力学环境试验基础知识
环境可靠性试验:气候环境试验、力学环境试验和综合环境试验

环境可靠性试验:气候环境试验、力学环境试验和综合环境试验环境可靠性试验就是为了评估产品在规定的寿命期间内,在预期的使用、运输或储存等所有环境下,保持功能可靠性而进行的活动,是产品在规定环境条件下和规定时间内,完成规定功能的能力。
另外通过环境试验可以分析和验证各种环境因素对产品效能的影响程度及作用机理,并广泛应用于汽车、通讯、电子电器等产品类别。
环境可靠性试验主要可分为以下3种:气候环境试验、力学环境试验和综合环境试验。
气候环境试验要包括高温试验、低温试验、温度快速变化试验、温度冲击试验、恒定温湿度试验、温湿度循环试验、盐雾试验、防水防尘试验、紫外老化试验和氙灯老化试验等。
是考核产品在各种环境条件下的适应能力,是评价产品可靠性的重要试验方法之一。
(1)高温试验试验目的:用来考核试验样品在高温条件下贮存或使用的适应性。
应用于比如像热带天气或炼钢厂等高温环境下工作的仪器、设备等。
试验设备:高低温(湿热)试验箱。
试验条件:一般选定一恒定的温度应力和保持时间。
优选常用温度:200℃,175℃,155℃,125℃,100℃,85℃,70℃,55℃等;优选常用的试验时间有:2h,16h,72h,96h等。
(2)低温试验试验目的:用来考核试验样品在低温条件下贮存或使用的适应性。
常用于产品在开发阶段的型式试验、元器件的筛选试验等。
试验设备:高低温(湿热)试验箱。
试验条件:一般选定一恒定的温度和试验时间。
优选常用的温度有:- 65℃,-55℃,-40℃,-25℃,-10℃,-5℃,+5℃等;优选常用的试验时间有:2h,16h,72h,96h等。
(3)温度快速变化试验试验目的:快速温变是规定了温度变化速率的温度变化,常常模拟昼夜温差大的地区环境,也可用于寿命试验,用以考核元器件或产品的外观、机械性能及电气性能。
试验设备:快速温变试验箱。
试验条件:1)温度变化范围的高温和低温值;2)试验样品在高温和低温下的保持时间;3)低温到高温或高温到低温之间温度变化的速率;4)条件试验循环的次数。
初中物理实验考点汇总

初中物理实验考点汇总
物理实验是物理学学习中至关重要的一部分,通过实验可以验证理论,培养学生的实践能力和科学思维。
以下是初中物理实验的一些常见考点。
一、实验室安全
1.实验室规章制度
2.实验室常见危险品和危险操作的警示符号及其含义
3.实验室安全知识,如防止火灾和意外事故的基本措施
二、实验仪器的使用
1.常见的实验仪器,如万用表、电流表、电压表、螺旋测微器等的使
用方法和读数技巧
2.实验仪器的正确操作方法和注意事项
3.实验仪器的保管方法和维护注意事项
三、实验数据的处理与分析
1.实验数据的处理,包括测量误差的计算和减小、数据的整理和归纳
2.实验数据的分析,包括曲线的拟合、数据的比较和推论
四、实验设计与测试
1.实验设计,包括问题的提出、实验步骤和方法的设计、实验时的注
意事项等
2.实验测试,包括实验数据的采集、实验过程的观察和记录等
五、物理现象和实验原理
1.各种物理现象的实验表现和实验原理
2.不同物理现象之间的关系,如压力和面积的关系、电流和电压的关
系等
六、实验探究与实验报告
1.实验探究,包括解决问题的方法、设计合理的实验步骤和实验方案
等
2.实验报告,包括实验目的、方法、结果和结论的书写规范和要求
七、实验中的物理量测量和计算
1.物理量的测量方法和技巧,如长度、质量和时间的测量
2.物理量之间的转换,如功率的计算、速度的计算等
以上是初中物理实验的主要考点,通过合理安排实验和进行实验训练,可以帮助学生更好地掌握物理知识和实践能力。
希望以上内容对您有所帮助。
