的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.11.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( )A .11,65⎡⎤⎢⎥⎣⎦ B .11,65⎛⎤ ⎥⎝⎦ C .11,54⎛⎫ ⎪⎝⎭ D .11,54⎡⎫⎪⎢⎣⎭【答案】D【解析】【分析】做出函数(),()f x g x 的图象,问题转化为函数(),()f x g x 的图象在[5,5]-有7个交点,而函数(),()f x g x 在[5,0]-上有3个交点,则在[0,5]上有4个不同的交点,数形结合即可求解.【详解】作出函数(),f x ()g x 的图象如图所示,由图可知方程()()f x g x =在[5,0]-上有3个不同的实数根,则在[0,5]上有4个不同的实数根,当直线y kx =经过(4,1)时,14k =; 当直线y kx =经过(5,1)时,15k =, 可知当1154k ≤<时,直线y kx =与()f x 的图象在[0,5]上有4个交点, 即方程()()f x g x =,在[0,5]上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.12.在ABC ∆中,D 在边AC 上满足13AD DC =u u u r u u u r ,E 为BD 的中点,则CE =u u u r ( ). A .7388BA BC -u u u r u u u r B .3788BA BC -u u u r u u u r C .3788BA BC +u u u r u u u r D .7388BA BC +u u u r u u u r 【答案】B【解析】【分析】 由13AD DC =u u u r u u u r ,可得34CD CA =u u u r u u u r ,1()2CE CB CD =+u u u r u u u r u u u r 13()24CB CA =+u u u r u u u r ,再将CA BA BC =-u u u r u u u r u u u r 代入即可.【详解】 因为13AD DC =u u u r u u u r ,所以34CD CA =u u u r u u u r ,故1()2CE CB CD =+=u u u r u u u r u u u r 13()24CB CA +=u u u r u u u r 133()244BC BA BC -+-=u u u r u u u r u u u r 3788BA BC -u u u r u u u r . 故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考第四次质量检测数学试题含解析

天津市静海县2019-2020学年高考第四次质量检测数学试题含解析

天津市静海县2019-2020学年高考第四次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件【答案】D【解析】【分析】由题意列出约束条件和目标函数,数形结合即可解决.【详解】 设购买甲、乙两种商品的件数应分别x ,y 利润为z 元,由题意*4750,,,x y x y N +≤⎧⎨∈⎩ 1.8z x y =+, 画出可行域如图所示,显然当5599y x z =-+经过(2,6)A 时,z 最大. 故选:D.【点睛】 本题考查线性目标函数的线性规划问题,解决此类问题要注意判断x ,y 是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.2.某四棱锥的三视图如图所示,该几何体的体积是( )A .8B .83C .4D .43【答案】D 【解析】【分析】 根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱PA ⊥底面ABCD 的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为21242323V =⋅⋅=. 故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.3.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥【答案】A【解析】【分析】 作'DD AB ⊥于'D ,DE AC ⊥于E ,分析可得'DED α=?,'DAD β=∠,再根据正弦的大小关系判断分析得αβ≥,再根据线面角的最小性判定βγ≥即可.【详解】作'DD AB ⊥于'D ,DE AC ⊥于E .因为平面DAB ⊥平面ABC ,'DD ⊥平面ABC .故,'AC DE AC DD ⊥⊥,故AC ⊥平面'DED .故二面角D AC B --为'DED α=?.又直线DA 与平面ABC 所成角为'DAD β=∠,因为DA DE ≥, 故''sin 'sin 'DD DD DED DAD DE DA ???.故αβ≥,当且仅当,A E 重合时取等号.又直线AB 与平面ADC 所成角为γ,且'DAD β=∠为直线AB 与平面ADC 内的直线AD 所成角,故βγ≥,当且仅当BD ⊥平面ADC 时取等号.故αβγ≥≥.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.4.已知等比数列{}n a 的各项均为正数,设其前n 项和n S ,若14+=n n n a a (n *∈N ),则5S =( )A .30B.C.D .62【答案】B【解析】【分析】 根据14+=n n n a a ,分别令1,2n =,结合等比数列的通项公式,得到关于首项和公比的方程组,解方程组求出首项和公式,最后利用等比数列前n 项和公式进行求解即可.【详解】设等比数列{}n a 的公比为q ,由题意可知中:10,0a q >>.由14+=n n n a a ,分别令1,2n =,可得124a a =、2316a a =,由等比数列的通项公式可得:1112114162a a q a a q a q q ⎧⋅⋅=⎧=⎪⇒⎨⎨⋅⋅⋅==⎪⎩⎩因此552)12S -==-故选:B【点睛】本题考查了等比数列的通项公式和前n 项和公式的应用,考查了数学运算能力.5.