一元二次方程应用__图形面积问题
18 专题 一元二次方程的应用(三)面积问题

1 专题 一元二次方程的应用(三)面积问题
一、彩带问题
1.如图一块草地长为32m ,宽为20m 的矩形,欲在中间修筑宽带相等的小路,要使草坪面积为540㎡,求小路的宽.
2.如图,要设计一幅长60cm ,宽40cm 的图案,其中有两横两竖的彩条,横竖彩 条宽度比为1∶2,若彩条所占面积,是图案面积的2
1,求一条横彩条的宽度.
二、围墙问题
3.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.围成长方形的鸡场除门之外四周不能有空隙.
(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?
(2)围成鸡场的面积可能达到200平方米吗?
(3)若墙长为a 米,对建150平方米面积的鸡场有何影响?
4.某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(平面图如图所示)由于地形限制,三级污水处理池的长、宽都不能超过16米,如果池的外围墙的建造单价为每米400元,中间两条隔墙的建造单价为每米300元,池底的建造单价为每平方米80元,(池墙的厚度忽略不计)
(1)当三级污水处理池的总造价诶47200元时,求池长x ;
(2)如果规定总造价越低越合算,那么根据题目提供的信息,以47200元为总造价来修建三级污水处理池是否合算?请说明理由。
2m
A B。
一元二次方程图形面积问题(2)区公开课

x
x
整理得:x2-40x+375=0 A 解得:X1=15或 X2=25
80-2x
B
当X=15时,80-2×15=50m(超过45m,不合题意舍去)
当X=25时,80-2×25=30m
∴ AD长为25m
例1:如图,利用一面墙(墙的长度不超过45m), 用80m长的篱笆围一个矩形场地. ⑵能否使所围矩形场地的面积为810m2,为什么?
例1:如图,利用一面墙(墙的长度不超过 45m),用80m长的篱笆围一个矩形场地. ⑴垂直于墙的篱笆AD长度是多少时,才能 使矩形场地的面积为750m2?
⑵能否使所围矩形场地的面积为810m2,为什么?
解:(1)、设AD长为Xm,
墙
则AB=(80-2x)m
D
C
依据题意有: X(80-2X)=750
A
;1-2x
变式应用2
如图,要建造一个面积为130平方米的小仓 库,仓库的一边靠墙且墙长16米,并在与墙 平行的一边开一道1米宽的门。现有能围成 32米的木板,求仓库的长和宽。
A
D
x
x
32+1-2x
B
C
课堂小结
我学会了… …
解:(2)不能,理由如下
墙
由题意可得:
D
C
X(80-2X)=810
整理得:
A
B
∴-2 x2+80x-810=0
=640-4x(-2)x(-810)<0
∴此方程无实数解, ∴ 矩形场地的面积不能为810m2 。
变式应用1:
如图,一农户要建一个矩形院落,院落的一边 利用长为12m的住房墙,另外三边用25m长的建 筑材料围成,为方便进出,在垂直于住房墙的 一边留一个1m宽的门,所围矩形院落的长、宽 分别为多少时,院落面积为80m2?
24.4.1运用一元二次方程解决图形面积问题

利用一元二次方程解决图形问题
【例1】如图,某学校要在校园内墙边
的空地上建一个矩形的存车处,存车 处的一面靠墙(墙长22米),另外三 面用90米长的铁栅栏围起来.如果这 个存车处的面积为700平方米.求这 个矩形存车处的长和宽.
举一反三训练
1.〈2015,保定模拟〉在Rt△ABC中,∠B为直角,AB =6 cm,BC=12 cm,动点P以每秒1 cm的速度匀速 自A点沿AB方向移动,同时点Q以每秒2 cm匀速自B 点沿BC方向移动,则( C )秒后△PQB的面积等于
员?
(1)设增长率为x, 根据题意,得10×(1+x)2=12.1,
解这个方程,得x1=0.1=10%,x2=-2.1(舍去).
答:月平均增长率为10%. (2)6月份的投递任务为:12.1×(1+0.1)=13.31 (万件). ∵13.31÷0.6≈22.18(名),
∴现有的21名快递投递业务员不能完成任务,至少需
利润 ×100% 进价(或成本)
折扣数 =折扣后价格,如原价1 000元,打5.5折,现价550元. 10
谢谢
本题(2)属于典型的增长率问题,这类问题的等量关系 均为:原量×(1+增长率)增长次数=增加后的量,或原量
×(1-减少率)减少次数=减少后的量.