舰船电子设备环境适应性试验GJB 4-1983

舰船电子设备环境适应性试验GJB 4-1983船舰电子设备环境试验标准GJB 4-1983,其中包含的试验有:高温试验,低温试验,低温贮存,颠震试验,振动试验,外壳防水试验,恒定/交变湿热试验,盐雾试验,霉菌试验,太阳辐射试验等。
试验目的是模拟设备在真实的舰船使用环境,通过试验箱条件的控制在较短时间内检验产品的可靠性。
主要分为功能性验证和耐久性验证。
采用的标准为国军标,比一般的标准要严苛一些,具有此类检测资质的检测机构也不多。
一、气候环境试验各种产品在储存、运输和使用过程中遇到的环境越来越复杂,越来越严酷。
从热带到寒带,从平原到高原,从海洋到太空等等,这就使得用户和生产商双方都关心产品在上述环境中的性能、可靠性和安全性,以保证产品能满意地工作,这就必须要进行环境试验。
广电计量检测(GRGT)环境与可靠性检测中心拥有0.5~30m3温湿度、低气压、温冲、快速温变、盐雾、霉菌等气候环境试验箱,能满足各种产品的气候环境试验需求。
气候环境检测项目:高温试验(工作或贮存)、低温试验(工作或贮存)温度循环(温度变化/快速温度变化试验)、温度冲击试验湿热试验、低气压试验(温度+高度试验)温度湿度高度试验、盐雾试验(中性盐雾/交变盐雾)太阳辐射试验(日光模拟)、霉菌试验淋雨试验、砂尘试验、结冰/冻雨试验 ......参考测试标准GB/T 2423.1、GB/T 2423.2、GB/T 2423.3、GB/T 2423.4、IEC 60068-2-3、IEC 60068-2-4、GB/T 2423.22、IEC 60068-2-14、IEC 60068-2-38、GB/T 2423.21、GB/T 2423.25、GB/T 2423.26等;二、力学环境试验力学环境试验是为产品创造各种各样的力学人工环境,以模拟力学环境对产品的影响,考核产品的力学环境适应性能及在该环境条件下的结构完好性,是解决产品和包装质量可靠性问题必不可少的手段。
基于计算流体力学的建筑风环境数值模拟研究

基于计算流体力学的建筑风环境数值模拟研究随着城市化进程的加快,越来越多的建筑物在城市中涌现。
建筑物的设计需要考虑到很多因素,如功能、美观、安全等。
然而,一个被忽视的因素是建筑的风环境。
一个好的风环境可以提高建筑的舒适度,也可以减小建筑的能耗。
因此,建筑风环境的研究变得越来越重要。
建筑风环境的研究可以通过实验室试验和数值模拟的方法。
实验室试验可以得出一些定量的数据和直接的观察结果,但是实验室试验的成本很高,而且试验环境和实际环境之间存在差异。
因此,数值模拟成为了一种低成本、高效率的研究方法。
随着计算机技术的快速发展,计算流体力学(Computational Fluid Dynamics,CFD)成为了建筑风环境数值模拟的主流方法。
计算流体力学是一种计算流体的数值模拟方法,它基于纳维-斯托克斯方程和其它物理规律,将流场离散化成格点,对每个格点上的流场变量进行求解。
计算流体力学在建筑风环境数值模拟中的应用主要包括三个方面:建筑外围流场模拟、建筑内部流场模拟和建筑能耗模拟。
建筑外围流场模拟是指对建筑周围流场的模拟。
这个模拟中需要考虑到建筑形状、位置和风的方向和大小等因素。
通过计算建筑周围流场的速度和压力等参数,我们可以了解在风场中建筑所受的力和压力分布。
建筑外围流场模拟对于建筑的结构设计非常重要,可以为建筑提供优化的设计方案,例如缩短建筑的轮廓线、平衡建筑的表面压力分布。
建筑内部流场模拟是指对建筑内部流场的模拟。
这个模拟中需要考虑到建筑内部的空气流动、换气量和温度等参数。
通过计算空气流速、压力以及温度分布等参数,我们可以了解建筑内流场的情况和建筑内部区域的舒适度。