设M 是ABC ∆边BC 上任意一点,N 为AM 的中点,若AN AB AC λμ=+u u u v u u u v u u u v ,则λμ+的值为( ) A .1B .12C .13D .14【答案】B【解析】【分析】 设BM tBC =u u u u v u u u v ,通过12AN AM =u u u v u u u u v ,再利用向量的加减运算可得122t t AN AB AC -=+u u u v u u u v u u u v ,结合条件即可得解.【详解】设BM tBC =u u u u v u u u v, 则有()()11111122222222t t t AN AM AB BM AB tBC AB AC AB AB AC -==+=+=+-=+u u u v u u u u v u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v . 又AN AB AC u u u v u u u v u u u v λμ=+,所以122t t λμ-⎧=⎪⎪⎨⎪=⎪⎩,有11222t t λμ-+=+=. 故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.6.设()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,0.22log 0.3,log 0.3a b ==,则( ) A .()()(0)f a b f ab f +>> B .()(0)()f a b f f ab +>>C .()()(0)f ab f a b f >+>D .()(0)()f ab f f a b >>+【答案】C【解析】【分析】 根据偶函数的性质,比较+,a b ab 即可.【详解】 解:0.22lg0.3lg0.3+log 0.3log 0.3+lg0.2lg 2a b =+=55lg 0.3lg lg 0.3lg22lg5lg 2lg5lg 2⨯⨯==--⨯⨯()0.22lg 0.3lg 0.3log 0.3log 0.3lg 0.2lg 2lg 0.3lg 0.3lg 0.3lg 0.3lg 5lg 2lg 5lg 2lg 0.3lg 0.3lg 5lg 210lg 0.3lg 3lg 5lg 2ab =⨯=⨯-⨯⨯==⨯⨯-⨯-=⨯⨯=-⨯ 显然510lg lg 23<,所以+a b ab <()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,所以()()(0)f ab f a b f >+>故选:C本题考查对数的运算及偶函数的性质,是基础题.7.设()11i a bi +=+,其中a ,b 是实数,则2a bi +=( )A .1B .2 CD【答案】D【解析】【分析】根据复数相等,可得,a b ,然后根据复数模的计算,可得结果.【详解】由题可知:()11i a bi +=+,即1a ai bi +=+,所以1,1a b ==则212a bi i +=+==故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.8.已知等差数列{}n a 的前n 项和为n S ,262,21a S ==,则5a =A .3B .4C .5D .6 【答案】C【解析】【分析】【详解】 方法一:设等差数列{}n a 的公差为d ,则112656212a d a d +=⎧⎪⎨⨯+⨯=⎪⎩,解得111a d =⎧⎨=⎩,所以51(51)15a =+-⨯=.故选C . 方法二:因为166256()3()2a a S a a +==+,所以53(2)21a +=,则55a =.故选C . 9.已知函数2(0x y a a -=>且1a ≠的图象恒过定点P ,则函数1mx y x n+=+图象以点P 为对称中心的充要条件是( )A .1,2m n ==-B .1,2m n =-=C .1,2m n ==D .1,2m n =-=-【分析】由题可得出P 的坐标为(2,1),再利用点对称的性质,即可求出m 和n .【详解】根据题意,201x y -=⎧⎨=⎩,所以点P 的坐标为(2,1), 又1()1mx m x n mn y m x n x n +++-===+++ 1mn x n-+, 所以1,2m n ==-.故选:A.【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.10.欧拉公式为cos sin ix e x i x =+,(i 虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,3i e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】计算31cos sin 332πππ=+=i e i ,得到答案. 【详解】根据题意cos sin ix e x i x =+,故31cos sin 3322πππ=+=+i ei ,表示的复数在第一象限. 故选:A .【点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力.11.已知函数()1ln 11x f x x x+=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 【答案】B构造函数()()1F x f x =-,判断出()F x 的单调性和奇偶性,由此求得不等式()()12f a f a ++>的解集.【详解】构造函数()()11ln 1x F xf x x x +=-=+-,由101x x+>-解得11x -<<,所以()F x 的定义域为()1,1-,且()()111ln ln ln 111x x x F x x x x F x x x x +--⎛⎫-=-=--=-+=- ⎪-++⎝⎭,所以()F x 为奇函数,而()12ln ln 111x F x x x x x +⎛⎫=+=-++ ⎪--⎝⎭,所以()F x 在定义域上为增函数,且()0ln100F =+=.由()()12f a f a ++>得()()1110f a f a -++->,即()()10F a F a ++>,所以1011102111a a a a a ++>⎧⎪-<<⇒-<<⎨⎪-<+<⎩. 故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.12.如图,在正方体1111ABCD A B C D -中,已知E 、F 、G 分别是线段11A C 上的点,且11A E EF FG GC ===.