举一反三训练
2.〈2015,湖南长沙〉现代互联网技术的广泛应用,催 生了快递行业的高速发展.据调查,长沙市某家小型 “大学生自主创业”的快递公司,今年三月份与五月 份完成投递的快递总件数分别为10万件和12.1万件. 现假定该公司每月投递的快递总件数的增长率相同. (1)求该快递公司投递快递总件数的月平均增长率; (2)如果平均每人每月最多可投递快递0.6万件,那么该公 司现有的21名快递投递业务员能否完成今年6月份的快 递投递任务?如果不能,请问至少需要增加几名业务
一元二次方程应用题(几何图形面积问题)

解题思路
假设长方形的长为l,宽为w, 通过列方程建立方程组,然后 求解得出面积。
解答与解析
通过解方程组,得出长方形的 长、宽和面积的具体数值,详 细解析计算过程和答案。
实例3 :三角形面积问题
问题提出
已知直角三角形的斜边长度为c, 某一直角边的长度为a,求三角形 的面积。
解题思路
根据已知条件,利用勾股定理和三 角形面积公式建立方程,然后求解 得出面积。
一元二次方程应用题(几 何图形面积问题)
本演示将介绍一元二次方程的应用,特别是在解决几何图形面积问题时的应 用。通过精彩的实例和深入的讲解,帮助你全面理解和掌握这一知识点。
一元二次方程介绍
简要介绍一元二次方程的概念、形式和解法方法,以及元二次方程解决几何图形的面积问题,通过代入、求解方程, 计算各种图形的面积。
解答与解析
通过解方程和应用三角形面积公式, 得出三角形的面积的具体数值,详 细解析计算过程和答案。
总结与实践建议
总结一元二次方程在解决几何图形面积问题中的应用要点,并提供一些建议和实践步骤,以帮助你更好地掌握这一 知识。
实例1:正方形面积问题
1
问题提出
给定正方形的对角线长度为d,求正方形的面积。
2
解题思路
假设正方形的边长为x,利用勾股定理建立方程,然后求解得出面积。
3
解答与解析
通过解方程,得出正方形的边长和面积的具体数值,详细解析计算过程和答案。
实例2 :长方形面积问题
问题提出
已知长方形的周长为P,求长方 形的面积。
一元二次方程应用题

25m
180m2 x
解这个方程, 知 这个方程无解.
40 x 2
答 : 鸡场的面积不能达到 250 m 2 . 2 老师提示 : 当方程配方为 x 20 100时 , 特别要注意,
2. 某农场要建一个长方形的养鸡场,鸡场的一 边靠墙(墙长25m),另外三边用木栏围成,木栏 长40m.
解:( 200. 即x 2 20 x 100 0. 解这个方程, 得 x1 x2 10.
25m
180m2 40-2x
1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售 量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每 天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少 元?每天要售出这种商品多少件? 2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出 的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P (元),且R P与x的关系式分别为R=500+30X,P=170—2X。 当日产量为多少时每日获得的利润为1750元? 若可获得的最大利润为1950元,问日产量应为多少? 3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出 500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元, 日销售量将减少20千克。现该商品要保证每天盈利6000元,同时又要使 顾客得到实惠,那么每千克应涨价多少元?
5000
2500 2900 - x
(2)由题意可得方程:______________________________
3、某商场将进货价为30元的台灯以40元售出,平均 每月能售出600个,调查表明,这种台灯的售价每上 涨1元,其销售量就减少10个,为了实现平均每月 10000元的销售利润,这种台灯的售价应为多少?这 时应至少进台灯多少?