建筑内部流场模拟和建筑外围流场模拟相比更为复杂。
因为建筑内部流场的计算需要考虑到建筑内的门窗位置、空调设备、人员和物品等因素。
尤其是对于高层建筑,建筑内部流场模拟更为关键,因高层建筑内的温度、湿度与空气品质等因素影响舒适度和安全性。
建筑能耗模拟是指对建筑内部能耗的模拟。
第一章 材料力学实验

第一章材料力学实验基本要求:对一些材料的基本常用力学性能指标进行测定,对根据假设导出的理论公式加以验证。
实验应力的初步分析,掌握所用仪器设备的操作规程及熟练使用仪器设备,进行数据采集及分析,观察实验过程中各种物理现象。
重点与难点:实验方案的制定,惠斯顿电桥的理论知识与实验应用实验误差的分析,仪器设备的操作使用。
前言材料力学实验是材料力学课程的重要组成部分。
材料力学中的一些理论和公式是建立在实验、观察、推理、假设的基础上,它们的正确性还必须由实验来验证。
学生通过做实验,用理论来解释、分析实验结果,又以实验结果来证明理论,互相印证,以达到巩固理论知识和学会实验方法的双重目的。
本章是根据温州大学建筑与土木工程学院开设的材料力学实验内容和实验仪器设备情况而编写的,由材料的拉伸、压缩实验,弹性模量、泊松比和剪切模量的测定实验,弯曲正应力试验,以及相关仪器和设备的介绍组成。
编写时主要参考了刘鸿文、吕荣坤的《材料力学实验》、曹以柏、徐温玉的《材料力学测试原理及实验》,王绍铭等的《材料力学实验指导》,以及其他院校的有关实验教学资料。
由于水平和时间有限,本书难免有不足和错误,望广大读者给以批评指正。
主编:王军杨芳二00七年七月第一节实验简介§ 1-1-1 实验的意义和基本内容材料力学实验是教学中的一个重要的环节。
材料力学的结论及定律、材料的力学的性质(机械性质)都要通过实验来验证或测定;各种复杂构件的强度和刚度的研究,也需要通过实验才能解决。
故实验课能巩固、加强和应用基本理论知识,掌握测定材料机械性能及测定应力和变形的基本方法,学会使用有关的机器及仪表(如材料试验机、电阻应变仪等),初步培养独立确定实验方案、分析处理实验结果的能力。
通过实验还能培养严肃认真的工作态度,实事求是的科学作风和爱护财物的优良品质。
因此,实验是工程专业学生必须掌握的基本技能。
材料力学实验一般可以分为以下三类:一、测定材料的的力学性质构件设计时,需要了解所用材料的力学性质。
材料力学试验指导书

材料力学试验指导书一、引言材料力学试验是评估材料力学性能的重要手段,通过对材料进行不同的试验,可以获取材料的力学性能参数,为工程设计和材料选择提供依据。
本指导书旨在提供材料力学试验的详细步骤和操作要点,以确保试验结果的准确性和可靠性。
二、试验设备1. 材料力学试验机:型号XYZ-1000,最大载荷1000kN,精度等级为0.5级。
2. 试样制备设备:包括切割机、砂轮机、磨床等。
3. 试验测量设备:包括应变计、位移计、力传感器等。
三、试验准备1. 材料选择:选择符合试验要求的材料,例如钢材、铝合金等。
2. 样品制备:根据试验要求,制备符合标准尺寸的试样,并进行必要的表面处理。
3. 试验环境:确保试验室环境温度恒定,并消除外部干扰因素。
四、试验步骤1. 弹性模量试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。
c. 计算弹性模量:根据施加的载荷和应变数据,计算试样的弹性模量。
2. 屈服强度试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。
c. 确定屈服点:根据载荷-应变曲线,确定试样的屈服点。
3. 拉伸强度试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。