则下列直线与平面1A BD 平行的是( )A .CEB .CFC .CGD .1CC【答案】B【解析】【分析】 连接AC ,使AC 交BD 于点O ,连接1A O 、CF ,可证四边形1A OCF 为平行四边形,可得1//A O CF ,利用线面平行的判定定理即可得解.【详解】如图,连接AC ,使AC 交BD 于点O ,连接1A O 、CF ,则O 为AC 的中点,在正方体1111ABCD A B C D -中,11//AA CC 且11AA CC =,则四边形11AAC C 为平行四边形,11//AC AC ∴且11A C AC =,O Q 、F 分别为AC 、11A C 的中点,1//A F OC ∴且1A F OC =,所以,四边形1A OCF 为平行四边形,则1//CF A O ,CF ⊄Q 平面1A BD ,1AO ⊂平面1A BD ,因此,//CF 平面1A BD . 故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学教学质量调研试卷含解析

天津市静海县2019-2020学年高考数学教学质量调研试卷含解析

天津市静海县2019-2020学年高考数学教学质量调研试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 是虚数单位,若17(,)2i a bi a b R i +=+∈-,则乘积ab 的值是( ) A .-15B .-3C .3D .15【答案】B【解析】 17(17)(2)1325i i i i i +++==-+-,∴1,3,3a b ab =-==-,选B . 2.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥v v v ,则m=( )A .−8B .−6C .6D .8【答案】D【解析】【分析】 由已知向量的坐标求出a b +r r 的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥r r r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =1.故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.3.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x 的值为( )A .3B .3.4C .3.8D .4【答案】D【解析】【分析】根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为,3,1x 和 一个底面半径为12,高为5.4x -的圆柱组合而成. 该几何体的表面积为()()233 5.442.2x x x π+++⋅-=,解得4x =,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.4.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )A .13B .310C .25D .34【答案】B【解析】【分析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x 元,y 元,z 元,记为(,,)x y z ,则基本事件有(1,1,4),(1,4,1) ,(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2),共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为310, 故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.5.如下的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为176,320,则输出的a 为( )A .16B .18C .20D .15【答案】A【解析】【分析】 根据题意可知最后计算的结果为a b ,的最大公约数.【详解】输入的a ,b 分别为176,320,根据流程图可知最后计算的结果为a b ,的最大公约数,按流程图计算320-176=144,176-144=32,144-32=112,112-32=80,80-32=48,48-32=16,32-16=16,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.6.若0,0x y >>,则“222x y xy +=”的一个充分不必要条件是A .x y =B .2x y =C .2x =且1y =D .x y =或1y =【答案】C【解析】 0,0x y >>,∴222x y xy +≥2x y = 时取等号.故“2,x =且1y = ”是“222x y xy +=的充分不必要条件.选C .7.在ABC ∆中,30C =︒,2cos 3A =-,152AC =,则AC 边上的高为( )A .5B .2C .5D .152【答案】C【解析】【分析】结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得BC 边长,由此求得AC 边上的高.【详解】过B 作BD CA ⊥,交CA 的延长线于D .由于2cos 3A =-,所以A 为钝角,且25sin 1cos 3A A =-=,所以()()sin sin sin CBA CBA A C π∠=-∠=+5321152sin cos cos sin 32326A C A C -=+=⨯-⨯=.在三角形ABC 中,由正弦定理得sin sin a b AB =,即1525152-=-,所以25BC =.在Rt BCD ∆中有1sin 2552BD BC C ==⨯=,即AC 边上的高为5. 故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.8.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=2,则E 的离心率为( ) A .32 B .12 C .22 D .23【答案】A【解析】【分析】由已知可得到直线20bx ay -=的倾斜角为45o ,有21b a=,再利用222a b c =+即可解决.