高三文科数学模拟卷(含答案)

合集下载

高三文科数学试卷电子版

高三文科数学试卷电子版

第1页 共4页 ◎ 第2页 共4页…………外………………内……………○……在※※装※※订※※线………○……第II卷(非选择题)二、填空题(共4题,每题5分,共20分)13.若(x2+a)(x+x)8的展开式中x8的系数为9,则a的值为.14.北宋时期的科学家沈括在他的著作《梦溪笔谈》一书中提出一个有趣的问题,大意是:酒店把酒坛层层堆积,底层摆成长方形,以后每上一层,长和宽两边的坛子各少一个,堆成一个棱台的形状(如图1),那么总共堆放了多少个酒坛?沈括给出了一个计算酒坛数量的方法——隙积术,设底层长和宽两边分别摆放a,b个坛子,一共堆了n层,则酒坛的总数S=ab+(a-1)(b-1)+(a-2)(b-2)+…+(a-n+1)(b-n+1).现在将长方形垛改为三角形垛,即底层摆成一个等边三角形,向上逐层等边三角形的每边少1个酒坛(如图2),若底层等边三角形的边上摆放10个酒坛,顶层摆放1个酒坛,那么酒坛的总数为.15.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f'(x1)=f'(x2)=f(b)-f(a)b-a,则称函数f(x)是[a,b]上的“中值函数”.已知函数f(x)=13x3-12x2+m是[0,m]上的“中值函数”,则实数m的取值范围是.16.设函数f(x)=exx+a(x-1)+b(a,b∈R)在区间[1,3]上总存在零点,则a2+b2的最小值为.三、解答题(共6题,共70分)17.已知数列{a n}的各项均为正数,S n为其前n项和,且4S n=a n2+2a n-3.(1)求数列{a n}的通项公式;(2)若T n=a1+1S1−a3+1S3+a5+1S5-…+(-1)n+1a2n-1+1S2n-1,比较T n与1的大小.18.已知△ABC的内角A,B,C的对边分别为a,b,c,且2a sin(C+π6)=b+c.(1)求角A的大小;(2)若a=√7,BA⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =-3,角A的平分线交边BC于点T,求AT的长.19.垃圾是人类生产和生活中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,因此需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个镇进行分析,得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个镇的人口(单位:万人)和该镇年垃圾产生总量(单位:吨),并计算得∑i=120x i=80,∑i=120y i=4 000,∑i=120(x i-x¯)2=80,∑i=120(y i-y¯)2=8 000,∑i=120(x i-x¯)(y i-y¯)=700.(1)请用相关系数说明该组数据中y与x之间的线性相关程度;(2)求y关于x的线性回归方程;(3)某机构有两款垃圾处理机器,其中甲款机器每台售价100万元,乙款机器每台售价80万元,下表是这两款垃圾处理机器的使用年限(整年)统计表:根据以往经验可知,某镇每年可获得政府支持的垃圾处理费用为50万元,若仅考虑购买机器的成本和每台机器的使用年限(使用年限均为整年),以频率估计概率,该镇选择购买哪一款垃圾处理机器更划算?参考公式:相关系数r=∑i=1n(x i-x¯)(y i-y¯)√∑i=1(x i-x¯)2∑i=1(y i-y¯)2,对于一组具有线性相关关系的数据(x i,y i)(i=1,2,…,n),其回归直线y^=b^x+a^的斜率和截距的最小二乘估计分别为b^=∑i=1nx i y i−nx-y-∑i=1nx i2−nx-2,a^=y-−b^x-.20.如图,已知各棱长均为2的直三棱柱ABC-A1B1C1中,E为AB的中点.(1)求证:BC1∥平面A1EC;(2)求点B1到平面A1EC的距离.21.已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为√22,且椭圆上一点到两个焦点的距离之和为2√2.(1)求椭圆C的标准方程.(2)过点S(-13,0)的动直线l交椭圆C于A,B两点,试问:在x轴上是否存在一个定点T,使得无论直线l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.22.已知函数f(x)=lnx,g(x)=-12x.(1)令F(x)=ax·f(x)-2x2·g(x),讨论F(x)的单调性;(2)设φ(x)=f(x)x-g(x),若在(√e,+∞)上存在x1,x2(x1≠x2)使不等式|φ(x1)-φ(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.第3页共4页◎第4页共4页参考答案1.D【解析】解法一 因为A ={x ||x |≤3}={x |-3≤x ≤3},(题眼)(方法点拨:含有一个绝对值的不等式的解法口诀是“大于在两边,小于在中间”,即|x |≤a 的解集是{x |-a ≤x ≤a },|x |≥a 的解集是{x |x ≤-a 或x ≥a })B ={x |x ≤2},所以A ∩B ={x |-3≤x ≤2},故选D.解法二 因为3∉B ,所以3∉(A ∩B ),故排除A,B;因为-3∈A 且-3∈B ,所以-3∈(A ∩B ),故排除C.故选D. 【备注】无 2.B【解析】解法一 z =4-3i 2-i=(4-3i)(2+i)(2-i)(2+i)=11-2i 5=115−25i,所以|z |=√(115)2+(-25)2=√5,(题眼)故选B.解法二 |z |=|4-3i2-i |=|4-3i||2-i|=√42+(-3)2√22+(-1)2=√5=√5,故选B.(方法总结:若z 1,z 2∈C ,则|z 1z 2|=|z 1|·|z 2|,|z1z 2|=|z 1||z 2|(|z 2|≠0)) 【备注】无3.A【解析】解法一 由sin x =1,得x =2k π+π2(k ∈Z ),则cos (2k π+π2)=cos π2=0,故充分性成立;又由cosx =0,得x =k π+π2(k ∈Z ),而sin(k π+π2)=1或-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,(判断充分、必要条件应分三步:(1)确定条件是什么,结论是什么;(2)尝试从条件推结论(充分性),从结论推条件(必要性);(3)确定条件和结论是什么关系)故选A.解法二 由sin x =1,得x =2k π+π2 (k ∈Z ),则cos(2k π+π2)=cos π2=0,故充分性成立;又cos 3π2=0,sin 3π2=-1,故必要性不成立.所以“sin x =1”是“cos x =0”的充分不必要条件,故选A. 【备注】无 4.A【解析】由题可知,数列{a n }是首项为29、公比为12的等比数列,所以S n =29[1-(12)n ]1-12=210-210-n,T n =29×28×…×210-n=29+8+…+(10-n )=2n(19-n)2,由T n >S n ,得2n(19-n)2>210-210-n,由n(19-n)2≥10,可得n 2-19n +20≤0,结合n ∈N *,可得2≤n ≤17,n ∈N *.当n =1时,S 1=T 1,不满足题意;当n ≥18时,n(19-n)2≤9,T n ≤29,S n =210-210-n>210-1>29,所以T n <S n ,不满足题意.综上,使得T n >S n 成立的n 的最大正整数值为17. 【备注】无 5.B【解析】依题意,1=a 2+b 2-2a ·b =1+1-2a ·b ,故a ·b =12,所以(a -b )·(b -c )=a ·b -b 2-(a -b )·c =(b -a )·c -12=|b -a ||c |·cos<b -a ,c >-12≤1-12=12,当且仅当b -a 与c 同向时取等号.所以(a -b )·(b -c )的最大值为12.故选B.【备注】无 6.D【解析】由已知可得∠xOP =∠P 0OP -∠P 0Ox =π2t -π3,所以由三角函数的定义可得y =3sin∠xOP =3sin(π2t -π3),故选D.【备注】无 7.B【解析】本题主要考查古典概型、排列与组合等知识,考查的学科素养是理性思维、数学应用. “礼、乐、射、御、书、数”六节课程不考虑限制因素有A 66=720(种)排法,其中“数”排在前两节,“礼”和“乐”相邻排课的排课方法可以分两类:①“数”排在第一节,“礼”和“乐”两门课程相邻排课,则有C 41A 22A 33=48(种)排法;②“数”排在第二节,“礼”和“乐”两门课程相邻排课,则有C 31A 22A 33=36(种)排法.(方法总结:解决排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置))故“数”排在前两节,“礼”和“乐”相邻排课的排法共有48+36=84(种),所以“数”排在前两节,“礼”和“乐”相邻排课的概率P =84720=760,故选B. 【备注】无 8.C【解析】解法一 由已知可得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.在平面ACC 1A 1内,过点C 1作C 1H ⊥PC ,垂足为H ,如图.由CC 1⊥底面ABC ,可得CC 1⊥BC ,因为AC ⊥BC ,AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,所以BC ⊥C 1H ,又C 1H ⊥PC ,PC ∩BC =C ,所以C 1H ⊥平面PBC ,连接BH ,故∠C 1BH 就是直线BC 1与平面PBC 所成的角.在矩形ACC 1A 1中,CP =√CA 2+AP 2=√42+22=2√5,sin∠C 1CH =cos∠PCA =AC CP =2√5=√5=C 1H CC 1=C 1H 3,故C 1H =3×√5=√5.故在△BC 1H中,sin∠C 1BH =C 1HBC 1=√53√2=√105,所以直线BC 1与平面PBC 所成角的正弦值等于√105.故选C.解法二 由已知得AA 1⊥底面ABC ,且AC ⊥BC ,所以V A -PBC =V P -ABC =13×S △ABC ×PA =13×12×3×4×PA =4,解得PA =2.如图,以C 为坐标原点,分别以CB⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ ,C C_1的方向为x ,y ,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,4,2),B (3,0,0),C 1(0,0,3),则CB⃗⃗⃗⃗⃗ =(3,0,0),CP ⃗⃗⃗⃗⃗ =(0,4,2),B ⃗ C_1=(-3,0,3).设平面BCP 的法向量为n =(x ,y ,z ),则由{n ⊥CB⃗⃗⃗⃗⃗ ,n ⊥CP⃗⃗⃗⃗ 可得{n·CB ⃗⃗⃗⃗⃗ =3x =0,n·CP ⃗⃗⃗⃗ =4y +2z =0,即{x =0,2y +z =0,得x =0,令y =1,得z =-2,所以n =(0,1,-2)为平面BCP 的一个法向量.设直线BC 1与平面PBC 所成的角为θ,则sin θ=|cos<n ,B ⃗ C_1>|=|n·B⃗⃗ C_1||n||B⃗⃗ C_1|=√(-3)2+32×√12+(-2)2=√105.故选C.【备注】求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角.(2)向量法,sin θ=|cos<AB ⃗⃗⃗⃗⃗ ,n >|=|AB ⃗⃗⃗⃗⃗⃗·n||AB ⃗⃗⃗⃗⃗⃗||n|(其中AB 为平面α的斜线,n 为平面α的法向量,θ为斜线AB 与平面α所成的角).9.B【解析】本题主要考查集合以及自定义问题的解题方法;G =N,⊕为整数的加法时,对任意a,b ∈N ,都有a ⊕b ∈N ,取c =0,对一切a ∈G ,都有a ⊕c =c ⊕a =a ,G 关于运算⊕为“融洽集”. 【备注】无 10.D【解析】对于A,甲街道的测评分数的极差为98-75=23,乙街道的测评分数的极差为99-73=26,所以A 错误;对于B,甲街道的测评分数的平均数为75+79+82+84+86+87+90+91+93+9810=86.5,乙街道的测评分数的平均数为73+81+81+83+87+88+95+96+97+9910=88,所以B 错误;对于C,由题中表可知乙街道测评分数的众数为81,所以C 错误;对于D,甲街道的测评分数的中位数为86+872=86.5,乙街道的测评分数的中位数为87+882=87.5,所以乙的中位数大,所以D 正确. 故选D. 【备注】无 11.A【解析】本题考查函数的图象与性质,数形结合思想的应用,考查考生分析问题、解决问题的能力. 解法一 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,显然x ≠-3,当x ≠0且x ≠−3时,由|x |-a (x 3+3x 2)=0,得a =|x|x 3+3x 2,设g (x )=|x|x 3+3x 2,则g (x )的图象与直线y =a 有3个不同的交点.当x >0时,g (x )=1x 2+3x ,易知g (x )在(0,+∞)上单调递减,且g (x )∈(0,+∞).当x <0且x ≠-3时,g (x )=-1x 2+3x,g'(x )=2x+3(x 2+3x)2,令g'(x )>0,得-32<x <0,令g'(x )<0,得−3<x <−32或x <−3,所以函数g (x )在(−∞,−3)和(−3,−32)上单调递减,在(−32,0)上单调递增,且当x 从左边趋近于0和从右边趋近于−3时,g (x )→+∞,当x 从左边趋近于-3时,g (x )→−∞,当x →−∞时,g (x )→0,可作出函数g (x )的大致图象,如图所示,由图可知,a >49.综上,实数a 的取值范围是(49,+∞).解法二 易知x =0是方程|x |-a (x 3+3x 2)=0的一个根,当x ≠0时,由|x |-a (x 3+3x 2)=0,得1|x|=a (x +3),则该方程有3个不同的根.在同一坐标系内作出函数y =1|x|和y =a (x +3)的图象,如图所示.易知a >0,当y =a (x +3)与曲线y =1|x|的左支相切时,由-1x=a (x +3)得ax 2+3ax +1=0,Δ=(3a )2-4a =0,得a =49.由图可知,当a >49时,直线y =a (x +3)与曲线y =1|x|有3个不同的交点,即方程1|x|=a (x +3)有3个不同的根.综上,实数a 的取值范围是(49,+∞).【备注】【方法点拨】利用方程的根或函数零点求参数范围的方法及步骤:(1)常规思路:已知方程的根或函数的零点个数,一般利用数形结合思想转化为两个函数图象的交点个数,这时图象一定要准确,这种数形结合的方法能够帮助我们直观解题.(2)常用方法:①直接法——直接根据题设条件构建关于参数的不等式,通过解不等式确定参数范围;②分离参数法——先将参数分离,转化成求函数的值域问题加以解决;③数形结合法——先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.(3)一般步骤:①转化——把已知函数零点的存在情况转化为方程的解或两函数图象的交点的情况;②列式——根据零点存在性定理或结合函数图象列式;③结论——求出参数的取值范围或根据图象得出参数的取值范围 12.B【解析】因为圆x 2+y 2=a 2与双曲线的渐近线在第一象限的交点为M ,所以∠A 1MA 2=90°,tan∠MOA 2=ba,所以∠PMA 2=90°.