一元二次方程的应用(图形面积问题)

一元二次方程的应用(图形面积问题)1.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多x步,则下列符合题意的方程是()A.(60﹣x)x=864B.C.(60+x)x=864D.(30+x)(30﹣x)=8642.(2021秋•信丰县期末)如图,面积为50m2的矩形试验田一面靠墙(墙的长度不限),另外三面用20m长的篱笆围成,平行于墙的一边开有一扇1m宽的门(门的材料另计).设试验田垂直于墙的一边AB的长为x,则所列方程正确的是()A.(20+1﹣x)x=50B.(20﹣1﹣x)x=50C.(20+1﹣2x)x=50D.(20﹣1﹣2x)x=503.(2021秋•高新区校级期末)如图,郑州中学在操场西边开发出一块边长分别为30米、25米的长方形校园菜园,作为劳动教育系列课程的实验基地之一.为了便于管理,现要在中间开辟一纵两横三条等宽的小道,要使种植面积为650平方米.设小道的宽为x米,可列方程为()A.(30﹣2x)(25﹣x)=650B.30x+2×25x﹣2x2=650C.30×25﹣30x﹣25x+2x2=650D.(30﹣x)(25﹣2x)=6504.(2021秋•太原期末)学校计划在长为12m,宽为9m矩形地块的正中间建一座劳动实践大棚.大棚是占地面积为88m2的矩形.建成后,大棚外围留下宽度都相同的区域,这个宽度应设计为()A.1.8m B.1.5m C.1m D.0.5m 5.(2021秋•青岛期末)如图,把一块长为45cm,宽为25cm的矩形硬纸板的四角剪去四个相同的小正方形,然后把纸板沿虚线折起,做成一个无盖纸盒.若该无盖纸盒的底面积为625cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(45﹣2x)(25﹣x)=625B.(45﹣x)(25﹣x)=625C.(45﹣x)(25﹣2x)=625D.(45﹣2x)(25﹣2x)=625 6.(2021秋•海口期末)用6m长的铝合金型材做一个形状如图所示的矩形窗框.若窗框的面积为1.5m2,则窗框AB的长为()A.1m B.1.5m C.1.6m D.1.8m 7.(2021秋•洛阳期末)如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,则剪去的正方形的边长为()A.cm B.1cm C.cm D.2cm8.(2021秋•历城区期末)如图,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设栅栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣2x)=375B.x(55﹣2x)=375C.x(55﹣x)=375D.x(55﹣x)=3759.(2021秋•北京期末)南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为x步,根据题意可以列方程为()A.x2﹣60x﹣864=0B.x(x+60)=864C.x2﹣60x+864=0D.x(x+30)=86410.(2021秋•南岸区期末)一个矩形纸片的面积为30cm2,将它的一边剪短1cm,另一边剪短2cm,恰好变成一个正方形.若设正方形的边长为xcm,根据题意可得方程()A.(x+1)(x+2)=30B.(x﹣1)(x﹣2)=30C.(x+1)(x﹣2)=30D.(x﹣1)(x+2)=3011.(2021秋•霸州市期末)如图,要把长为4m、宽为3m的长方形花坛四周扩展相同的宽度xm,得到面积为30m2的新长方形花坛,则x的值为()A.4.5B.2C.1.5D.112.(2021秋•巴中期末)对于一元二次方程,我国及其他一些国家的古代数学家还研究过其几何解法呢!以方程x2+2x﹣35=0即x(x+2)=35为例加以说明,三国时期的数学家赵爽在其所著的《勾股圆图注》中记载的方法是:构造如图,一方面,图中的大方形的面积是(x+x+2)2;另一方面,它又等于四个矩形面积加上中间小正方形的面积,即4×35+22.据此易得x=5,那么在下面的四个构图中,能够说明x2﹣2x﹣8=0的正确构图是()A.B.C.D.13.(2021秋•江津区期末)某社区服务中心学习十九届六中全会精神,贯彻落实“为民办实事”.社区服务中心为解决居民停车难的问题,准备利用社区内一块矩形空地修建一个停车场(如图).已知停车场的长为52米,宽为36米,阴影部分设计为停车位,其余部分是等宽的通道.设通道的宽是x米,若停车位的面积为1104平方米.依题意可列出方程()A.2×36x+52x=52×36﹣1104B.36x+2×52x﹣x2=52×36﹣1104C.(52﹣2x)(36﹣2x)=1104D.(52﹣2x)(36﹣x)=110414.(2021秋•岚皋县期末)为绿化、美化环境,某园林部门计划在某地修建一个面积为150平方米的矩形花园,它的长比宽多5米,设长为x米,可列方程为()A.x(x﹣5)=150B.x(x+5)=150C.2x+2(x+5)=150D.2x+2(x﹣5)=15015.(2021秋•莲池区期末)如图,用长为20m的篱笆,一面利用墙(墙的最大可用长度为11m),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1m的两扇小门.若花圃的面积刚好为40m2,设AB段的长为xm,则可列方程为()A.x(22﹣3x)=40B.x(20﹣2x)=40C.x(18﹣3x)=40D.x(20﹣3x)=40二.填空题(共10小题)16.