c. 计算拉伸强度:根据最大载荷和试样的原始横截面积,计算试样的拉伸强度。
4. 断裂韧性试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的位移。
c. 计算断裂韧性:根据载荷-位移曲线,计算试样的断裂韧性。
五、数据处理与分析1. 数据记录:将试验过程中的载荷、应变、位移等数据记录下来。
2. 数据处理:对试验数据进行处理,包括计算平均值、标准差等统计参数。
建筑力学实验报告

建筑力学实验报告
一、实验目的
本实验旨在通过建筑力学实验,探究建筑结构在不同受力状态下的变化规律,验证力学原理,加深对建筑力学知识的理解。
二、实验原理
建筑力学是力学在建筑结构中的应用,主要研究建筑结构在外部荷载作用下的受力及变形规律。
实验中将通过加载、应变测试等方法,测量建筑构件在不同受力状态下的应变、位移等参数,从而分析建筑物的力学性能。
三、实验装置
1. 试验仪器:包括拉力计、扭力计、压力计、位移计等;
2. 试验材料:各类建筑构件、模拟结构等;
3. 试验环境:安静、无干扰的实验室环境。
四、实验步骤
1. 测量建筑构件的几何参数;
2. 在试验装置上安装建筑构件,记录初始位置;
3. 逐渐加大外部荷载,测量构件在不同荷载下的应变和位移;
4. 记录实验数据,制作荷载-变形曲线及应力-应变曲线;
5. 分析实验结果,得出结论。
五、实验数据处理
1. 绘制荷载-变形曲线,分析建筑构件的受力性能;
2. 绘制应力-应变曲线,分析结构材料的力学性能;
3. 计算建筑构件的变形、变形后的形状、受力情况等参数。
六、实验结论
通过建筑力学实验,我们验证了建筑结构在外部荷载作用下的受力及变形规律,加深了对建筑力学知识的理解。
建筑力学实验不仅是理论知识的检验,在实践中还能培养学生的动手能力和实践能力,为今后从事相关工作打下良好的基础。
以上是本次建筑力学实验的实验报告,谢谢阅读。
物理检验知识点归纳总结

物理检验知识点归纳总结一、物理检验的基本原理物理检验是一种通过对物体进行力学、热学、声学、光学等方面的实验和测试,确定物体性能、结构和材料特性的方法。
在进行物理检验时,需要了解物理实验的基本原理。
1. 力学实验力学实验是物理检验中最基础的实验之一,它通过对物体施加力的实验,来研究物体的运动规律和力学特性。
力学实验包括静力学实验、动力学实验、弹性力学实验等。
2. 热学实验热学实验是研究物体的热传导、热膨胀、热容等热学特性的实验。
通过对物体加热或冷却,测量温度变化和热量的传递规律,来分析物体的热学性能。
3. 声学实验声学实验是研究物体的声波传播、声学特性等的实验。
通过对物体产生声波,并测量声波的传播速度和声压级等参数,来分析物体的声学特性。
4. 光学实验光学实验是研究物体的光波传播、折射、反射等光学特性的实验。
通过对物体照射光线,观察光线的传播和变化,来了解物体的光学性质。
二、物理检验的常用仪器和设备在进行物理检验时,需要使用各种仪器和设备,来实现对物体性能、结构和材料特性的测试和分析。
以下是物理检验中常用的仪器和设备。
1. 强度测试仪强度测试仪是用于对物体的强度、硬度、韧性等力学性能进行测试的仪器,常用的有拉伸试验机、压力试验机、冲击试验机等。
2. 热传导测试仪热传导测试仪是用于研究物体的热传导性能的仪器,如热导率仪、热膨胀仪等,用于测量物体的导热系数、线膨胀系数等参数。
3. 声学测试仪声学测试仪是用于研究物体的声学性能的仪器,如声级计、频谱仪等,用于测量物体的声波传播速度、声压级等参数。
4. 光学测试仪光学测试仪是用于研究物体的光学性能的仪器,如光谱仪、衍射仪等,用于测量物体的折射率、反射率等参数。