因为△MPA 2是等腰三角形,所以∠MA 2P =45°.因为∠PA 2M 的平分线与y 轴平行,所以∠OA 2M =∠PA 2x ,又∠OA 2M +∠A 2MO +∠MOA 2=180°,∠OA 2M =∠A 2MO ,所以∠MOA 2=∠MA 2P =45°,(题眼)所以b a=tan∠MOA 2=1,所以C 的离心率e =c a =√a 2+b 2a 2=√1+b 2a 2=√2.故选B.【备注】无 13.1【解析】二项式(x +1x )8的展开式中,含x 6的项为C 81x 7(1x )1=8x 6,含x 8的项为C 80x 8(1x )0=x 8,所以(x 2+a )(x +1x)8的展开式中,x 8的系数为8+a =9,解得a =1.【备注】无 14.220【解析】根据题目中已给模型类比和联想,得出第一层、第二层、第三层、…、第十层的酒坛数,然后即可求解.每一层酒坛按照正三角形排列,从上往下数,最上面一层的酒坛数为1,第二层的酒坛数为1+2,第三层的酒坛数为1+2+3,第四层的酒坛数为1+2+3+4,…,由此规律,最下面一层的酒坛数为1+2+3+…+10,所以酒坛的总数为1+(1+2)+(1+2+3)+…+(1+2+3+…+10)=1+3+6+…+55=220. 【备注】无 15.(34,32)【解析】由题意,知f '(x )=x 2-x 在[0,m ]上存在x 1,x 2(0<x 1<x 2<m ),满足f '(x 1)=f '(x 2)=f(m)-f(0)m=13m 2-12m ,所以方程x 2-x =13m 2-12m 在(0,m )上有两个不相等的解.令g (x )=x 2-x-13m 2+12m (0<x <m ),则{Δ=1+43m 2-2m >0,g(0)=-13m 2+12m >0,g(m)=23m 2-12m >0,解得34<m <32.【备注】无16.e 48 【解析】设x 0为函数f (x )在区间[1,3]上的零点,则e x 0x 0+a (x 0-1)+b =0,所以点(a ,b )在直线(x 0-1)x +y +e x 0x 0=0上,(题眼)而a 2+b 2表示坐标原点到点(a ,b )的距离的平方,其值不小于坐标原点到直线(x 0-1)x +y +e x 0x 0=0的距离的平方,(名师点拨:直线外一点到直线上的点的距离大于等于该点到直线的距离)即a 2+b 2≥e 2x 0x 02(x 0-1)2+12=e 2x 0x 04-2x 03+2x 02.令g (x )=e 2xx 4-2x 3+2x 2,x ∈[1,3],则g'(x )=2e 2x (x 4-2x 3+2x 2)-e 2x (4x 3-6x 2+4x)(x 4-2x 3+x 2)2=2x(x-1)2(x-2)e 2x (x 4-2x 3+x 2)2,则当1≤x <2时,g'(x )<0,当2<x ≤3时,g'(x )>0,所以函数g (x )在区间[1,2)上单调递减,在区间(2,3]上单调递增,所以g (x )min =g (2)=e 48,所以a 2+b 2≥e 48,所以a 2+b 2的最小值为e 48. 【备注】无17.解:(1)令n =1,则4a 1=a 12+2a 1-3,即a 12-2a 1-3=0,解得a 1=-1(舍去)或a 1=3.因为4S n =a n 2+2a n -3 ①,所以4S n +1=a n+12+2a n +1-3 ②,②-①,得4a n +1=a n+12+2a n +1-a n 2-2a n ,整理得(a n +1+a n )(a n +1-a n -2)=0, 因为a n >0,所以a n +1-a n =2,所以数列{a n }是首项为3、公差为2的等差数列,所以a n =3+(n -1)×2=2n +1.(2)由(1)可得,S n =(n +2)n ,a 2n -1=4n -1,S 2n -1=(2n +1)(2n -1), 所以a 2n-1+1S 2n-1=4n (2n+1)(2n-1)=12n-1+12n+1.当n 为偶数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…-(12n-1+12n+1) =1-12n+1<1; 当n 为奇数时,a 1+1S 1−a 3+1S 3+a 5+1S 5-…+(-1)n+1a 2n-1+1S 2n-1=(1+13)-(13+15)+(15+17)-…+(12n-1+12n+1)=1+12n+1>1.综上,当n 为偶数时,T n <1;当n 为奇数时,T n >1. 【解析】无 【备注】无 18.无【解析】(1)由已知及正弦定理,得2sin A sin(C +π6)=sin B +sin C ,所以sin A cos C +√3sin A sin C =sinB +sin C.(有两角和或差的正弦(余弦)形式,并且其中有一个角是特殊角时,常常将其展开) 因为A +B +C =π,所以sin B =sin(A +C ),所以sin A cos C +√3sin A sin C =sin(A +C )+sin C ,则sin A cos C +√3sin A sin C =sin A cos C +cos A sin C +sin C ,即√3sin A sin C =sin C cos A +sin C.因为sin C ≠0,所以√3sin A =cos A +1,即sin(A -π6)=12. 因为0<A <π,所以A =π3.(2)由BA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =-3可知cb cos 2π3=-3,因此bc =6. 由a 2=b 2+c 2-2bc cos∠BAC =(b +c )2-2bc -bc =7,可得b +c =√7+3×6=5. 由S △ABC =S △ABT +S △ACT 得,12bc sin π3=12c ·AT ·sin π6+12b ·AT ·sin π6,(与角平分线相关的问题,常常利用三角形的面积来解决)因此AT =bcsinπ3(b+c)sinπ6=6×√325×12=6√35. 【备注】无19.解:(1)由题意知,相关系数r =∑i=120(x i -x ¯)(y i -y ¯)√∑i=1(x i -x ¯)2∑i=1(y i -y ¯)2=√80×8 000=78=0.875, 因为y 与x 的相关系数接近于1,所以y 与x 之间具有较强的线性相关关系.(2)由题意可得,b ^=∑i=120(x i -x ¯)(y i -y ¯)∑i=120(x i-x ¯)2=70080=8.75,a ^=y -−b ^x -=4 00020-8.75×8020=200-8.75×4=165,所以y ^=8.75x +165.(将变量x ,y 的平均值代入线性回归方程,求得a ^)(3)以频率估计概率,购买一台甲款垃圾处理机器节约政府支持的垃圾处理费用X (单位:万元)的分布列为E (X )=-50×0.1+0×0.4+50×0.3+100×0.2=30(万元).购买一台乙款垃圾处理机器节约政府支持的垃圾处理费用Y (单位:万元)的分布列为E (Y )=-30×0.3+20×0.4+70×0.2+120×0.1=25(万元).因为E (X )>E (Y ),所以该镇选择购买一台甲款垃圾处理机器更划算.(根据已知数据,分别计算随机变量X 和Y 的分布列、期望,期望越大,说明节约费用的平均值越大,也就越划算)【解析】本题主要考查变量相关性分析、线性回归方程的求解、概率的计算以及随机变量期望的意义和求法,考查的学科素养是理性思维、数学应用.第(1)问,由已知数据,代入相关系数公式,求得相关系数r 即可判断x 和y 的相关程度;第(2)问,根据最小二乘估计公式,求得b ^,a ^的值,从而确定y 关于x 的线性回归方程;第(3)问,根据统计数据计算随机变量X 和Y 的分布列,并分别求期望,由期望的意义可知,数值越大表示节约的垃圾处理费用的平均值越大,从而确定购买哪一款垃圾处理机器. 【备注】无20.(1)如图,连接AC 1交A 1C 于点O ,连接OE ,则BC 1∥OE.(题眼)BC 1∥OEOE ⊂平面A 1EC BC 1⊄平面A 1EC }⇒BC 1∥平面A 1EC.(运用直线与平面平行的判定定理时,关键是找到平面内与已知直线平行的直线)(2)如图,连接A 1B ,则V A 1-ACE =12V A 1-ABC =12×13V ABC-A 1B 1C 1=12×13×√34×22×2=√33.(题眼) 根据直三棱柱的性质,易得A 1A ⊥平面ABC ,因为CE ⊂平面ABC ,所以AA 1⊥CE .因为E 为AB 的中点,△ABC 为正三角形,所以CE ⊥AB. 又AA 1∩AB =A ,AA 1,AB ⊂平面ABB 1A 1,所以CE ⊥平面ABB 1A 1, 因为A 1E ⊂平面ABB 1A 1,所以A 1E ⊥CE .在Rt△A 1CE 中,A 1E ⊥CE ,A 1C =2√2,A 1E =√5,EC =√3,所以S △A 1CE =12×√5×√3=√152. 设点A 到平面A 1EC 的距离为h ,则点B 1到平面A 1EC 的距离为2h .因为V A 1-ACE =V A-A 1CE =13×S △A 1CE ×h ,(点到平面的距离可转化为几何体的体积问题,借助等体积法来解决.等体积法:轮换三棱锥的顶点,体积不变;利用此特性,把三棱锥的顶点转换到易于求出底面积和高的位置是常用方法) 所以h =2√55,即点A 到平面A 1EC 的距离为2√55, 因此点B 1到平面A 1EC的距离为4√55.【解析】无【备注】高考文科数学对立体几何解答题的考查主要设置两小问:第(1)问通常考查空间直线、平面间的位置关系的证明;第(2)问通常考查几何体体积的计算,或利用等体积法求点到平面的距离.21.解:(1)由椭圆的定义可得2a =2√2,则a =√2, ∵椭圆C 的离心率e =ca =√22,∴c =1,则b =√a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),(由于存在直线l 与x 轴重合的情形,故需进行分类讨论) 由{x =my-13y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立,则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T ,则TA ⊥TB ,TA⃗⃗⃗⃗⃗ =(my 1-t -13,y 1),TB ⃗⃗⃗⃗⃗ =(my 2-t -13,y 2), 则TA ⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(my 1-t -13)(my 2-t -13)+y 1y 2 =(m 2+1)y 1y 2-m (t +13)(y 1+y 2)+(t +13)2=-16(m 2+1)-m(t+13)×12m18m 2+9+(t +13)2=(t +13)2-(12t+20)m 2+1618m 2+9=0,∵点T 为定点,∴t 为定值,∴12t+2018=169,(分析式子结构,要使此式子的取值与m 无关,必须要将含有m 的相关代数式约去,通常采用分子与分母的对应项成比例即可解决) 解得t =1,此时TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =(43)2-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0).综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .【解析】本题主要考查椭圆的定义及几何性质、直线与椭圆的位置关系,考查的学科素养是理性思维、数学探索.(1)首先由椭圆的定义求得a 的值,然后根据离心率的公式求得c 的值,从而求得b 的值,进而得到椭圆C 的标准方程;(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),与椭圆方程联立,得到y 1+y 2,y 1y 2,由题意得出TA⃗⃗⃗⃗⃗ ·TB ⃗⃗⃗⃗⃗ =0,然后根据平面向量数量积的坐标运算及T 为定点求得t 的值,当直线l 与x 轴重合时,验证即可,最后可得出结论. 【备注】无22.(1)∵F (x )=ax ·f (x )-2x 2·g (x ),∴F (x )=x +ax ·ln x , ∴F'(x )=1+a +a ln x .①当a =0时,F (x )=x ,函数F (x )在(0,+∞)上单调递增;②当a >0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递增,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )<0,当x ∈(e -1-1a ,+∞)时,F'(x )>0,所以当a >0时,F (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数F'(x )=1+a +a ln x 在(0,+∞)上单调递减,令F'(x )=1+a +a ln x =0,得x =e-1-1a>0,∴当x ∈(0,e -1-1a )时,F'(x )>0,当x ∈(e -1-1a ,+∞)时,F'(x )<0,∴F (x )在(0,e -1-1a )上单调递增,在(e -1-1a ,+∞)上单调递减. (2)由题意知,φ(x )=lnx x+12x,∴φ'(x )=1-lnx x 2−12x 2=1-2lnx 2x 2,令φ'(x )=0,得x =√e ,∴x >√e时,φ'(x )<0,∴φ(x )在(√e ,+∞)上单调递减.不妨设x 2>x 1>√e ,则φ(x 1)>φ(x 2),则不等式|φ(x 1)-φ(x 2)|≥k |ln x 1-ln x 2|等价于φ(x 1)-φ(x 2)≥k (ln x 2-ln x 1),即φ(x 1)+k ln x 1≥φ(x 2)+k ln x 2.令m (x )=φ(x )+k ln x ,则m (x )在(√e ,+∞)上存在单调递减区间, 即m'(x )=φ'(x )+kx=-2lnx+2kx+12x 2<0在(√e ,+∞)上有解,即-2ln x +2kx +1<0在(√e ,+∞)上有解,即在(√e ,+∞)上,k <(2lnx-12x)max .令n (x )=2lnx-12x(x >√e ),则n'(x )=3-2lnx 2x 2(x >√e ),由 n'(x )=0得x =e 32, ∴函数n (x )=2lnx-12x在(√e ,e 32)上单调递增,在(e 32,+∞)上单调递减.∴n (x )max =n (e 32)=2ln e 32-12e 32=e -32,∴k <e -32.故k 的取值范围为(-∞,e -32).【解析】本题考查利用导数研究函数的单调性和最值,考查分类讨论思想、化归与转化思想的灵活应用,考查考生的运算求解能力以及运用所学知识分析问题和解决问题的能力.(1)通过对函数求导,对参数进行分类讨论,来讨论函数的单调性;(2)依据函数的单调性将不等式转化为函数存在单调递减区间,最后转化为函数的最值问题来解决.【备注】【素养落地】本题将函数、不等式等知识融合起来,借助导数研究函数的性质,考查逻辑推理、数学运算等核心素养.【技巧点拨】解决本题第(2)问的关键是化归与转化思想的应用,先利用函数的单调性将不等式转化为φ(x1)+k ln x1≥φ(x2)+k ln x2,然后根据式子的结构特征构造函数m(x)=φ(x)+k ln x,将m(x)在(√e,+∞))max.上存在单调递减区间转化为m'(x)<0在(√e,+∞)上有解,进而转化为k<(2lnx-12x。