由F 到直线20bx ay -=的距离为2c ,得直线20bx ay -=的倾斜角为45o ,所以21b a=, 即()2224a ca -=,解得32e =. 故选:A.【点睛】 本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于,,a b c 的方程或不等式,本题是一道容易题.9.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .140D .120【答案】C【解析】【分析】【详解】 试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频率为0.7200140⨯=,故选C.考点:频率分布直方图及其应用.10.函数()()()22214f x x x x =--的图象可能是( )A .B .C .D .【解析】【分析】先判断函数()y f x =的奇偶性,以及该函数在区间()0,1上的函数值符号,结合排除法可得出正确选项.【详解】函数()y f x =的定义域为R ,()()()()()()()2222221414f x x x x x x x f x ⎡⎤⎡⎤-=-⋅--⋅--=--=⎣⎦⎣⎦,该函数为偶函数,排除B 、D 选项;当01x <<时,()()()222140f x xx x =-->,排除C 选项. 故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.11.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?【答案】B【解析】【分析】 由30020010203040=++++,则输出为300,即可得出判断框的答案【详解】由30020010203040=++++,则输出的值为300,401050i =+=,故判断框中应填40i >? 故选:B .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.12.定义,,a a b a b b a b ≥⎧⊗=⎨<⎩,已知函数21()2sin f x x =-,21()2cos g x x =-,则函数()()()F x f x g x =⊗的最小值为( )A .23B .1C .43D .2【答案】A【解析】【分析】根据分段函数的定义得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,22222211111()()()[(2sin )(2cos )]2sin 2cos 32sin 2cos f x g x x x x x x x+=+=+-+-----222212cos 2sin 14(2)(232sin 2cos 33x x x x --=++≥+=--(当且仅当222cos 2sin x x --222sin 2cos x x-=-,即221sin cos 2x x ==时“=”成立.此时,2()()3f x g x ==,42()3F x ∴≥,()F x ∴的最小值为23, 故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出2()()()F x f x g x ≥+,再由基本不等式求得最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。

天津市静海县2019-2020学年高考数学四模考试卷含解析

天津市静海县2019-2020学年高考数学四模考试卷含解析

天津市静海县2019-2020学年高考数学四模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知正四面体的内切球体积为v ,外接球的体积为V ,则Vv=( ) A .4 B .8C .9D .27【答案】D 【解析】 【分析】设正四面体的棱长为1,取BC 的中点为D ,连接AD ,作正四面体的高为PM ,首先求出正四面体的体积,再利用等体法求出内切球的半径,在Rt AMN ∆中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解. 【详解】设正四面体的棱长为1,取BC 的中点为D ,连接AD , 作正四面体的高为PM ,则323,233AD AM AD ===, 2263PM PA AM ∴=-=, 1362312P ABC V -∴==, 设内切球的半径为r ,内切球的球心为O , 则13443P ABC O ABC V V --==⨯, 解得:612r =; 设外接球的半径为R ,外接球的球心为N ,则MN PM R =-或R PM -,AN R =, 在Rt AMN ∆中,由勾股定理得:222AM MN AN +=,22163R R ⎛⎫∴+-= ⎪ ⎪⎝⎭,解得6R =, 3Rr∴=, 3327V R v r∴== 故选:D 【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.2.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C 【解析】 【分析】根据三棱柱的展开图的可能情况选出选项. 【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图. 故选:C 【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.3.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( ) A .84 B .54C .42D .18【答案】C 【解析】 【分析】根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案. 【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求2节语文课必须相邻且2节数学课也必须相邻,将2节语文课和2节数学课分别捆绑,然后在剩余3节课中选1节到上午,由于2节英语课不加以区分,此时,排法种数为1233232218C A A A =种; ②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但2节语文课不加以区分,2节数学课不加以区分,2节英语课也不加以区分,此时,排法种数为14242224C A A =种. 