(2021秋•朝阳县期末)如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点C 运动,点P到达终点后,P、Q两点同时停止运动,则秒时,△BPQ的面积是6cm2.17.(2021秋•仙居县期末)如图,在一块长22m,宽为14m的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m2,则小路宽为m.18.(2021秋•丹江口市期末)如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3:2,如果要使所占的面积是图案面积的四分之一,设横彩条的宽为3xcm,依题意列方程为.19.(2021秋•綦江区期末)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为19米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱笆长为x米,可列出方程为.20.(2021秋•滕州市期中)1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.你来解决这道古算题,可以求得矩形的长为步.21.(2021•襄州区模拟)如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分折成一个有盖的长方体盒子,且折成的长方体盒子的表面积为888cm2,则剪掉的小正方形边长为cm(纸板的厚度忽略不计).22.(2020秋•城阳区期末)如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域用40m长的篱笆围成一个面积为384m2矩形花园.设宽AB=xm,且AB<BC,则x=m.23.(2019秋•北辰区校级月考)长方形的长比宽多4cm,面积为60cm2,则它的周长为cm.24.(2021秋•普陀区期末)如图,阴影部分是一块长方形的草坪,草坪的长是8米,宽是5米,在草坪的四周准备修建等宽的道路,道路和草坪的总面积为70平方米.如果设道路的宽为x米,那么根据题意可列方程为.25.(2021秋•巴中期末)《算法宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云周一百二十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,且周长为120步,问它的长比宽多了多少步?则这块矩形田地的长比宽多了步.。
一元二次方程 面积问题

思考: 练习:P48第8题 1. 你读到了哪些信息? 封面中央图案所占的面积是封面面积的 四分之三
21cm 9xc m 27c m 7x cm 7x cm
彩色边衬所占面积是封面面积的四分之 一
2. 题目中哪些量是已知 的,哪些量是未知的? 3. 你认为哪些是解决问 题的关键字句? 4. 问题中的相等关系是 什么? 5. 你认为可以怎样设元?
(32 2 х)(20 х) 540
4、若把甲同学的道路由直路改为斜路,那么道路
的宽又是多少米?(列出方程,不用求解)
20 32
如图,要设计一本书的 封面,封面长27cm, 宽21cm,正中央是一 个与整个封面长宽比例 相同的矩形,如果要使 四周的彩色边衬所占面 积是封面的四分之一, 上、下边衬等宽,左、 右边衬等宽,应如何设 计四周边衬得宽度?
答:纸盒的高为5形纸板,剪去四个边 长为5cm的小正方形,并用它做一个无盖的长方体形状 的包装盒。要使包装盒的容积为200cm3(纸板的厚度略
去不计),问这张长方形纸板的长与宽分别为多少cm?
设长为5x,宽为2x,得:
5cm
5(5x-10)(2x-10)=200
18米
2米
例1、如图甲,有一张长40cm,宽25cm的长方形硬纸片, 裁去角上四个小正方形之后,折成如图乙所示的无盖纸 盒。若纸盒的底面积是450cm2,那么纸盒的高是多少?
40cm 25cm
解:设高为xcm,可列方程为 (40-2x)(25 -2x)=450
甲
乙
解得x1=5, x2=27.5
经检验:x=27.5不符合实际,舍去。
(32 x) (20 x)
(32 x)(20 x) 540
化简,得
一元二次方程应用题(几何图形面积问题)

(32 2x)(20 2x) 570 化简得,x2 36x 35 0
(x 35)(x 1) 0 x1 35, x2 1
其中的 x=35超出了原矩形的宽,应舍去.
答:道路的宽为1米.
例3. (2003年,舟山)如图,有长为24米的篱笆,一面 利用墙(墙的最大可用长度a为10米),围成中间隔 有一道篱笆的长方形花圃。设花圃的宽AB为x米, 面积为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的 长为8m,宽为5m.如果镜框中央长方形图案的面积为 18m2 ,则花边多宽? 解:设镜框的宽为xm ,则镜框中央长方形图案的长 为(8-2x)m, 宽为(5-2x) m,得
8
x
x
x
(8-2x)
5
18m2
x
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的
例2:在一块长80米,宽60米的运动场 外围修筑了一条宽度相等的跑道,这 条跑道的面积是1500平方米,求这条 跑道的宽度。
列一元二次方程解应题
补充练习: 1、(98年北京市崇文区中考题)如图,有一面 积是150平方米的长方形鸡场,鸡场的一边靠墙 (墙长18米),墙对面有一个2米宽的门,另三边 (门除外)用竹篱笆围成,篱笆总长33米.求鸡 场的长和宽各多少米?