2023年高三420文科数学模拟考试(学生版)——统考

2023年高三420文科数学模拟考试(学生版)——统考

绝密★启用前赤峰市高三年级4·20模拟考试试题文科数学注意事项:1、答卷前,考生务必将自己的姓名,准考证号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3、考试结束后,将本试卷和答题卡一并交回.一、 选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设全集{}1,2,3,4,5,6,7,8U =,{}1,3U A B = ,(){}2,4U A B = ,则集合B 为( ) A .{}1,3,5,6,7,8 B .{}2,4,5,6,7,8 C .{}5,6,7,8 D .{}1,2,3,42、已知复数z z 对应向量的模长为2,则( )A .1z =B .1z =±+C .1z =±D .1z =−±3、在“万众创业”的大背景下,“直播电商”已经成为我国当前经济发展的新增长点,已知某电商平台的直播间经营化妆品和食品两大类商品,2022年前三个季度,该直播间每个季度的收入都比上一个季度的收入翻了一番,其前三季度的收入情况如图所示,则( )A .该直播间第三季度总收入是第一季度总收入的3倍;B .该直播间第三季度化妆品收入是第一季度化妆品收入的6倍;C .该直播间第三季度化妆品收入是第二季度化妆品收入的3倍;D .该直播间第三季度食品收入低于前两个季度的食品收入之和.4、函数()21sin f x x x x=−在()(),00,ππ− 上的图像大致为( ) A . B . C . D .5、九连环是中国杰出的益智游戏,九连环由9个相互连接的环组成,这9个环套在一个中空的长形柄中,九连环的玩法就是要将这9个环从柄上解下来(或套上),规则如下:如果要解下(或套上)第n 环,则第1n −号环必须解下(或套上),1n −往前的都要解下(或套上)才能实现.记解下n 连环所需的最少移动步数为n a ,已知()12121,2,213n n n a a a a a n −−===++≥,若要解下7环最少需要移动圆环步数为( ) A .42 B .85C .170D .3416、下列选项中,命题p 是命题q 的充要条件的是( ) A .在ABC 中,:p A B >,:sin sin q A B >.B .已知x ,y 是两个实数,2:230p x x −−≤,:02q x ≤≤.C .对于两个实数x ,y ,:8p x y +≠,:3q x ≠或5y ≠.D .两条直线方程分别是1:260l ax y ++=,()22:110l x a y a +−+−=,12:p l l ∥, :2q a =或1−.7、记函数()()sin 0,02f x x πωϕωϕ =+><< 的最小正周期为T .若()f T =,6x π=为()f x 的零点,则ω的最小值为( ) A .2 B .3 C .4 D .68、四叶草曲线是数学中的一种曲线,因形似花瓣,又被称为四叶玫瑰线(如右图),其方程为()322228xy x y +=,玫瑰线在几何学、数学、物理学等领域中有广泛应用。