综上所述,共有182442+=种不同的排法. 故选:C . 【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题. 4.已知复数z 满足()11z i i +=-(i 为虚数单位),则z 的虚部为( ) A .i - B .iC .1D .1-【答案】D 【解析】 【分析】根据复数z 满足()11z i i +=-,利用复数的除法求得z ,再根据复数的概念求解. 【详解】因为复数z 满足()11z i i +=-,所以()()()211111i iz i i i i --===-++-, 所以z 的虚部为1-. 故选:D. 【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.5.如图,在平行四边形ABCD 中,O 为对角线的交点,点P 为平行四边形外一点,且AP OB P ,BP OA P ,则DP =u u u v( )A .2DA DC +u u u v u u u vB .32DA DC +u u uv u u u v C .2DA DC +u u u v u u u vD .3122DA DC +u u uv u u u v【答案】D 【解析】 【分析】连接OP ,根据题目,证明出四边形APOD 为平行四边形,然后,利用向量的线性运算即可求出答案 【详解】连接OP ,由AP OB P ,BP OA P 知,四边形APBO 为平行四边形,可得四边形APOD 为平行四边形,所以1122DP DA DO DA DA DC =+=++u u u r u u u r u u u r u u u r u u u r u u u r 3122DA DC =+u u u r u u u r.【点睛】本题考查向量的线性运算问题,属于基础题6.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线经过圆22:240E x y x y ++-=的圆心,则双曲线C 的离心率为( ) A 5 B .5C 2D .2【答案】B 【解析】 【分析】求出圆心,代入渐近线方程,找到a b 、的关系,即可求解. 【详解】 解:()1,2E -,()2222:10,0x y C a b a b-=>>一条渐近线b y x a =- ()21ba=-⨯-,2a b =()222222+b ,2,c a c a a e ==+=故选:B 【点睛】利用a b 、的关系求双曲线的离心率,是基础题.7.若||1OA =u u u v,||OB =u u u v 0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOBu u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( ) A .13B .3 C.3D【答案】B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,OC OA ∴<>=u u u r u u u rOC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()2mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r2= 1OA =u u u r Q,OB =u u u r ,0OA OB ⋅=u u u r u u u r=229m n ∴=又C Q 在AB 上0m ∴>,0n >3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用. 8.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( ) A .15B .25C .35D .110【答案】B 【解析】 【分析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率. 【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个, 基本事件总数2353C 10n C ==,6和28恰好在同一组包含的基本事件个数22123234m C C C C =+=, ∴6和28恰好在同一组的概率42105m p n ===. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 9.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+ D .,a b R ∃∈,a b a b -≥+【答案】D 【解析】 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【详解】因为全称命题的否定是特称命题,所以,命题p :,a b R ∀∈,a b a b -<+,则p ⌝为:,a b R ∃∈,a b a b -≥+.故本题答案为D. 【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.10.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .6481B .3227C .89D .1627【答案】B 【解析】 【分析】根据循环语句,输入1x =,执行循环语句即可计算出结果. 【详解】输入1x =,由题意执行循环结构程序框图,可得:第1次循环:23x =,24i =<,不满足判断条件; 第2次循环:89x =,34i =<,不满足判断条件;第4次循环:3227x =,44i =≥,满足判断条件;输出结果3227x =.故选:B 【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.11.已知函数2(0x y a a -=>且1a ≠的图象恒过定点P ,则函数1mx y x n+=+图象以点P 为对称中心的充要条件是( ) A .1,2m n ==- B .1,2m n =-= C .1,2m n == D .1,2m n =-=-【答案】A 【解析】 【分析】由题可得出P 的坐标为(2,1),再利用点对称的性质,即可求出m 和n . 【详解】 根据题意,201x y -=⎧⎨=⎩,所以点P 的坐标为(2,1),又1()1mx m x n mn y m x n x n +++-===+++ 1mn x n-+, 所以1,2m n ==-. 