抛物线的焦点弦公式总结
2.4.2抛物线焦点弦的性质

tan 2 1 2p 2p 2 tan sin 2
二、抛物线 y 2 2 px ( p 0) 的焦点弦性质:
下记AB为焦点弦, H1 H 2为通径
O
y
F A
B
x
性质1
若A、B的纵坐标为 y1、y2,则 y1 y2 p 2
2
p 1. 若A、B的横坐标为 x1、x2,则x1 x2 4 2 2. 若A( x1 , y1 ),B( x2 , y2 )在抛物线 y 2 px ( p 0)上, 2 则 y1 y2 p 直线AB过焦点F
2
性质1:
若A、B的纵坐标为 y1、y2,则 y1 y2 p
2
2
p 1. 若A、B的横坐标为 x1、x2,则x1 x2 4
2
2. 若直线与抛物线 y 2 px ( p 0)的两个交点 的纵坐标 是否经过焦点F ?分析: y1、y2,满足 y1 y2 p ,则该直线
2
2
4.焦点弦长 | AB | x A xB p。 2p 5.焦点弦长 | AB | 2 si n
(其中 为L AB的倾角)
6.焦点弦长 | AB | 小=2p。 p 7.SAOB = . 2sin 8.以焦点弦AB为直径的圆与准线L相切. p 1 1 2 9.若x1x 2= ,则 。 4 AF BF p 10.MFN =90 .
2
2. 若直线与抛物线 y 2 2 px ( p 0)的两个交点的纵坐标y1、y2, 满足 y1 y2 p 2,则该直线是否经过焦 点F ?
设交点为A( x1 , y1 ),B( x2 , y2 ) p 1) 若 x1 x2,则| y1 | | y2 | p x1 x2
抛物线焦点弦

抛物线焦点弦
抛物线的焦点弦是:焦点弦长就是两个焦半径长之和。
焦半径长可以用该点的横坐标来表示,与纵坐标无关。
由于焦点弦经过焦点,其方程式可以由其斜率唯一确定,很多问题可以转化为对其斜率范围或取值的讨论。
相关简介:
在抛物线y²=2px中,弦长公式为d=p+x1+x2。
若直线AB的倾斜角为α,则|AB|=2p/sin²α。
y²=2px或y²=-2px时,x1x2=p²/4,y1y2=-p²。
x²=2py或x²=-2py 时,y1y2=p²/4,x1x2=-p²。
焦点弦是指椭圆、双曲线或者抛物线上经过一个焦点的弦,是指同一条圆锥曲线或同一个圆上两点连接而成的线段。
焦点弦是由两个在同一条直线上的焦半径构成的。
焦半径是由一个焦点引出的射线与椭圆或双曲线相交形成的。
而由于椭圆或双曲线上的点与焦点之间的距离(即焦半径长)可以用椭圆或双曲线离心率和该点到对应的准线之间的距离来表示。
焦点在y轴抛物线焦点弦长公式

焦点在y轴抛物线焦点弦长公式
抛物线是数学中的一个经典曲线,其焦点在y轴上的抛物线具有独特的性质。
通过研究这种抛物线,我们可以得出一个重要的公式,即焦点在y轴上的抛物线焦点弦长公式。
该公式可以表示为:l=4p,其中,l代表焦点在y轴上的抛物线焦点弦长,p代表抛物线顶点到焦点的距离。
这个公式的证明可以通过抛物线的标准方程进行推导。
根据抛物线的标准方程y^2=4px,我们可以得出焦点坐标为(0,p)。
同时,我们可以通过勾股定理,求出焦点到顶点的距离为p,再根据抛物线的对称性,得出焦点在y轴上的抛物线焦点弦长为4p。
这个公式在数学、物理等领域有着广泛的应用,例如在抛物线反射问题中,可以通过这个公式来求解反射角度;在天文学中,太阳能焦聚器也是基于这个公式来设计的。
总之,焦点在y轴上的抛物线焦点弦长公式是一个重要的数学公式,它深刻地揭示了抛物线的本质特点,并为相关领域的研究提供了重要的理论基础。
- 1 -。
高二数学抛物线焦点弦的性质