2020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷答案

2020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷答案

2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷2020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷(详解)一、填空题(本大题共14小题,每小题5分,共70分)1.【答案】【解析】设集合,,则.,.2.【答案】【解析】设,为虚数单位,则 ..3.【答案】【解析】为了做好防疫工作,要对复工员工进行体温检测,从名(含甲、乙两人)随机选名,则甲、乙两人中,至少有一人被选中的概率是 ..故答案为:.4.运行如图所示的伪代码,其结果为 .【解析】这是一个执行语句,令为,通过计数,等于原来的的值加上的两倍,从开始起,每次间隔,到结束,所以的取值为,,.,,;,;,.故答案输出的为,是.5.【答案】【解析】如图是一次摄影大赛上位评委给某参赛作品打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,则该作品的平均分为 .田茎叶图可知,分数分别为:、、、、、、,去掉一个最高分和最低分后,剩余分数为:、、、、,则平均分为:.故答案为:.6.【答案】【解析】已知函数,的最小正周期为,且它的图象过点,则的值为 .由最小正周期为,,可得,,由过可得,由可得,则,因此.7.【答案】【解析】若抛物线的焦点是双曲线的一个焦点,则 .的焦点为,由于的焦点是的一个焦点,则,(舍),,∴.故答案为:.8.【答案】【解析】已知为锐角,若,则 .,,,由于为锐角,∴,,∴.9.【答案】【解析】等差数列的前项和为,若,,其中,则 .由于为等差数列,则,∵,∴,∴.10.【答案】【解析】已知正实数,满足,则的最小值为 .由,得,∴,∵,都是正实数,,当且仅当,即时,等号成立,故的最小值为.故答案为:.11.【答案】方法一:【解析】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图).半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体体现了数学的对称美,图是一个棱数为的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为.则该半正多面体共有 个面,其棱长为 .图;半正多面体面数从上至下依次为,,,,,故共有个面.半正多面体的所有顶点都在同一个正方体表面上,如图,图该正方体被半正多面体顶点,,所在平面截得的图形如图,2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷方法二:图八边形为正八边形.设,则解得,即该半正多面体的棱长为.利用欧拉公式:,,,所以面数.12.【答案】【解析】由圆:外一点引直线交圆于、两点,则线段中点到轴的距离的最小值为 .设,,,则,,∵点,在圆:上,∴,,两式相减得,∴,即,∴,即,又,∴,化简得:,即,则点在以为圆心,为半径的圆上,则点到轴的距离的最小值为.2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷故答案为:.13.【答案】【解析】中,,点,分别为的外心、重心,若,则面积的最大值为 .设三角形三条边,,依次为,,,外接圆半径设为,则,,同理,由正弦定理得:,即,,∴,,∵是的重心,∴,∴,又,且,∴.将代入上式化简得:,∴,当且仅当时,等号成立.,2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷∴,的面积,∴面积的最大值为.14.【答案】【解析】设是定义在上的偶函数,当时,,若关于的方程有个不同的实数根,则实数的取值范围是 .当时,,,当,,当时,,∴在上单增,上单减,,解得或,如图可知,有个不同的实数根,∴①无解,舍,②解得.故答案为:.二、解答题(本大题共6小题,共90分)15.2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷(1)(2)(1)(2)【答案】(1)(2)【解析】在中,角的对边分别是,已知向量,,且.求的值;若,的面积,求的值.∵,∴,由正弦定理,得,化简,得,∵,∴.又∵,∴,∴.∵,,∴.∵,∴.①∵,由余弦定理得,∴,②由①②,得,从而,(负舍),所以,∴.16.(1)(2)(1)【答案】在直三棱柱中,,,是的中点.求证:平面.若点在线段上,且,求证:平面.详见解析.(1)(2)【解析】连结,设交于点,连结.∵四边形是矩形,∴是的中点.在中,分别是,的中点,∴.又∵平面,平面,∴平面.∵,是的中点,∴.又∵在直三棱柱中,底面侧面,交线为,平面,∴平面.∵平面,∴.∵,,,∴,∴∽,从而,所以,∴.又∵,平面,平面,∴平面.17.【答案】【解析】苏州园博园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于的围墙,现有两种方案:方案①:如图所示,多边形为直角三角形,其中;方案②:如图所示,多边形为等腰梯形,其中.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.图图,,方案②.设方案①,②中多边形苗圃的面积分别为,,(当且仅当时,“”成立);方案②设,则,,由得,(舍去),因为,所以,列表:极大值所以当时,,因为,所以建苗圃时用方案②,且,答:方案①,②苗圃的最大面积分别为,,建苗圃时用方案②,且.18.(1)12(2)(1)12(2)【答案】(1)1(2)【解析】已知椭圆的离心率为,点在椭圆上.求椭圆的标准方程.过坐标原点的直线交于,两点,点在第一象限,轴,垂足为,连结并延长交于点.求证:是直角三角形.求面积的最大值..证明见解析...设直线的斜率为,则其方程为,由,得,2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷2记,则,,.于是直线的斜率为,方程为.由,得.①设,则和是方程①的解,故,由此得,从而直线的斜率为.所以,即是直角三角形.由①得,,所以的面积:.设,则由,得,当且仅当时取等号,因为在单调递减,所以当,即时,取得最大值,最大值为.因此,面积的最大值为.19.(1)12(2)(1)1(2)【答案】设函数.求函数的单调区间.已知函数有两个极值点,.比较与的大小.若函数在区间上有且只有一个零点,求实数的取值范围.当时,的单调增区间为,无减区间,当时,的单调增区间为和,减区间为..2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷2(1)12(2)【解析】.,当时,,所以的单调增区间为,无减区间,当时,令,得或,所以的单调增区间为和,减区间为,综上:当时,的单调增区间为,无减区间,当时,的单调增区间为和,减区间为.因为的两个极值点,,由()知,当时,,,且,,则,,因此,所以,因为在,上单调递增,在上递减,所以,,由于即.因为函数在区间上有且只有一个零点,所以在区间上只有唯一的最大值,故由,(由①知不成立,故舍去)或(即),由,解得,代入,得,2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷由,得,所以.20.(1)(2)(3)(1)(2)(3)【答案】(1)(2)(3)【解析】数列的首项,前项和为,若数列满足:对任意正整数,,当时,总成立,则称数列是“数列”.若是公比为的等比数列,试判断是否为“”数列?若是公差为的等差数列,且是“数列”,求实数的值.若数列既是“”,又是“”,求证:数列为等差数列.不是..证明见解析.因为,所以,假设是数列,则当时,则成立,但时,,,,所以假设不成立,不是数列.设的公差为,则,因为是“数列”,则,即,所以,即.数列既是“数列”,又是“数列”,所以,②①得:,④③得:,又③①得:,④②得:,所以成等差数列,设公差为,成等差数列,设公差为,因此,,所以对恒成立,①②③④2020/5/282020年江苏苏州吴江市吴江高级中学高三下学期高考模拟文科数学试卷即成等差数列.。

河南省2022-2023学年高三下学期核心模拟卷(中)文科数学(一)试题(含答案解析)

河南省2022-2023学年高三下学期核心模拟卷(中)文科数学(一)试题(含答案解析)