5. 其他常用设备此外,物理检验中还会用到一些常用的设备,如温度计、压力计、振动仪、光源等,用于进行温度、压力、振动、光照等方面的测试。
三、物理检验的常见测试方法在进行物理检验时,有多种测试方法可以选择,用于测试物体的性能、结构和材料特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么称为力,力的单位?使物体获得加速度或变形,位移对另一个物体的作用称之为力,牛顿=1公斤米/秒方什么是应力,应力单位是什么?物体单位面积上受到的作用力称之为应力,单位N/CM方。
什么称之为力矩?力和力臂的乘积为力矩单位M=F.R正弦振动定义可以用时间的正弦函数和余弦函数表示其位移变化的运动叫做正弦振动,公式X(t)=A sinωt随机振动的定义随机振动是瞬时值在任何瞬间不能确定的振动什么是加速度加速度是速度随时间的变化率什么是加速度谱密度即单位频率上的均方加速度值,单位用g2HZ表示,g是重力加速度,HZ是每秒多少周的带宽。
什么是正弦振动的频率和周期物体或质点在单位时间(1s)内振动的次数为频率,物体或质点来回往复运动一次所经历的时间T称为振动周期。
什么是共振频率当外界激振频率与结构试件的固有频率一致时结构发生共振,对应于振动最大的频率为共振频率,反共振是指一个迫振系统,如果激振频率作稍微变化引起响应增加,这点称之为反共振点。
什么是均方根加速度给定时间间隔T内,加速度变化量X(t)的均方根值冲击的特性是什么冲击的特性是冲击作用下产生的加速度幅值大,持续作用时间短,短至几毫秒时间。
简单冲击波形三要素加速度峰值持续时间波形什么是电压、电流电流是有规则的流动称之电流,单位是安培电压是正极和负极之间的电位差叫做电压,计量单位伏特欧姆定律的定义I =U/R 通过电路的电流I ,等于该部分电路两端的电压U 除以该部分电路的电阻R什么叫电阻,用什么单位计量?电路中某两点间在一定电压作用下决定电流强度的物理量,称为电阻。
电阻也可以理解为物体对电流通过时呈现的阻力,计量单位是欧姆,电阻并联:R = R1R2R1+R2什么是电容,计量单位?电容是储存电荷的能力叫做电容器量,简称电容,用C表示。
计量单位:法拉、微法拉、微微法拉电容器并联时,总电容等于各个电容之和。
串联是,总电容的倒数等于各个电容倒数之和,而较其他任何一个电容器的电容为小。
直流电和交流电的区别直流电简称“直流”指方向不随时间变化而变化的电流。
交流电简称“交流”,指大小和方向随时间作周期性变化的电流振动台的工作原理振动台由底座,台体,支撑弹簧,动圈,静圈,导磁体等部分组成。
振动台实际上是一个将电能转换成机械能的转换器,其工作原理:振动台的励磁线圈(通直流电流)和导磁体一起形成恒定磁场,当动圈线圈上通有交变的音频信号时,在线圈周围便形成了交变磁场,此磁场与恒定的磁化磁场相互作用的结果,动圈就能上下往复运动。
振动台的激振力:F=2πDNBI *10-7注释:F=激振力(Kg ) D=动圈外径(Cm ) N=动圈匝数 B=磁通密度(高斯) I =驱动电流(安培)振动试验系统方框图加速度测量系统方框图功率放大器的工作原理由控制仪输出信号经功率放大器第一级第二级甚至第三级电压放大到末级功率放大器。
推换输出足够大的电压信号,通过输出变压器到台体的动圈,推动动圈运动。
目前试验室使用的是开关式功率放大器,它一般由前置级、倒相级和末级、强级组成。
压电加速度传感器的基本结构原理压电晶体加速度传感器由壳体、弹簧、质量块、输出端压电晶体、基座组成晶体受到震动后产生电荷的压电效应、实现能量转换主要技术指标、灵敏度、频率范围、线性度、幅频特性、相频特性、振动测量频响平坦段应大于2.5KHz冲击应大于10KHz以上、振动幅值小可选用高灵敏度传感器。