故选:A. 【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题. 12.已知某超市2018年12个月的收入与支出数据的折线图如图所示:根据该折线图可知,下列说法错误的是( ) A .该超市2018年的12个月中的7月份的收益最高 B .该超市2018年的12个月中的4月份的收益最低C .该超市2018年1-6月份的总收益低于2018年7-12月份的总收益D .该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元 【答案】D 【解析】 【分析】用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项. 【详解】用收入减去支出,求得每月收益(万元),如下表所示: 月份 1 2 3 4 5 6 7 8 9 10 11 12 收益203020103030604030305030所以7月收益最高,A 选项说法正确;4月收益最低,B 选项说法正确;16-月总收益140万元,712-月总收益240万元,所以前6个月收益低于后六个月收益,C 选项说法正确,后6个月收益比前6个月收益增长240140100-=万元,所以D 选项说法错误.故选D. 【点睛】本小题主要考查图表分析,考查收益的计算方法,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市静海县2019-2020学年高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A .17种B .27种C .37种D .47种【答案】C【解析】【分析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有3464=种,其中最大值不是4的情况有3327=种,所以取得小球标号最大值是4的取法有642737-=种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.2.已知定义在R 上的偶函数()f x ,当0x ≥时,22()2x x x f x e +=-,设(ln (ln2a f b f c f ===,则( ) A .b a c >>B .b a c >=C .a c b =>D .c a b >> 【答案】B【解析】【分析】 根据偶函数性质,可判断,a c 关系;由0x ≥时,22()2xx x f x e +=-,求得导函数,并构造函数()1x g x e x =--,由()g x '进而判断函数()f x 在0x ≥时的单调性,即可比较大小.【详解】()f x 为定义在R 上的偶函数,所以(ln ln 22c f f f ⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以a c =;当0x ≥时,22()2xx x f x e +=-, 则)1(x f x e x =--',令()1x g x e x =--则1()x g x e '=-,当0x ≥时,)0(1x g x e =-≥',则()1x g x e x =--在0x ≥时单调递增,因为000)10(g e =--=,所以1(0)xg x e x --=≥,即)0(1x x f x e =--≥', 则22()2xx x f x e +=-在0x ≥时单调递增,而0<<(f f <,综上可知,(ln 2f f f⎛⎫=< ⎪ ⎪⎝⎭即a c b =<,故选:B.【点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.3.在ABC V 中,已知9AB AC ⋅=uu u r uuu r ,sin cos sin B A C =,6ABC S =V ,P 为线段AB 上的一点,且CA CB CP x y CA CB=⋅+⋅u u u r u u u r u u u r u u u r u u u r ,则11x y +的最小值为( )A .712+B .12C .43D .512+【答案】A【解析】【分析】在ABC V 中,设AB c =,BC a =,AC b =,结合三角形的内角和及和角的正弦公式化简可求cos 0C =,可得2C π=,再由已知条件求得4a =,3b =,5c =,考虑建立以AC 所在的直线为x 轴,以BC 所在的直线为y 轴建立直角坐标系,根据已知条件结合向量的坐标运算求得4312x y +=,然后利用基本不等式可求得11x y+的最小值.【详解】在ABCV中,设AB c=,BC a=,AC b=,sin cos sinB A C=Q,即()sin cos sinA C A C+=,即sin cos cos sin cos sinA C A C A C+=,sin cos0A C∴=,0Aπ<<Q,sin0A∴>,cos0C∴=,0Cπ<<Q,2Cπ∴=,9AB AC⋅=u u u r u u u rQ,即cos9cb A=,又1sin62ABCS bc A==V,sin4tancos3bc A aAbc A b∴===,162ABCS ab==VQ,则12ab=,所以,4312abab⎧=⎪⎨⎪=⎩,解得43ab=⎧⎨=⎩,225c a b∴=+=.以AC所在的直线为x轴,以BC所在的直线为y轴建立如下图所示的平面直角坐标系,则()0,0C、()3,0A、()0,4B,P为线段AB上的一点,则存在实数λ使得()()()3,43,401AP ABλλλλλ==-=-≤≤u u u r u u u r,()33,4CP CA CBλλ∴=+=-u u u r u u u r u u u r,设1CAeCA=u u u ru ru u u r,1CeBCB=u u u ru ru u u r,则121e e==u r u u r,()11,0e∴=u r,()20,1e=u r,()12,CA CBCP x y xe ye x yCA CB=⋅+⋅=+=u u u r u u u ru u u r u r u u rQ u u u r u u u r,334xyλλ=-⎧∴⎨=⎩,消去λ得4312x y+=,134x y∴+=,所以,117737234341234121211x y x y x yx x y y x yy x⎛⎫⎛⎫+=++=++≥⋅=⎪⎪⎝⎭⎝⎭,当且仅当3x y=时,等号成立,因此,11x y +的最小值为7312+. 