河南省2022-2023学年高三下学期核心模拟卷(中)文科数学(一)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}3,2,1,0,1,2,3,4U =---,集合{}3,1,0,3,4A =--,{}0,1,2,3B =,则()UA B ⋂=ð()A .{}0,3B .{}1,2C .{}1,0,1,2,3-D .{}3,1,0,1,2,3--2.已知复数z 满足i 2i z z +=-,则z =()A .13i22+B .13i 22-+C .13i 22-D .13i22--3.已知平面向量,a b满足1a = ,a 与b 的夹角为120°,若a b -= ,则b = ()A .1B .2C .3D .44.2023年春节到来之前:某市物价部门对本市5家商场的某种商品一天的销售量及其价格进行调查,5家商场这种商品的售价x (单位;元)与销售量y (单位:件)之间的一组数据如下表所示:价格x 89.5m 10.512销售量y16n865经分析知,销售量y 件与价格x 元之间有较强的线性关系,其线性回归直线方程为ˆ 3.544yx =-+,且20m n +=,则m =()A .12B .11C .10D .95.已知2:2p x x -≤,:12q x -<,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.在倡导“节能环保”“低碳生活”的今天,新能源逐渐被人们所接受,进而青睐,新能源汽车作为新能源中的重要支柱产业之一取得了长足的发展.为预测某省未来新能源汽车的保有量,采用阻滞型模型011e rtMy M y -=⎛⎫+- ⎪⎝⎭进行估计.其中y 为第t 年底新能源汽车的保有量,r 为年增长率,M 为饱和量,0y 为初始值(单位:万辆).若该省2021年底的新能源汽车拥有量为20万辆,以此作为初始值,若以后每年的增长率为0.12,饱和量为1300万辆,那么2031年底该省新能源汽车的保有量为(精确到1万辆)(参考数据:ln 0.8870.12≈-,ln 0.30 1.2≈-)()A .62万B .63万C .64万D .65万7.已知函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,则ω的取值范围为()A .13,6⎛⎫+∞ ⎪⎝⎭B .1319,66⎡⎤⎢⎥⎣⎦C .1319,66⎛⎤ ⎥⎝⎦D .713,66⎛⎤ ⎝⎦8.在如图所示的程序框图中,若输入的a ,b ,c 分别为0.34,0.414-⎛⎫⎪⎝⎭,0.4log 0.5,执行该程序框图,输出的结果用原来数据表示为()A .b ,a ,cB .a ,b ,cC .c ,b ,aD .c ,a ,b9.在ABC 和111A B C △中,若1cos sin A A =,1cos sin B B =,1cos sin C C =则()A .ABC 与111ABC △均是锐角三角形B .ABC 与111A B C △均是钝角三角形C .ABC 是钝角三角形,111A B C △是锐角三角形D .ABC 是锐角三角形,111A B C △是钝角三角形10.已知抛物线2:8C y x =,P 为C 上一点,()2,0A -,()2,0B ,当PB PA最小时,点P到坐标原点的距离为()A.B.C.D .811.在如图所示的圆台中,四边形ABCD 为其轴截面,24AB CD ==,P 为底面圆周上一点,异面直线AD 与OP (O 为底面圆心)所成的角为π3,则2CP 的大小为()A.7-B.7-7+C.19-D.19-19+12.已知ππ,,66x y ⎡⎤∈-⎢⎥⎣⎦,若327sin 320x x a +-=且34sin cos 0y y y a ++=,则()cos 32x y +=()A .12-B .0C .12D .1二、填空题13.已知x ,y 满足约束条件2221x y x y x y +≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为________.14.已知函数()()2223e xf x ax x x =+-+,无论a 取何值,曲线()y f x =均存在一条固定的切线,则该切线方程为________.15.已知双曲线()2222:10,0x y C a b a b-=>>的实轴为12A A ,对12A A 上任意一点P ,在12A A 上都存在点Q,使得2PQ =,则C 的离心率的取值范围为________.16.如图,在三棱锥-P ABC 中,平面PAB ⊥平面ABC ,6AB =,4BC =,AB BC ⊥,PAB 为等边三角形,则三棱锥-P ABC 外接球的表面积为________.三、解答题17.某市为了解新高三学生的数学学习情况,以便为即将展开的一轮复习提供准确的数据,在开学初该市教体局组织高三学生进行了一次摸底考试,现从参加考试的学生中随机抽取200名,根据统计结果,将他们的数学成绩(满分150分)分为[)70,80,[)80,90,[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[)140150,共8组,得到如图所示的频率分布直方图.(1)若A 表示事件“从参加考试的学生中随机抽取一名学生,该学生的成绩不低于110分”,估计事件A 发生的概率;(2)利用所给数据估计本次数学考试的平均分及方差(各组数据以其中点数据代表).参考数据:()21998.56x x -=,()22466.56x x -=,()23134.56x x -=,()24 2.56x x -=,()2570.56x x -=,()26338.56x x -=,()27806.56x x -=,()281474.56x x -=,其中()i i 1,2,,8x = 为第i 组的中点值.18.如图,在直角梯形ABCD 中,AD BC ∥,AD CD ⊥,四边形CDEF 为平行四边形,平面CDEF ⊥平面ABCD ,2BC AD =.(1)证明:DF 平面ABE ;(2)若1AD =,2CD ED ==,π3FCD ∠=,求三棱锥B ADE -的体积.19.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,tan tan 2tan tan tan B C BC A+=.(1)证明:22cos a bc A =;(2)求bc的取值范围.20.已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.21.已知1F ,2F 分别为椭圆()2222:10x ya b a bΓ+=>>的左、右焦点,122F F =,1B ,2B 分别为Γ的上、下顶点,P 为Γ上在第一象限内的一点,直线1PB ,2PB 的斜率之积为89-.(1)求Γ的方程;(2)设Γ的右顶点为A ,过A 的直线1l 与Γ交于另外一点B ,与1l 垂直的直线2l 与1l 交于点M ,与y 轴交于点N ,若22BF NF ⊥,且MOA MAO ∠≤∠(O 为坐标原点),求直线1l 的斜率的取值范围.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P横坐标的取值范围.23.已知()3f x x a x =-+-()R a ∈.(1)若1a =,解不等式()9f x ≥;(2)当()0a t t =>时,()f x 的最小值为3,若正数m ,n 满足m n t +=,6≤.参考答案:1.B【分析】先求出U A ð,再求()U A B ð即可.【详解】由已知{}2,1,2U A =-ð,又{}0,1,2,3B =,(){}1,2U A B ∴= ð.故选:B.2.A【分析】将z 当作未知数解出来,再化简即可.【详解】由i 2i z z +=-得()()()()()2i 1i 2i 13i1i 2i 1i 1i 1i 2z z ++++-=+⇒===--+故选:A.3.B【分析】按照平面向量的模的性质及数量积运算法则计算即可.【详解】因为a b -=所以217b b ++= ,即260b b +-=,解得2b = .故选:B.4.C【分析】由表中数据计算x 、y ,根据线性回归直线方程过点(x y 代入化简求解即可.【详解】由表中数据,计算1(89.510.512)855m x m =⨯++++=+,1(16864)755ny n =⨯++++=+,因为线性回归直线方程ˆ 3.544yx =-+过点()x y ,即7 3.584455n m ⎛⎫+=-⨯++ ⎪⎝⎭,即3.5955m n +=,所以3.545m n +=,又因为20m n +=,所以10,10m n ==.故选∶C ﹒5.D【分析】分别求出命题,p q ,再由充分条件和必要条件的定义即可得出答案.【详解】2:2p x x -≤,即()()220,120x x x x --≤+-≤解得12x -≤≤,:1213q x x -<⇒-<<,所以p 推不出q ,q 推不出p ,所以p 是q 的既不充分也不必要条件.故选:D.6.C【分析】把已知数据代入阻滞型模型011e rtMy M y -=⎛⎫+- ⎪⎝⎭,求出对应的值即可.【详解】根据题中所给阻滞型模型,代入有关数据,注意以2021年的为初始值,则2031年底该省新能源汽车的保有量为 1.20.1210130013001300164e 11e20y --⨯==+⎛⎫+- ⎪⎝⎭,因为ln 0.30 1.2≈-,所以 1.20e 0.3-≈,所以 1.21300130064164e 1640.30y -=≈≈++⨯故选:C 7.C【分析】由题意求出π3x ω+的范围,然后根据正弦函数的性质及题意建立不等关系,求得参数的取值范围即可.【详解】因为0ω>,()0,πx ∈,所以ππππ333x ωω<+<+,因为函数()π2sin 3f x x ω⎛⎫=+ ⎪⎝⎭()0ω>在()0,π上有3个极值点,所以5ππ7ππ232ω<+≤,解得131966ω<≤,所以ω的取值范围为1319,66⎛⎤ ⎥⎝⎦,故选:C.8.A【分析】该程序的功能为从大到小输出原来输入的数据,通过比较输入数据的大小,即可求解.【详解】解︰由程序框图可知,该程序的功能为从大到小输出原来输入的数据,0.40.40.30144414-⎛⎫=>>= ⎪⎝⎭,0.40.40.4log 1log 0.5log 0.4<<,即0.40log 0.51<<,所以b a c >>,则输出的结果用原来数据表示为b ,a ,c .故选∶A .9.D【分析】根据题意,由三角形的正弦值一定大于零,即可判断ABC 是锐角三角形,然后再由1sin 0A >,判断111A B C △的形状即可得到结果.【详解】在ABC 和111A B C △中,因为111sin cos 0,sin cos 0,sin cos 0A A B B C C >===>>,所以,,A B C 均为锐角,即ABC 为锐角三角形.另一方面1πsin cos sin 02A A A ⎛⎫= ⎝=->⎪⎭,可得1π2A A +=或1ππ2A A -+=即12πA A -=,所以1A 为锐角或者钝角,同理可得11,B C 为锐角或者钝角,但是111,,A B C 中必然有一个为钝角,否则不成立,所以111A B C △为钝角三角形.故选:D 10.A【分析】设()00,P x y ,由抛物线的定义可得0||||2PB PD x ==+,||PA =02,t x =+化简PBPA 可得当114t =时,||||PB PA 取得最小值,求出P 的坐标,即可求解【详解】因为抛物线2:8C y x =,则焦点为()2,0,准线为2x =-,又()2,0A -,()2,0B ,则点()2,0B 为抛物线的焦点,过P 作准线的垂线,垂足为D ,设()00,P x y ,则2008y x =,故00x ≥,由抛物线的定义可得0||||2PB PD x ==+,||PA =,又00x ≥,则设02,t x =+故02,2t x t ≥=-,则||||PB PA ==2)t =≥,当114t =时,||||PB PA2=,则4t =,02x =,将02x =代入抛物线可得2016y =,所以OP =故选:A 11.B【分析】建立如图所示坐标系,根据异面直线AD 与OP (O 为底面圆心)所成的角为π3,求得27CP =±【详解】以O 为原点,OB为y 轴,过点O 作x 轴OB ⊥,圆台的轴为z 轴,建立如图所示坐标系:作,DE AB DE ⊥交AB 于点E ,11122AE AB CD =-=,Rt ADE △中,DE =则(()((0,,0,2,0,,D A C AD --= ()2cos ,2sin ,0,02πP θθθ≤<,()2cos ,2sin ,0,OP θθ= 由于异面直线AD 与OP (O 为底面圆心)所成的角为π3,π1cos 32OP AD OP AD ⋅==⋅,sin 2θ∴=±(2cos ,2sin 1,,CP θθ=-2224cos 4sin 4sin 1274sin 72CP θθθθ=+-++=-=±故选:B.12.D【分析】设()3sin f x x x =+,,22ππx ⎡⎤∈-⎢⎥⎣⎦,可得()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上是奇函数,且为增函数,再由条件得到32x y =-,最后求出()cos 32x y +即可.【详解】设()3sin f x x x =+,,22ππx ⎡⎤∈-⎢⎥⎣⎦,因为()()3sin f x x x f x -=--=-,所以()f x 是奇函数.因为3y x =、sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上都为增函数,所以()3sin f x x x =+在ππ,22⎡⎤-⎢⎥⎣⎦上为增函数.因为327sin 320x x a +-=,所以()32f x a =,因为34sin cos 0y y y a ++=,所以()22f y a =-.因为ππ,,66x y ⎡⎤∈-⎢⎥⎣⎦,所以ππ3,2,22x y ⎡⎤∈-⎢⎣⎦,所以()()32f x f y =-,所以32x y =-,所以()cos 32cos01x y +==.故选:D.13.5【分析】作出不等式组对应的平面区域,结合直线的截距,利用数形结合进行求解即可.【详解】由题意得:画出可行域(如图阴影部分),由21x y x y +=⎧⎨-=⎩,解得31,22A ⎛⎫ ⎪⎝⎭.当直线3z x y =+过点31,22A ⎛⎫ ⎪⎝⎭时,z 取得最大值,故max 335122z =⨯+=.故答案为:514.30x y -+=【分析】由题意得2()2(1)e x f x ax x '=++,()01f '=,()03f =,此时这两个值均与a 无关,可得切点为()0,3即可得出答案.【详解】()()2223e x f x ax x x =+-+,则2()2(1)e x f x ax x '=++,()01f '=,()03f =,此时这两个值均与a 无关,∴无论a 取何值,曲线()y f x =均存在一条固定的切线,此时切点为()0,3,切线斜率为1,故切线方程为3y x -=,即30x y -+=.故答案为∶30x y -+=15.1,5e ⎛∈ ⎝⎦【分析】根据题意得到,a b 的关系式,然后由双曲线离心率的公式以及范围即可得到结果.【详解】因为对12A A 上任意一点P ,在12A A 上都存在点Q ,使得PQ =,所以112AA ≥,所以a ≥,即b a ≤所以1c e a <==即e ⎛∈ ⎝⎦.故答案为:1,5e ⎛⎤∈ ⎝⎦16.64π【分析】先找到两个面的外心,通过外心作垂线交点即为球心.【详解】因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,,AB BC BC ⊥⊂平面ABC ,所以BC ⊥平面PAB ;如图,因为AB BC ⊥,所以三角形ABC 的外心即为AC 中点N ,过三角形PAB 的外心M 作平面PAB 的垂线,过三角形ABC 的外心N 作平面ABC 的垂线,则两垂线必相交于球心O ,连接OB ,则外接球半径R OB =.在Rt OMB 中,122OM BC ==,3BM AB ==,所以222241216R OB OM MB ==+=+=,所以表面积24π64πS R ==.故答案为:64π.17.(1)0.38;(2)106.6,205.44.【分析】(1)由频率和为1,计算出m ,进而根据频率分布直方图可得事件A 发生的概率;(2)分别根据平均数和方差的计算公式代入求解即可.【详解】(1)()0.0040.0080.0160.0340.0080.0040.002101m +++++++⨯= 0.024m ∴=从参加考试的学生中随机抽取一名学生,该学生的成绩不低于110分的概率为()()0.0240.0080.0040.002100.38P A =+++⨯=.(2)本次数学考试的平均分为()750.004850.008950.0161050.0341150.0241250.0081350.0041450.00210⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯()0.3000.680 1.520 3.570 2.760 1.0000.5400.29010106.6=+++++++⨯=本次数学考试的方差为(998.560.004466.560.008134.560.016 2.560.03470.560.024338.560.008806.560.0041474.5⨯+⨯+⨯+⨯+⨯+⨯+⨯+()3.99424 3.73248 2.152960.08704 1.69344 2.70848 3.22624 2.9491210=+++++++⨯205.44=.18.(1)证明见解析【分析】(1)连接CE 交DF 于点H ,取BE 的中点G ,连接,AG GH ,根据条件证明四边形ADHG 为平行四边形,然后得到//DH AG 即可;(2)取CD 的中点为O ,连接OF ,依次证明OF ⊥平面ABCD 、//EF 平面ABCD ,然后可求出点E 到平面ABCD 的距离,然后根据B ADE E ABD V V --=算出答案即可.【详解】(1)证明:连接CE 交DF 于点H ,取BE 的中点G ,连接,AG GH ,因为四边形CDEF 为平行四边形,所以H 为CE 的中点,所以1//,=2GH BC GH BC ,因为AD BC ∥,2BC AD =,所以//,=GH AD GH AD ,所以四边形ADHG 为平行四边形,所以//DH AG ,即//DF AG ,因为AG ⊂平面ABE ,DF ⊄平面ABE ,所以DF 平面ABE ,(2)取CD 的中点为O ,连接OF ,因为2CD ED ==,π3FCD ∠=,所以CDF 为等边三角形,所以OF =OF CD ⊥,因为平面CDEF ⊥平面ABCD ,平面CDEF 平面ABCD CD =,OF ⊂平面CDEF ,所以OF ⊥平面ABCD ,所以点F 到平面ABCD 的距离为OF =因为//EF CD ,EF ⊄平面ABCD ,CD ⊂平面ABCD ,所以//EF 平面ABCD ,所以点E 到平面ABCD 的距离为OF =因为ABCD 是直角梯形,AD BC ∥,AD CD ⊥,1AD =,2CD =,所以112ABD S AD CD =⋅⋅= ,所以1133B ADE E ABD V V --==⨯=.19.(1)证明见解析;(2)(22+【分析】(1)根据题意,由三角恒等变换结合正弦定理的边角互化,代入计算,化简即可得到结果;(2)由题意可得4cos b c A c b +=,令,0b t t c =>换元,即可得到1t t+的范围,然后求解不等式即可得到t 的范围,从而得到结果.【详解】(1)因为tan tan 2tan tan tan B C B C A +=,即tan 2tan 1tan tan B B C A +=,所以sin 2sin cos cos 1sin sin cos cos BB B B CA C A+=,即sin cos cos sin 2sin cos sin cos sin cos B C B C B A C B A B +=,所以sin 2sin cos sin sin A B A C A=,即2sin 2sin sin cos A B C A =,再由正弦定理可得,22cos a bc A=(2)由(1)可知,22cos a bc A =,即2cos 02a A bc =>,且()0,πA ∈,故π0,2A ⎛⎫∈ ⎪⎝⎭,由22222cos 2cos a bc A a b c bc A ⎧=⎨=+-⎩可得224cos b c bc A +=,即4cos b c A c b +=.令,0b t t c =>,则14cos t A t +=,因为π0,2A ⎛⎫∈ ⎪⎝⎭,则()4cos 0,4A ∈,则()10,4t t +∈,即104t t<+<,所以2014t t <+<,0t >,且210t +>恒成立,即2410t t -+<,解得22t <<所以(22b c ∈-+.20.(1)1,e ∞⎡⎫+⎪⎢⎣⎭(2)证明见解析.【分析】(1)分离参数,转化为1e x a x ≥在[)1,+∞上恒成立,求出函数()()1,1e xg x x x =≥的最大值即可得到结果;(2)根据题意转化为()()221e ln e 1e 1e x x x f x a x x x -=->⋅--=-+,然后求得()()2e 1,0x h x x x -=-+>的最小值即可证明.【详解】(1)由()e ln x f x a x =-,可得()1e xf x a x'=-,因为()f x 在[)1,+∞上单调递增,则()0f x '≥在[)1,+∞上恒成立,即1e xa x ≥在[)1,+∞上恒成立,令()()1,1e x g x x x =≥,则()()()2211e e 0e e x x x x x g x x x x +'=-+=-<在[)1,+∞上恒成立,即()g x 在[)1,+∞上单调递减,所以()()max 11eg x g ==,由1e x a x ≥在[)1,+∞上恒成立,可得()max 1ea g x ≥=,所以实数a 的取值范围为1,e ∞⎡⎫+⎪⎢⎣⎭.(2)因为函数()e 1x x x φ=--,()e 1x x φ'=-,令()0x φ'=,则0x =,即0x >时,()0x φ'>,则()x φ单调递增;即0x <时,()0x φ'<,则()x φ单调递减;所以()()0110x φφ≥=-=,即e 1x x ≥+(当且仅当0x =取等号),因为函数()ln 1x x x ϕ=-+,()0x >,则()11x xϕ'=-,令()0x ϕ'=,则1x =,当01x <<时,()0x ϕ'>,则函数()x ϕ单调递增;当1x >时,()0x ϕ'<,则函数()x ϕ单调递减;所以()()10110x ϕϕ≤=-+=,即ln 1≤-x x (当且仅当1x =取等号),因为21ea ≥,且e 1x x ≥+(当且仅当0x =取等号),ln 1≤-x x (当且仅当1x =取等号),所以()()221e ln e 1e 1e x x x f x a x x x -=->⋅--=-+(两个等号不同时成立这里反为大于号),令()()2e 1,0x h x x x -=-+>,即证()0h x ≥,因额为()2e 1x h x -'=-,令()0h x '=,可得20e e 1x -==,所以2x =,当02x <<时,()0h x '<,则函数()h x 单调递减;当2x >时,()0h x '>,则函数()h x 单调递增;所以()()22min 2e 210h x h -==-+=,所以()()20h x h ≥=,即当21ea ≥时,()0f x >.21.(1)22198x y +=(2),⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎦⎣⎭【分析】(1)()()0000,0,0P x y x y >>,由直线1PB ,2PB 的斜率之积为89-可得2220089y x b =-+,再结合2200221x y a b+=,可得,a b 的关系,从而可求得,a b ,即可得解;(2)设直线1l 的方程为()()113,,y k x B x y =-,联立方程利用韦达定理可得1x ,正在根据22BF NF ⊥,可求得N y ,从而可求得M 的坐标,再在MAO △中,由MOA MAO ∠≤∠,得MA MO ≤,从而可得出答案.【详解】(1)因为122F F =,所以22c =,即1c =,又()()120,,0,B b B b -,P 为Γ上在第一象限内的一点,设()()0000,0,0P x y x y >>,则2200221x y a b+=,即22222200b x a y a b +=,1222000200089PB PB y b y b y b k k x x x -+-⋅===-,所以2220089y x b =-+,代入22222200b x a y a b +=,得22222220089b x a x b a b ⎛⎫+-+= ⎪⎝⎭,化简得22220089b x a y =,所以2289=b a ,又22222819c a b a a =-=-=,所以229,8a b ==,所以Γ的方程为22198x y +=;(2)由(1)可得()()23,0,1,0A F ,设直线1l 的方程为()()113,,y k x B x y =-,联立()221983x y y k x ⎧+=⎪⎨⎪=-⎩,消y 得()2222985481720k x k x k +-+-=,()()()222254498817223040k k k ∆=--+-=>,则21254398k x k +=+,所以2212254272439898k k x k k -=-=++,由()21,0F ,设()0,N N y ,则()21,N F N y =- ,又()11248398k y k x k =-=+,则22222724481,9898k k BF k k ⎛⎫-=- ⎪++⎝⎭ ,因为22BF NF ⊥,所以22222272448109898N k k BF F N y k k -⋅=-+⋅=++ ,所以()()()2222183298916244898N k k k y kk k -+-+==-+,所以直线21916:24k MN y x k k-+=-+,联立()21916243k y x k k y k x ⎧-+=-+⎪⎨⎪=-⎩,得()226316241M k x k -=+,在MAO △中,因为MOA MAO ∠≤∠,所以MA MO ≤,所以()22223M M M M x y x y -+≤+,解得32M x ≥,即()22631632241k k -≥+,解得k ≤或k ≥,所以直线1l的斜率的取值范围为,99⎛⎡⎫-∞-⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法,(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.22.(1)222x y +=y --(2)⎣⎦【分析】(1)把曲线C 的方程两边平方相加可求曲线C 的普通方程,利用两角和的余弦公式可求直线l 的直角坐标方程;(2)设(P x -,由题意可得||2||OP OA ≤,计算可求点P 横坐标的取值范围.【详解】(1)由曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),可得222222cos 2sin cos sin cos 2sin cos sin 2x y αααααααα+=-++++=由πcos 6ρθ⎛⎫+ ⎪⎝⎭得ππcos cos sin sin 66ρθρθ-=12x y -=0y --,∴曲线C 的普通方程为222x y +=,直线l 0y --(2)设(P x -,连接,OA OB ,易得,OA AP OB BP ⊥⊥,若π3APB ∠≥,则6πAPO ∠≥,1sin ,2APO ∴∠≥∴在Rt OAP △中,||1||2OA OP ≥,||2||OP OA ∴≤=,两边平方得241240x x -+≤,解得3322x -+≤≤,∴点P 横坐标的取值范围为3322⎡⎢⎣⎦23.(1)513(,[,)22-∞-+∞ (2)证明见解析答案第15页,共15页【分析】(1)对x 的取值进行分类,分段求解不等式,再求并集即可;(2)根据绝对值三角不等式求出t ,再利用柯西不等式证明即可求得结果.【详解】(1)当1a =时,不等式为139x x -+-≥,当1x ≤时,139x x -+-≥可以化为()139x x -+-≥,解得52x ≤-;当13x <<时,139x x -+-≥可以化为()139x x -+-≥,得29≥,不等式不成立;当3x ≥时,139x x -+-≥可以化为()139x x -+-≥,解得132x ≥;综上,可得不等式()9f x ≥的解集为513(,[,)22-∞-+∞ .(2)当()0a t t =>时,()()()333f x x t x x t x t =--≥---=-+,当()()30x t x --≤时等号成立,由33t -=可得0=t (舍)或6t =,故6m n +=,由柯西不等式可得()(222362m n ⎛⎫=++≥ ⎪⎝⎭,即得6≤=4,2m n ==时取等号.。