例1 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A开始以1cm/s的速度沿AB边向点 B移动,点Q从点B开始以2cm/s的速度沿BC 边向点C移动,如果P、Q分别从A、B同时出 发,几秒后⊿ PBQ的面积等于8cm2?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习:如图,小华从市场上买回一块矩形铁皮,他将此 矩形铁皮的四个角落各剪去一个边长为1m的正方形后, 剩下的部分刚好能围成一个容积为15m³的无盖长方体箱 子,且此长方体箱子的底面长比宽多2m。已知购买这种 铁皮每平方米需20元,算一算小华购回这张矩形铁皮共 花了多少钱?
解:设无盖长方体箱子宽x米,则长(x 2)米
解:设金色纸边的宽为xcm,则挂图长为 (80+2x)cm、宽为(50+2x)cm
由题意得:(80 2x)(50 2x) 5400
4x2 260x 1400 0
整理得: x2 65x 350 0
(x 5)(x 70) 0 x1 5, x2 70(不合题意舍去 ) 故金色纸边的宽为5cm.
(1)
解2:解1计算时分块较多,还要注意重叠部分要减去。 我们可以利用图形的平移,对图形进行重新整理,如右图。
解:设图中道路的宽为x米, 由题得:(32 x)(20 x) 540
整理得: x2 52 x 100 0 (x 2)(x 50) 0
解得:x1 2, x2 50(不合题意,舍去 ) 故道路宽为 2米.
变式2: 如图,在一块长92m,宽60m的矩形耕地上挖 三条水渠,水渠的宽度都相等。水渠把耕地分成面 积均为885m2的6个矩形小块,水渠应挖多宽?
解:设水渠宽为x米,
根据题意得: (92 2x)(60 x) 8856
整理得:x2 106 x 105 0
(x 1)(x 105) 0
x1 1, x2 105(不合题意,舍去 ) 故水渠应挖1m宽.
由题: x( x 2) 1 15
则矩形铁皮面积为: (5 2)(3 2) 35(平方米)
整理得: x2 2x 15 0
35 20 700 元
解得:x1 3, x2 5(舍去)
故这张铁皮共花了 700 元.
课堂小结: 本节课你有哪些收获?
1、仔细分析题目,找准题目中的量,会用含未知 数的代数式准确表示出所需量,进而根据等量关 系列出方程;
练习:某火车站站前广场绿化工程中有一块长为20米, 宽为12米的长方形空地,计划在其中修建两块相同的长 方形绿地,它们的面积之和为112平方米,两块绿地之 间及周边留有宽度相等的人行通道(如图所示),求人 行通道的宽度。
解:设人行通道的宽度是x米, 则两块绿地可合成长为(20−3x)米、宽 为(12−2x)米的长方形。 由题意:(20−3x)(12−2x)=112,
变式1:以下图(2)(3)是另外两名同学设计小路的 示意图,若仍然使草坪的面积为540㎡,求此时道路的 宽。
(2)
(3)
解:设图中道路的宽为x米, 由题得:(32 x)(20 x) 540
方法归纳:在利用一元二次方 程解几何图形面积的问题时, 有些题目可灵活运用“平移变 换”,把分离的图形进行“整 合”,以简化计算;
17.5 一元二次方程应用 ---图形面积问题
例1:学校为了美化校园,准备在一块长32米,宽20米的 长方形草地上修筑若干条宽度相同的道路,余下部分作 草坪。现有一位学生设计了如下一种方案,如图(1), 若使草坪面积为540㎡,求图中道路的宽。
解:设图中道路的宽为x米,
(1)
根据题意得: 32 20 (- 32 x 20 x x2) 540
整理得:3x2 38x 64 0
(x 2)(3x 32) 0
解得:x1
2,
x2
32 3
当x 32 时,20 - 3x 12
3
x2
32 舍去 3
注意舍根
故人行通道宽度为2米.
例2:在一幅长80cm,宽50cm的长方形风景画四周镶 一条相同宽度的金色纸边,制成一幅长方形挂图,如 下图,如果要使整个挂图的面积是5400 cm2,求金色 纸边的宽。
2、利用一元二次方程解几何图形面积的问题时, 有些题目可灵活运用“平移变换”,把分离的图形 进行“整合”,以简化计算;
3、选择合适的方法去解方程,一可以节省时间二 可以避免错误。另外对实际问题的解要特别慎重, 得到一元二次方程的解后,要检验其是否符合题意。
解1:图形总面积减去两条道路面积等于草坪面积
图形总面积: 32 20
两条道路面积:
32 x 20 x x2
例1:学校为了美化校园,准备在一块长32米,宽20米的 长方形场地上修筑若干条宽度相同的道路,余下部分积为540㎡,求图中道路的宽。