冲击加速度G 值高可选用低灵敏度传感器振动测量常用传感器有加速度传感器:用于测量加速度幅值位移传感器:用于测量位移幅值应变片:用于测量应变值什么叫传感器的灵敏度传感器的反应被测量级的敏感程度叫传感器灵敏度。
例如:加速度传感器灵敏度表示在单位加速度激振下传感器输出量的大小程为灵敏度。
即:pc/g什么叫电荷放大器输出电压与输入电荷成正比的放大器,也就是从传感器来的电荷信号,经过放大,归一化输出电压信号试验中断超差的处理a、欠试验(达不到要求量级)中断,当试验低于允差下限时,应从低于试验条件的点重新达到规定的试验条件,恢复试验,直到结束。
b、正弦扫频中途中断,一般应从中断频率开始,征得客户同意也可以从头开始。
c、试验超差,在振动控制量级升到-12dB时,应判断是否满足试验要求,若高频超差严重应中断试验,并采取相应措施,根据具体情况调整夹具安装方式,传感器安装位置,修正试验参数设置等d、过试验(超出设定量级)中断,应立即停止试验,查明原因。
振动幅值允差a、正弦:规定值的±10%b、随机:将控制传感器的加速度谱密度保持在2.0 dB或-1.0 dB之内。
整个试验频率范围内的允差应不超过±3.0dB,500Hz以上可以为3.0 dB—6.0 dB,这些超过允差的累计带宽应限制在整个试验频带范围的5%以内。
c、振动测量:要保证在试验频率范围内加速度谱密度测量数据,其准确度为振动量级的±0.5 dB之内,推荐使用800谱线。
d、横向加速度:在任何频率上,相互正交与试验驱动轴正交的两个轴上的振动加速度不大于试验轴向上的加速度的0.45倍(或加速度谱密度的0.2倍)。
e、加速度:规定值的±10%f、振动频率、规定值的±2%低于25Hz为±0.5Hz另外还有行业标准规范,航天产品随机允差1000Hz以下±1.5dB 1000Hz以上±3dB试验夹具测试对振动夹具要求:钢度大、重量轻、传递特性好、一阶共振频率应高于试验频率,试验夹具加工应尽量避免焊接、螺接,试验前对夹具进行测试联调,是否满足试验要求。
试验夹具安装试件与夹具或试件与台面的连接应能模拟试件的实际安装情况,如不能做到,则应有足够刚度,确保传递特性。
对较小的振动夹具可以采用螺杆、压板的方式固定。
对试件体积较大的,质量分布尽可能对称,以使不平衡载荷减到最小。
试件重心应尽可能对准台面中心,以减少倾覆力矩的影响,夹具与台面尽可能采用螺接方式,夹具与台面连接要牢靠,其接触面不宜过大,若接触面过大,最好将连接孔处加工成凸台形式,或用垫片、垫圈垫起以保证接触良好,减少振动波形失真。
样品应避免其它额外附加的紧固或绑扎,所有连接件,对样品的限制也必须和实际安装限制相似。
控制点的选择要根据试件的边界条件,一般选在试件与夹具的连接面的连接螺栓附近,对一般简单的试验结构件,可采用单点控制,对比较复杂的结构试验件(如整机或部件)应采用多点平均控制为保证试验时平坦的传递特性,连接螺栓的固有频率fr应高于试验的上限频率fmaxfr=12πkm≥fmax将连接螺栓刚度k=AE/L,连接螺栓截面积A=nπd2/4代入上式得nπd24L≥2πfmax2mEn>2πfmax2mE4Lπd2注: n 螺栓个数d 螺栓直径mL 螺栓有效长度mFmax 试验上限频率Hzm 夹具与试件的总质量kgE 材料弹性模量pa根据上式:可计算螺栓的直径,个数和材料振动控制设置有关注意事项振动控制应采用峰值控制、滤波测量a.正弦试验滤波用外接电荷放大器,一般选择滤波应高于试验频率。
b.随机试验滤波,外接电荷放大器,滤波要高于试验频率的3倍,分析谱线不低于400线,分辨率不大于5Hzc.冲击响应谱 Q=10 ,频域谱形50%应大于目标谱。
时域波形≤20ms 倍频程选择为16,分辨率越小用于分析和综合频率点的间隔就越小。