高三上学期期末统考模拟真题试卷(数学文科)

高三上学期期末统考模拟真题试卷(数学文科)

第一学期期末统考 高三年级数学(文科)试题(注意:请将选择题和填空题答案写在答题卷上)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合}80|{≤<∈=x N x U ,}5,4,2,1{=S ,}7,5,3{=T ,则)(T C S U ( )A .}4,2,1{B .}7,5,4,3,2,1{C .}2,1{D .}8,6,5,4,2,1{2.若函数)(x f 的反函数)0(1)(21<+=-x x x f,则)2(f 的值为( )A .1B .1-C .11-或D .53.在等差数列}{n a 中,39741=++a a a ,27963=++a a a ,则数列}{n a 的前9项之和9S 等于( )A .66B .99C .144D .297 4.若0tan sin <x x ,则⎪⎭⎫⎝⎛++x 225sin 1π等于( ) A .x cos 2 B .x sin 2 C .x cos 2- D .x sin 2-5.对于实数a 、b ,“0)(≤-a b b ”是“1≥ba”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知样本容量为30,在样本频率分布直方图中, 各小长方形的高的比从左到右依次为1:3:4:2,则第2组的频率和频数分别是( )A .12,4.0B .16,6.0C .16,4.0D .12,6.07.某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有 ( )A .120种B .48种C .36种D .18种8.在821⎪⎭⎫ ⎝⎛-x x 的展开式中,含x 的项的系数是( )A .55B .55-C .56D .56-9.函数)22(cos ln ππ<<-=x x y 的图像( )10.一个n 棱锥的所有侧面与底面所成二面角都为30°,若此棱锥的底面积为S ,则它的侧面积为( )A .nS 23 B .S 23 C .S 332 D .nS 332 11.双曲线12222=-by a x )0,0(>>b a 的两个焦点为1F 、2F ,若P 为其上一点,且||2||21PF PF =,则双曲线离心率的取值范围为( )A .(]3,1B .()3,1C .()+∞,3D .[)+∞,312.已知A ,B ,C 是平面上不共线的三点,O 为平面ABC 内任一点,动点P 满足等式[])21()1()1(31λλλ++-+-=)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的( )A .内心B .垂心C .重心D .AB 边的中点二、填空题(本大题共4小题,每小题4分,共16分)13.函数)12(log 31-=x y 的定义域是14.若x 、y 满足⎪⎩⎪⎨⎧∈≤+≥N y x y x x y ,16||22,则y x z +=2的最大值为 。