下记AB为焦点弦,H 1 H 2为通径 1. 若 H 1、 H 2的纵坐标为 y1、 y 2,则 y1 y 2 p 2 2. 若 A、 B的纵坐标为 y1、 y 2,则 y1 y 2 ? p2
2 y y p 1) 若 AB x轴 , 则 由 1 .知 1 2
课本P119习题 8.5的第7题
2 ) 若 AB不 垂 直 于 x轴 , 则设 l AB
由 2 y 2 px 2p 2 消x,得 : y y p2 0 k y k( x
p ) 2
p : y k( x ) 2
y
B F
O
y1 y 2 p
2
xБайду номын сангаас
A
二、抛物线 y 2 px ( p 0 ) 的焦点弦性质
p 当 90 时 , l AB : y ( x ) tan 2 p y ( x ) tan 2 由 2 y 2 px
2p , 2 tan x1 x 2 p 4
p 2
2p 2 p2 2 | AB | 1 tan ( p ) 4 2 tan 4
tan 2 1 2p 2p 2 tan sin 2
二、抛物线 y 2 px ( p 0 ) 的焦点弦性质
2
下记AB为焦点弦,H 1 H 2为通径 若 A、 B的纵坐标为 y1、 y 2,则 y1 y 2 p 2 p2 1. 若 A、 B的横坐标为 x1、 x 2,则x1 x 2 4 2. 若 A( x1 , y1 ), B ( x 2 , y 2 )在抛物线 y 2 2 px ( p 0)上, 则 y1 y 2 p 2 直线AB过焦点F
抛物线焦点弦性质

焦点弦的角平分线性质
总结词
通过抛物线焦点的弦也是该弦所夹角的角平分线。
详细描述
对于给定的抛物线和通过该抛物线焦点的弦,该弦将把与之相交的两个射线平分,也就是说,它是一 个角平分线。这一性质在几何学中有着广泛的应用,特别是在解决与角平分线相关的问题时。
04 焦点弦的应用
在几何作图中的应用
抛物线的性质
THANKS FOR WATCHING
感谢您的观看的性质和定理将被发现和证明。
未来研究可以进一步探索抛物线焦点弦与其他几何图形之间的关系,以 及在各个领域的应用前景。
同时,随着计算机技术的发展,数值模拟和可视化技术可以为抛物线焦 点弦性质的研究提供更多的手段和方法,有助于更深入地理解这一概念。
物体的运动规律。
05 结论
对抛物线焦点弦性质的总结
抛物线焦点弦性质是几何学中的重要概念,它涉及到抛物线、焦点和弦的一系列特 性。
焦点弦是指通过抛物线焦点的弦,它具有一些特殊的性质,如长度、倾斜角等。
这些性质在几何学、光学、天文学等领域有着广泛的应用,对于解决实际问题具有 重要的意义。
对未来研究的展望
焦点弦的面积性质
总结词
抛物线焦点弦将抛物线划分为两个面 积相等的部分。
详细描述
对于给定的抛物线,通过焦点的弦将 该抛物线分为两个面积相等的区域。 这一性质在几何和解析几何中都有所 应用,是抛物线的一个重要特性。
焦点弦的切线性质
总结词
焦点弦在抛物线上的切点与焦点的连线垂直于该弦。
详细描述
对于抛物线上的任意一点,该点处的切线与通过该点和焦点的连线垂直。这一 性质在解决几何问题时非常有用,因为它揭示了切线、弦和焦点之间的特殊关 系。
焦点弦的性质是抛物线几何性质的一 个重要部分,它在解决一些数学问题 中有着广泛的应用。
抛物线过焦点的弦长公式及其应用

抛物线过焦点的弦长公式及其应用抛物线可以由以下方程表示:y = ax^2 + bx + c,其中a是抛物线的曲率,b是x的线性项,c是常数项。
焦点可以通过计算公式 x = -b/(2a) 得到。
当抛物线过其焦点时,我们可以通过焦点的纵坐标f来表示抛物线。
弦是抛物线上两个点之间的线段,过焦点的弦称为焦弦。
如果我们找到抛物线上两个点,使它们的y坐标等于f,则这两个点就是焦弦的端点。
假设焦弦的两个端点分别是(x1,f)和(x2,f)。
首先,我们需要找到抛物线方程的两个根,即两个与x轴交点。
根可以通过解以下方程得到:ax^2 + bx + c = 0。
通过因式分解或使用求根公式,我们可以找到方程的解。
假设根为x1和x2然后,我们可以计算焦弦的长度。
对于线段(y1, y2),其长度可以使用勾股定理表示为:L = sqrt((x2 - x1)^2 + (y2 - y1)^2)。
由于焦弦是过焦点且与x轴平行的线,因此y1 = y2 = f。
因此,焦弦的长度可以进一步简化为:L = sqrt((x2 - x1)^2 + (f - f)^2) = sqrt((x2 - x1)^2) = ,x2 - x1即焦弦的长度等于焦点纵坐标两边的x值之差,也就是焦点横坐标两边的距离。
通过抛物线方程求解根以及计算焦弦的长度,我们可以进一步应用这个公式。
首先,焦弦的长度可以用于计算抛物线的宽度。
抛物线的宽度定义为通过焦点且垂直于焦弦的线段的长度。
由于焦弦与x轴平行,垂直于焦弦的线段可以通过计算焦点的纵坐标和横坐标之差得到。
因此,抛物线的宽度等于2f。
其次,焦弦的长度可以用于计算抛物线的面积。
抛物线的面积可以通过计算焦弦的长度和抛物线的高度得到。
抛物线的高度可以通过计算焦点的纵坐标f和焦点到抛物线的最低点的距离得到。
由于抛物线是对称的,最低点就是焦点,因此高度等于f。
因此,抛物线的面积等于焦弦的长度乘以抛物线的高度,即2f^2此外,焦弦的长度还可以用于计算抛物线上其他点的坐标。
抛物线焦点弦性质