d.半正弦冲击滤波器比例带宽随驱动信号的频率变化而变化,固定带宽不随驱动信号变化,一般选择带宽20左右,低通滤波,滤波频率大于 f = 4Ts振动响应检查和共振试验共振是指振动试验频率等于试件固有频率时振幅达到最大值,产生共振现象。
振动响应检查应在耐久试验前后进行,通常按耐久试验相同条件在一个循环上进行,确定其共振频率和某些响应发生的变化。
若发生变化,应采取相应措施:对于低频小阻尼系统,可以降低量级和扫描率,但要避免时间过长,以免引起过大疲劳损伤。
在非线性共振情况下,样品随扫描方向改变而有不同频率响应,在频率上升和下降部分确定危险频率,若样品具有平稳的结构,可以在扫频上升部分被确定,确定其中最严重的一个或多个共振频率(不超过4个)。
共振时要始终保持在实际危险频率上。
若怀疑存在非线性环节软化或硬化现象,如一些非金属材料、扫描起始频率应从高频往低频扫描,确定危险频率(通常应比循环下扫共振频率要低)。
如有多个独立样品进行试验时,危险频率不是很清晰或出现颤动可以在危险频率0.8倍、1.2倍的频率范围内扫描,这种方法可用于非线性共振的情况。
在航天产品试验中,对大部件、测点多系统检查,增加一个导通级的试验,在验收、鉴定级的前后以较小的量级进行上扫半循环扫频。
对测量数据进行比较,一般顺序是:导通—特征级—正弦满量级—特征级—随机满量级—特征级。
产品若要进行定频共振试验,共振响应点频率不论放大倍数、共振传递率大小(排除外界频率干扰)应视为共振频率。
选择其中一个放大倍数较大的一点进行共振试验。
在GJB3947A-2009标准中,在激励源与受试设备或受试设备部件之间有大于或等于6dBz表示有共振存在,定频要随频率的变化维持峰值共振状态,如没有明显共振响应发生,则设备应在33Hz处震动,GJB4.1-83标准中,共振检查在可疑频率上可作适当停留,当最有害的共振点难以判断时,可以在难以判定的共振点中选择两个,各振1小时,若无共振,按规定的频率,位移或加速度振动两小时。
总之,要根据客户及标准、规范要求,正确运用。
一般振动试验常用计算公式位移、加速度、频率一般关系V=2πfD(厘米/秒) A=(2πf)2*D(厘米/秒2)为使用方便,通常加速度幅值用重力加速度的倍数表示,加速度与位移幅值(0 ~ P)之间的关系又可以表示为:A=D*f2250D=A*250f2 f=250*AD注释:A----加速度(g) D----位移 mm( 0—P) f----频率(Hz)振动台最大推力估算Ft=m*a<F0Ft----试验需要的推力(kg)m----试件、夹具、台面、动圈组成的运动系统的质量(kg)a----试验规范给定的最大加速度,单位为(g)F0----振动台额定推力(kg)最大位移限制估算(台体有减振系统)D=Dmax(1- 试件质量振动台体质量)安全系数D——限制位移 P~P Dmax——振动台最大位移 P~P 试件质量——kg 振动台体质量——kg 安全系数——0.9扫描速度和扫描持续时间的换算线性扫描V=f2-f1T V-扫描速度T-扫描时间对数扫描Vβ=NT Vβ-对数扫描速度oct/minT-扫描的总时间minN 倍频程所以对数扫描速度:Vβ=log(f2f1)Tlog2总均方根值增加1.4倍,平移参考谱斜率不变,计算:0.04x1.42总均方根值降40% ,平移参考谱斜率不变,计算:0.04x0.62说明:在GJB-16-86标准中,试验量值为1.6倍功能试验量值时,确定耐久试验持续时间,这样往往引起不同解释航空产品中,一般是增加功率普密度,在卫星环境试验要求中,声.随机振动环境的设计余量为4dB,也就是鉴定级试验是验收级试验的1.6倍,所以增加的是总均方根值加速度。