广西柳州市2020届高三文科数学第一次模拟考试卷【含答案】

广西柳州市2020届高三文科数学第一次模拟考试卷【含答案】

A. 1 i
B. 1 i
C. 1 i
D. 1 i
【答案】A 【解析】
z 因为 1 i
i
,所以,
z
i 1 i 1 i
,所以,
z
1
i
故选
A.
考点:复数的概念与运算.
3.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事 先了解到该地区老中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信 健走”活动情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ).
其中正确命题的序号是( )
A. ①③ 【答案】A
B. ①④
C. ②③
D. ②④
【解析】
【分析】
根据线面平行的性质定理以及空间中平行直线的传递性可判断出命题①的正误;根据面面关 系可判断出命题②的正误;利用线面平行的性质定理以及直线与平面垂直的判定定理可判断
出命题③的正误;根据线面垂直的判定定理、面面垂直的判定定理可判断出命题④的正误.
件, f '(x) 0 是函数取得极值的必要不充分条件.求解之后要注意检验,本题中,当 a 3, b 3 时, f '(x) 0 ,此时 f (x) 在定义域 R 上为增函数,无极值,不符合题意,舍
去.本题容易错选 A,认为两组解都符合,一定要注意检验.
7.设 l 、 m 、 n 是三条不同的直线, 、 、 是三个不同的平面,给出下列四个命题:
c2 a2 b2 ,即可求解.
【详解】抛物线 C : y2 8ax 的焦点为 F (2a, 0) ,
E:
双曲线
x2 a2
y2 b2
1a
0,b
0
的右顶点为

2014届山东省烟台市高三3月模拟考试文科数学试题(含答案解析)扫描版

2014届山东省烟台市高三3月模拟考试文科数学试题(含答案解析)扫描版

高三数学三月份诊断考试(文科)参考答案及评分标准一、选择题C BD C D C D A D B 二、填空题11.1(,]8-∞ 12. 8 13. 9 14. 11 15.2 三、解答题16.解:(1)由题意可得2632718x y ==,所以7x =,3y =. ……………………3分 (2)记从中层抽取的3人为1b ,2b ,3b ,从高管抽取的2人为1c ,2c ,则抽取的5人中选2人的基本事件有:12(,)b b ,13(,)b b ,11(,)b c ,12(,)b c ,23(,)b b ,21(,)b c ,22(,)b c ,31(,)b c ,32(,)b c ,12(,)c c 共10种. ……8分设选中的2人都来自中层的事件为A ,则A 包含的基本事件有:12(,)b b ,13(,)b b ,23(,)b b 共3种. ………………10分 因此3()0.310P A ==. 故选中的2人都来自中层的概率为0.3. ……………………………………12分 17.解:2711()sin(2)2sin 1cos 22cos 2cos 2262222f x x x x x x x x π=--+=-++=+ s i n (2)6x π=+………………………………………………3分(1)最小正周期:22T ππ==, ………………………………………………4分 由222()262k x k k Z πππππ-≤+≤+∈可解得:()36k x k k Z ππππ-≤≤+∈,所以()f x 的单调递增区间为:[,]()36k k k Z ππππ-+∈; ………………6分 (2)由1()sin(2)62f A A π=+=可得:5222()666A k k k Z πππππ+=++∈或所以3A π=, ………………………………………………8分又因为,,b a c 成等差数列,所以2a b c =+, ………………9分而1cos 9,182AB AC bc A bc bc ⋅===∴= ………………………………10分222221()4cos 111223612b c a a a a A bc +--∴==-=-=-,a ∴=. ………………………………………………12分18.解:(1)因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上所以PO ⊥平面ABC ,所以PO ⊥AC …………………1分因为AB BC =,所以O 是AC 中点, …………………2分所以//OE PA ,PA PAD ⊂平面所以 //OE PAD 平面 …………………3分 同理//OF PAD 平面又,OE OF O OE OF OEF =⊂ 、平面所以平面//OEF 平面PDA …………………5分 (2)因为//OF AD ,AD CD ⊥所以OF CD ⊥ 又PO ⊥平面ADC ,CD ⊂平面ADC所以PO ⊥CD …………………7分 又OF PO O =所以CD ⊥平面POF …………………8分 (3)因为90ADC ∠=,3,4AD CD ==,所以13462ACD S ∆=⨯⨯=,而点,O E 分别是,AC CD 的中点,所以1342CFO ACD S S ∆∆==, …………………10分由题意可知ACP ∆为边长为5的等边三角形,所以高OP = …………11分即P 点到平面ACD 又E 为PC 的中点,所以E 到平面CFO 的距离1332E CFO V -=⨯=. …………………12分 19.解:(1)当1=n ,21=a ; ………………………1分当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=. ……………2分 ∴{}n a 是等比数列,公比为2,首项12a =, ∴2nn a =. ………3分由12n n b b +=+,得{}n b 是等差数列,公差为2. ……………………4分又首项11=b ,∴ 21n b n =-. ……………………………6分(2)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n ……………………8分3212222[37(41)]n n T n -=+++-+++- ……………10分2122223n n n +-=--. ……………………………12分20.解:(1)当1a =时,2()ln +1f x x x x=+-, 此时'212()+1f x x x =-, ………………………………2分 '12(2)+1124f =-=,又2(2)ln 2+21ln 2+22f =+-=,所以切线方程为:(ln2+2)2y x -=-,整理得:ln 20x y -+=; …………………………5分(2)2'222111(1)(1)()a ax x a ax a x f x a x x x x++--++-=+-==, ……6分 当0a =时,'21()x f x x-=,此时,在'(0,1)()0f x <,()f x 单调递减, 在'(1,)()0f x +∞>,()f x 单调递增; …………………………… 8分当102a -≤<时,'21()(1)()aa x x a f x x ++-=, 当11a a +-=即12a =-时2'2(1)()02x f x x -=-≤在(0,)+∞恒成立, 所以()f x 在(0,)+∞单调递减; …………………………………10分 当102a -<<时,11a a +->,此时在'1(0,1),(,)()0af x a+-+∞<,()f x 单调递减,()f x 在'1(1,)()0a f x a->单调递增; ………………………………12分综上所述:当0a =时,()f x 在(0,1)单调递减,()f x 在(1,)+∞单调递增; 当102a -<<时, ()f x 在1(0,1),(,)a a -+∞单调递减,()f x 在1(1,)a a-单调递增;当12a =-时()f x 在(0,)+∞单调递减. ……………………………………13分 21.解: (1)∵椭圆)0(1:2222>>=+b a by a x C 的两焦点与短轴的两个端点的连线构成正方形,∴a =, ∴222212x y b b+=, …………2分又∵椭圆经过点(1,2P ,代入可得21b =,∴故所求椭圆方程为22 1.2x y += …………4分(2)设1122(,),(,),A x y B x y 因为AB 的垂直平分线通过点1(0,)2-, 显然直线AB 有斜率,当直线AB 的斜率为0时,则AB 的垂直平分线为y 轴,此时1212,x x y y =-=所以11111=|2|||||||2AOB S x y x y ∆=,因为221112x y +=,所以2211111||||||()222x x y y y =≤+=所以AOB S ∆≤,当且仅当1||1x =时,AOB S ∆……………7分 当直线AB 的斜率不为0时,则设AB 的方程为y kx t =+所以2212y kx tx y =+⎧⎪⎨+=⎪⎩,代入得到222(21)4220k x ktx t +++-= ……………8分 当228(21)0k t ∆=-+>, 即2221k t +> ①方程有两个不同的解又122421kt x x k -+=+,1222221x x ktk +-=+ ………………10分 所以122221y y t k +=+,又1212112202y y x x k ++=-+-,化简得到2212k t += ②代入①,得到02t << …………………11分又原点到直线的距离为d =12|||AB x x -=所以1=||||2AOB S AB d ∆==考虑到2212k t +=且02t <<化简得到AOB S ∆ …………………13分因为02t <<,所以当1t =时,即k =时,AOB S ∆.综上,AOB ∆ …………………14分。

陕西省宝鸡实验高级中学2024届高三一模文科数学试题(含答案解析)

陕西省宝鸡实验高级中学2024届高三一模文科数学试题(含答案解析)

陕西省宝鸡实验高级中学2024届高三一模文科数学试题学校:___________姓名:___________班级:___________考号:___________.....已知点(1,3)M 在圆22:C x y m +=作圆C 的切线l ,则l 的倾斜角为.30B .60120D .150.已知()1sin 3αβ-=,cos sin αβ=)αβ+=()二、填空题四、填空题五、解答题(1)证明:1AC ⊥平面BCD (2)求点D 到平面ABC 20.设抛物线C :22y =(1)求p ;(2)若在x 轴上存在定点21.已知函数()f x a =(1)当e a =,4b =时,求整数(2)若[]1,1x ∈-,且b =22.在直角坐标系xOy 为极点,x 轴正半轴为极轴建立极坐标系,曲线(1)求出1C 的普通方程和(2)若1C 与2C 有公共点,求23.已知函数()f x =(1)当1a =时,求不等式(2)若x ∀∈R ,()f x x ≥参考答案:【详解】如图,由题意可知()1,1OZ =- ,OZ 逆时针方向旋转π4后Z 到达的坐标为()2,0-,所以1OZ【分析】根据奇函数的定义,即可求解参数【详解】因为函数是奇函数,所以满足21.(1)1,2k =-(2)()min 1f x =,()max 1ln f x a =+-【分析】(1)求导得函数的单调性,进而结合零点存在性定理即可求解,(2)由导数可得函数的单调性,进而可得最小值,构造函数导数求解单调性,进而可得最大值【详解】(1)解:当e a =,4b =∴()e 21x f x x '=+-,∴()00f '=当0x >时,e 1x >,∴()0f x ¢>,故同理()f x 是(),0∞-上的减函数,()22e 20,f --=+>()11e 4f --=-故当2x >时,()0f x >,当<x -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学模拟卷本试卷共4页,23小题,满分150分,考试用时120分钟。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.以下四个命题:①“若x y =,则22x y =”的逆否命题为真命题②“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件 ③若p q ∧为假命题,则p ,q 均为假命题④对于命题p :0x R ∃∈,20010x x ++<,则p ⌝为:x R ∀∈,210x x ++≥其中真命题的个数是( ) A .1个B .2个C .3个D .4个2.已知x 0是函数f (x )=ln x -1x(x >0)的一个零点,若x 1∈(0,x 0),x 2∈(x 0,+∞)则( ) A .()10f x <,()20f x > B .()10f x >,()20f x < C .()10f x <,()20f x <D .()10f x >,()20f x >3.已知0.50.60.910.80.60.5a og b c ===,,,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >>4.已知f (x )是定义域为[-3,3]的奇函数,且在[-3,0]上是减函数,那么不等式f (x +1)>f (3-2x )的解集是( ) A .2,3⎛⎫-∞ ⎪⎝⎭B .[]0,2C .20,3⎡⎫⎪⎢⎣⎭D .2,3⎛⎫+∞⎪⎝⎭5.函数f (x )=x 2ln|x |的图象大致是( ).A .B .C .D .6.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c .若22()6c a b =-+,且,,A C B 成等差数列,则ABC △的面积是( ) A .332B .32C .3D .337.数列{}n a 中,115a =-,且12n n a a +=+,则当前n 项和n S 最小时,n 的值为( ) A .6B .7C .8D .98.若对任意的[1,3]x ∈,不等式230x x m --<都成立,则实数m 的取值范围为( ). A .(2,)-+∞B .9(,)4-+∞C .9(,0)4-D .(0,)+∞9.设1x >,则函数2()231f x x x =++-的最小值为( ) A .9B .8C .6D .510.关于直线m 、n 及平面α、β,下列命题中正确的是( ) A .若m α⊥,//m β,则αβ⊥ B .若//m α,//n α,则//m n C .若//m α,m n ⊥,则n α⊥D .若//m α,n αβ=,则//m n11.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .6B .52C .3D .2二、填空题:本题共4小题,每小题5分,共20分。