抛物线焦点弦性质(1)过抛物线px y 22=(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 且A 与B 在准线上的射影分别为A 1与B 1 结论1:p x x AB ++=21p x x px p x BF AF AB ++=+++=+=2121)2()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2pAB = 证: (1)若2πθ=时, AB 为抛物线的通径,2,AB p =结论得证(2)若2πθ≠时,设直线L 的方程为:θtan )2(p x y -=即2cot py x +⋅=θ 代入抛物线方程得0cot 222=-⋅-p py y θ由韦达定理θcot 2,21221p y y p y y =+-=由弦长公式得θθθ22212sin 2)cot 1(2cot 1pp y y AB =+=-+=结论3: 过焦点的弦中通径长最小,最小值为p 2.结论4:抛物线焦点弦的两个端点的同名坐标之积分别为常数42p 和2p -。
(证明见结论9)结论5: 焦点弦AB 被焦点F 分成m ,n 两部分,112m n p+= 即p FB FA 211=+ 证法1:过A 点作AR 垂直X 轴于点R ,过B 点作BS 垂直X 轴于点S ,设准线与x 轴交点为E,θ的倾斜角为因为直线L 则θθcos 1cos -=∴=+=+=P AF AF AF P FR EF ER PAF θcos 11-=∴同理可得P BF θcos 11+= ∴pFB FA 211=+证法2:12p m x =+ , 22pm x =+ 代入整理即可。
结论6:过抛物线的焦点作两条互相垂直的弦AB 、CD ,则1112AB CD p+=结论7:以AB 为直径的圆与抛物线的准线相切,切点即为11B A 的中点。
证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1,过M 点作准线的垂线 MM 1,由梯形的中位线性质和抛物线的定义知222111AB BFAF BB AA MM =+=+=结论得证。
抛物线焦点弦长公式推导过程

抛物线焦点弦长公式推导过程抛物线焦点弦长公式是指在一个抛物线上,通过焦点的弦长的长度公式。
推导过程如下:假设抛物线的方程为 y = ax^2,其中 a 是常数,焦点坐标为(0, p)。
1. 假设抛物线上一点为 P(x,y),则有 y = ax^2。
2. 然后,我们将 P 点到焦点的距离表示为 d,可以通过几何关系得到:d = sqrt(x^2 + (y-p)^2)3. 我们还可以通过另一种方式计算 d,即利用抛物线焦点的特性:焦点到抛物线上任意一点 P 的距离等于 P 点到抛物线的准线的距离。
因此,我们可以将 d 表示为:d = |y - p| / (2a)4. 将步骤 1 的方程代入步骤 3 的公式中,得到:d = |ax^2 - p| / (2a)5. 再次利用绝对值的性质,我们可以将式子转化为两种情况:当 ax^2 > p 时,d = (ax^2 - p) / (2a) = x^2 / (2a) - p / (2a)当 ax^2 < p 时,d = (p - ax^2) / (2a) = p / (2a) - x^2 / (2a)6. 接下来,我们考虑通过这个弦长公式来求抛物线上两点 A 和 B 之间的弦长。
假设点 A 的坐标为 (x1, y1),点 B 的坐标为 (x2, y2)。
首先,我们需要求出抛物线焦点到直线 AB 的距离 h。
h = (|y1 - p| + |y2 - p|) / 2将步骤 4 中的公式代入上面的式子,可得:h = |x1^2 - x2^2| / (4a)7. 然后,我们可以通过勾股定理计算出弦长 L:L = sqrt((x2 - x1)^2 + h^2)将步骤 6 中的 h 公式代入上面的式子,可得:L = sqrt((x2 - x1)^2 + (|x1^2 - x2^2| / (4a))^2)8. 最后,我们可以将步骤 5 中的两种情况代入上面的公式中,得到抛物线焦点弦长公式:当 ax1^2 > p 且 ax2^2 > p 时,L = sqrt((x2 - x1)^2 + ((x1^2 - x2^2) / (4a))^2) 当 ax1^2 < p 且 ax2^2 < p 时,L = sqrt((x2 - x1)^2 + ((x2^2 - x1^2) / (4a))^2) 至此,我们就成功推导出了抛物线焦点弦长公式。