故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解CA CAu u u r u u u r 是一个单位向量,从而可用x 、y 表示CP u u u r ,建立x 、y 与参数的关系,解决本题的第二个关键点在于由33x λ=-,4y λ=发现4312x y +=为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.4.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43 B .916 C .34 D .169【答案】D【解析】【分析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为r,则r,所以圆柱的体积2126V =π⋅⨯=π.又球的体积32432233V =π⨯=π,所以球的体积与圆柱的体积的比213216369V V ππ==,故选D. 【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.5.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点5P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( ) A.10 B.10 C.10 D【答案】A【解析】【分析】根据单位圆以及角度范围,可得m ,然后根据三角函数定义,可得sin ,cos θθ,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】 由题可知:22515m ⎛⎫+= ⎪ ⎪⎝⎭,又θ为锐角 所以0m >,25m = 根据三角函数的定义:255sin ,cos θθ== 所以4sin 22sin cos 5θθθ== 223cos 2cos sin 5θθθ=-=- 由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭ 所以42322sin 2455πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A【点睛】 本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.6.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64【答案】B【解析】【分析】 设大正方体的边长为x ,从而求得小正方体的边长为3122x x -,设落在小正方形内的米粒数大约为N ,利用概率模拟列方程即可求解。

设大正方体的边长为x12x x -, 设落在小正方形内的米粒数大约为N ,则2212200x x Nx ⎫-⎪⎝⎭=,解得:27N ≈ 故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。

7.下列不等式正确的是( )A .3sin130sin 40log 4>>o oB .tan 226ln 0.4tan 48<<o oC .()cos 20sin 65lg11-<<o oD .5tan 410sin 80log 2>>o o 【答案】D【解析】【分析】 根据3sin 40log 4,ln 0.40tan 226,cos(20)sin 70sin 65<1<<<-=>o o o o o ,利用排除法,即可求解.【详解】由3sin 40log 4,ln 0.40tan 226,cos(20)cos 20sin 70sin 65<1<<<-==>o o o o o o ,可排除A 、B 、C 选项,又由551tan 410tan 501sin80log log 22=>>>=>o o o , 所以5tan 410sin 80log 2>>o o . 故选D .【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.8.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(),0F c ,若F 到直线20bx ay -=,则E 的离心率为( ) AB .12 C.2 D.3【解析】【分析】由已知可得到直线20bx ay -=的倾斜角为45o ,有21b a =,再利用222a b c =+即可解决. 【详解】由F 到直线20bx ay -=的距离为2c ,得直线20bx ay -=的倾斜角为45o ,所以21b a =, 即()2224a ca -=,解得32e =. 故选:A.【点睛】 本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于,,a b c 的方程或不等式,本题是一道容易题.9.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩………,则32y x --的取值范围为( ) A .3,42⎡⎤⎢⎥⎣⎦ B .(1,2] C .(,0][2,)-∞+∞U D .(,1)[2,)-∞⋃+∞ 【答案】C【解析】【分析】设32y k x -=-,则k 的几何意义为点(,)x y 到点(2,3)的斜率,利用数形结合即可得到结论. 【详解】解:设32y k x -=-,则k 的几何意义为点(,)P x y 到点(2,3)D 的斜率, 作出不等式组对应的平面区域如图:由图可知当过点D 的直线平行于x 轴时,此时302y k x -==-成立; 32y k x -=-取所有负值都成立; 当过点A 时,32y k x -=-取正值中的最小值,1(1,1)0x A x y =⎧⇒⎨-=⎩,此时3132212y k x --===--; 故32y x --的取值范围为(,0][2,)-∞+∞U ; 故选:C.【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在.10.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且21()()(1)2x f x g x x ++=+-,则(1)(1)f g -=( )A .1-B .0C .1D .3 【答案】C【解析】【分析】先根据奇偶性,求出()()f x g x -的解析式,令1x =,即可求出。

相关文档
最新文档