12.如图,在矩形ABCD 中,3AB =,3BC =,点E 为BC 的中点,点F 在边CD 上,若3AB AF ⋅=,则AE BF⋅的值是______.13.若实数,x y 满足004312x y x y ≥⎧⎪≥⎨⎪+≤⎩,则231x y z x ++=+的取值范围是__________.14.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.15.已知某圆锥的母线与其底面所成角的大小为60︒,若此圆锥的侧面积为8π,则该圆锥的体积为______. 16.给出下列四个命题:①函数()y f x =,x ∈R 的图象与直线x a =可能有两个不同的交点;②函数22log y x =与函数22log y x =是相等函数;③对于指数函数2xy =与幂函数2yx ,总存在0x ,当0x x >时,有22xx >成立;④已知1x 是方程lg 5x x +=的根,2x 是方程105x x +=的根,则125x x +=. 其中正确命题的序号是__________.三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.在ABC ∆中,a , b , c 分别为角A ,B ,C 所对边的长,(sin -sin )()(sin sin )a A B c b B C =-+. (1)求角C 的值:(2)设函数3()cos sin()34f x x x π=⋅+-,求(A)f 的取值范围.18.已知{}n a 为等差数列,且138a a +=,2412a a +=.(1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n S ,若212k k a a S +=⋅,求正整数k 的值.19.如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB (3)求三棱锥V -ABC 的体积.20.上周某校高三年级学生参加了数学测试,年级组织任课教师对这次考试进行成绩分析现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;……;第六组,并据此绘制了如图所示的频率分布直方图.(1)估计这次月考数学成绩的平均分和众数;(2)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间内的概率.21.已知椭圆(222:122x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,22PF =.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O为坐标原点,且OM =,求AOB ∆面积的最大值.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),曲线2C 的参数方程为325415x t y t⎧=+⎪⎪⎨⎪=+⎪⎩(t为参数).(1)求曲线1C 的极坐标方程;(2)若曲线1C 与曲线2C 交于P ,Q 两点,且()2,1A ,求11AP AQ+的值. 23.已知函数()|21|f x x =-. (1)解不等式()||3f x x <+;(2)若对于x ,y R ∈,有1|31|3x y -+≤,1|21|6y -≤,求证:(67)f x ≤.参考答案1.C 2.A 3.A 4.C 5.A 6.A 7.C 8.D 9.A 10.A 11.C由题,设Q 在第一象限,则作QM x ⊥轴于M 点,设准线l 交x 轴于N ,因为4FP FQ =, QM ∥PN ,故4FN FM =,又(2,0),(2,0)F N -,故(1,0)M ,所以Q 的横坐标也为1.利用抛物线上的点到焦点的距离等于到准线的距离有||=1+2=3QF 12.92-建立如图所求的直角坐标系,则(0,0),(3,0),3),3)A B C D ,3(3,)2E ,设(3)F x ,则(3,0)AB =,(,3)AF x =,∴33AB AF x ⋅==,1x =, ∴(3)BF =-,又3(3,AE =,∴393(2)322AE BF ⋅=⨯-+⨯=-. 13.9,74⎡⎤⎢⎥⎣⎦ 14.265 15.833π 16.③④根据函数定义,对定义域内的任意一个x 值,只有唯一的y 值与之对应,∴函数()y f x =,x ∈R 的图象与直线x a =可能有一个或0个交点,因此①错;22log y x =中定义域是(,0)(0,)-∞+∞,函数22log y x =的定义域是(0,)+∞,定义域不相同,不是同一函数,②错; 当4x >时,22x x >,因此③正确;如图,12,x x 分别是函数lg y x =、10xy =的图象与直线5y x =-的交点P 、Q 的横坐标,由于lg y x =与10xy =是互为反函数,它们的图象关于直线y x =对称,而直线5y x =-与直线y x =垂直,因此,P Q 两点关于直线y x =对称,直线5y x =-与直线y x =的交点为55(,)22,∴125252x x +=⨯=.④正确.故答案为:③④. 17.解:(1)由正弦定理得:222a ab bc c b bc -=+--, ∴222a b c ab +-=,∴1cos 2C =,∴60C =︒. (2)()1cos sin cos 224f x x x x ⎛⎫=+- ⎪ ⎪⎝⎭()11cos 21sin 2sin 260422x x x +==+, ∵0120A ︒<<︒,60260300A <+<,∴()()111sin 260,222f A A ⎡⎤=+∈-⎢⎥⎣⎦. 18.解:(1)根据题意,设数列{}n a 的公差为d ,由题意知()()111128312a a d a d a d ++=⎧⎨+++=⎩,解得12,2a d ==,则1(1)22(1)2n a a n d n n =+-=+-=,即2n a n =; (2)由(1)可得12,2n a a n ==, 则()12(1)2n n a a n n n S n n +==+=+,又212kk a aS +=⋅,则有()22(2)(3)k a k k =++,即22421012k k k =++,变形可得:2560k k --=,解可得6k =或1k =-(舍),故6k =. 19.解:(1)证明:∵O ,M 分别为AB ,VA 的中点,∴OM ∥VB ,∵VB ⊄平面MOC ,OM ⊂平面MOC ,∴VB ∥平面MOC ; (2)∵AC =BC ,O 为AB 的中点,∴OC ⊥AB ,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB ,∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB (3)在等腰直角三角形ACB 中,AC =BC,∴AB =2,OC =1, ∴等边三角形△VAB 中,S △VAB=122sin 23π⨯⨯⨯=, ∵OC ⊥平面VAB , ∴V C -VAB =13OC •S △VAB=∴V V -ABC =V C -VAB20.解:(1)因各组的频率之和为1,所以成绩在区间[)80,90内的频率为()10.00520.0150.0200.045100.1-⨯+++⨯=.所以平均分0.05450.15550.45650.2075x =⨯+⨯+⨯+⨯0.10850.059568+⨯+⨯=, 众数的估计值是65.(2)设A 表示事件“在成绩大于等于80分的学生中随机选2名,至少有1名学生的成绩在区间[]90,100内”,由题意可知成绩在区间[)80,90内的学生所选取的有:0.01010404⨯⨯=人, 记这4名学生分别为a ,b ,c ,d ,成绩在区间[]90,100内的学生有0.00510402⨯⨯=人,记这2名学生分别为e ,f , 则从这6人中任选2人的基本事件为:(),a b ,(),a c ,(),a d ,(),a e ,(),a f ,(),b c ,(),b d ,(),b e ,(),b f ,(),c d ,(),c e ,(),c f ,(),d e ,(),d f ,(),e f ,共15种,事件“至少有1名学生的成绩在区间[]90,100内”的可能结果为:(),a e ,(),a f ,(),b e ,(),b f ,(),c e ,(),c f ,(),d e ,(),d f ,(),e f ,共9种,所以()93155P A ==. 21.解:(1)设椭圆C 的焦距为()20c c >,由题知,点,P c ⎛ ⎝⎭,b =则有222212c a ⎛ ⎝⎭+=,2234c a ∴=,又22222a b c c =+=+,28a ∴=,26c =, 因此,椭圆C 的标准方程为22182x y +=;(2)当AB x ⊥轴时,M 位于x 轴上,且OM AB ⊥,由OM =可得AB =12AOB S OM AB ∆=⋅=; 当AB 不垂直x 轴时,设直线AB 的方程为y kx t =+,与椭圆交于()11,A x y ,()22,B x y ,由22182x y y kx t ⎧+=⎪⎨⎪=+⎩,得()222148480k x ktx t +++-=. 122814kt x x k -∴+=+,21224814t x x k-=+,从而224,1414kt t M k k -⎛⎫ ⎪++⎝⎭已知OM =()2222214116k t k+=+.()()()22222212122284814141414kt t AB kx x x x k k k ⎡⎤--⎛⎫⎡⎤=++-=+-⨯⎢⎥ ⎪⎣⎦++⎝⎭⎢⎥⎣⎦()()()222221682114k t kk -+=++.设O 到直线AB 的距离为d ,则2221t d k=+, ()()()222222221682114114AOBk t t S k k k ∆-+=+⋅++. 将()2222214116k t k+=+代入化简得()()2222219241116AOB k k S k ∆+=+.令2116k p +=,则()()()22222211211192414116AOBp p k k S p k ∆-⎛⎫-+ ⎪+⎝⎭==+211433433p ⎡⎤⎛⎫=--+≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.当且仅当3p =时取等号,此时AOB ∆的面积最大,最大值为2.22.解:(1)曲线1C 的普通方程为()2224x y -+=,即2240x y x +-=.将cos sin x y ρθρθ=⎧⎨=⎩代入化简得1C 的极坐标方程为4cos ρθ=.(2)将2C 的参数方程代入1C 的普通方程()2224x y -+=中,得28305t t +-=, 设P ,Q 两点的参数分别为1t ,2t ,则12128530t t t t ⎧+=-⎪⎨⎪=-<⎩,1t 、2t 异号,1212121111t t AP AQ t t t t -+=+====. 23.解:(1)由()||3f x x <+得|21|||3x x -<+,则12213x x x ⎧≥⎪⎨⎪-<+⎩,或102123x x x ⎧<<⎪⎨⎪-<+⎩,或012 3.x x x ≤⎧⎨-<-+⎩, 解得142x ≤<,或102x <<,或20x -<≤,即24x -<<, 所以不等式()||1f x x <+的解集为{|24}x x -<<.(2)证明:由1|31|3x y-+≤,1|21|6y-≤,所以217 ()|21||2(31)3(21)|2|31|3|21|326 f x x x y y x y y=-=-++-≤-++-≤+=.。

相关文档
最新文档