一元二次方程—面积问题
九年级数学一元二次方程面积问题

九年级数学一元二次方程面积问题哎,大家好!今天咱们来聊聊九年级数学里的一个有趣的题目——一元二次方程在面积问题中的应用。
听起来是不是有点复杂?别担心,咱们慢慢讲,弄清楚了,你会发现这不比做家务复杂,绝对能搞定!1. 什么是一元二次方程?首先,我们得搞明白什么是一元二次方程。
别被这个名字吓着,其实它就是一种特殊的方程。
公式长这样:[ ax^2 + bx + c = 0 ]。
其中,( x ) 是未知数,( a )、( b )、( c ) 是常数。
简单来说,这就是一个二次方程,它的最高次数是二。
2. 面积问题的背景好了,咱们知道了什么是一元二次方程,接下来就是面积问题了。
要是你有点头绪,那就太棒了,因为很多数学问题都和实际生活中的问题有关呢!2.1 一道经典题目设想一下,你家有一个小花园,长方形的,长度是 ( x ) 米,宽度是 ( x + 2 ) 米。
现在你发现这个花园的面积是 60 平方米。
你需要找出这个花园的长度和宽度。
听着是不是有点儿挑战?别急,咱们一起来解决它!2.2 设立方程首先,根据面积公式,长方形的面积是长乘宽。
所以我们可以得到一个方程:[ x times (x + 2) = 60 ]。
把这个方程展开来,咱们就得到了:[ x^2 + 2x = 60 ]然后,把方程整理成标准的一元二次方程形式:[ x^2 + 2x 60 = 0 ]。
这下,咱们就有了一个典型的二次方程,可以用不同的方法来解它。
3. 解方程的技巧3.1 因式分解法最简单的方法就是因式分解。
我们要找两个数,它们的乘积是 60,和是 2。
这两个数是 10 和 6。
所以,我们可以把方程分解成:[ (x + 10)(x 6) = 0 ]。
这样,解这个方程就非常简单了。
我们得到两个解:[ x + 10 = 0 quad text{或者} quad x 6 = 0 ]。
也就是:[ x = 10 quad text{或} quad x = 6 ]。
一元二次方程面积问题

一元二次方程面积问题例1:将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.分析:(1)设出小路的宽度为x米,表示出两条小路的面积,而小路的面积为原来荒地面积的三分之一,列出方程解答即可;(2)设出扇形的半径为y米,则四个扇形的面积和恰好等于一个圆的面积,而四个扇形的面积和为原来荒地面积的三分之一,列出方程解答即可.:解答:解:(1)设小路的宽度为x米,根据题意列方程得,18x+15x-x2=18×15×13,解得x1=3,x2=30(不合题意,舍去);答:图①中小路的宽为3米.(2)设扇形的半径为y米,根据题意列方程得,πy2=18×15×13,解得y1≈5.4,y2≈-5.4(不合题意,舍去);答:扇形的半径约为5.4米.点评:此题主要考查长方形和扇形面积的计算方法,解答时注意题目中蕴含的数量关系例2:如图1—1所示,某小区规划在一个长为40m,宽为26m的矩矩形场地ABCD上修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每一块草坪的面积都是144㎡,则道路的宽是多少米?分析:(1)设路的宽为x m,那么道路所在的面积(40x+26x×2-2x2)㎡,于是六块草坪的面积为[40×26-(40x+26x×2-2x2)]㎡,根据题意,得40×26-(40x+26x×2-2x2)=144×6(2)将图1—1所示中的三条道路分别向上和向左、向右平移图1—2的位置,若设宽为x m,则草坪的总面积为(40-2x)(26-x)㎡所列方程为(40-2x)(26-x)=144×6解法1:设道路的宽为x m,则根据题意,得40×26-(40x+26x×2-2x2)=144×6整理,得x2-46x+88=0,解得x1=44(舍去),x2=2解法2:设道路的宽为x m,则根据题意,得(40-2x)(26-x)=144×6 解得,x1=44(舍去),x2=2 答:略练习1、如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,所截去的小正方形的边长是多少。
一元二次方程解决面积问题

一元二次方程解决面积问题面积问题在数学中广泛存在,而解决这类问题时,一元二次方程是一个重要的工具。
一元二次方程是一个带有一个未知数的二次方程,通常写作ax² + bx + c = 0,其中a、b和c是已知常数,且a不等于0。
当涉及到面积问题时,我们可以利用一元二次方程来求解。
例如,考虑一个长方形的问题:给定长方形的宽度x,其长度为(3x + 4)。
我们希望求解这个长方形的面积。
首先,我们需要确定长方形的面积公式。
长方形的面积等于长度乘以宽度,即A = x(3x + 4)。
然后,我们将这个面积公式转化为一个一元二次方程。
展开表达式,我们得到A = 3x² + 4x。
现在,我们要解决的问题是找到一个x的值,使得面积A达到最大或最小。
我们可以利用一元二次方程的特性来求解这个问题。
一元二次方程的图像是一个抛物线,对于正系数a,抛物线开口向上。
因此,当a大于0时,抛物线的最小值出现在顶点处。
通过求解一元二次方程的顶点,我们可以找到长方形的最大或最小面积。
一元二次方程的顶点的x坐标由公式x = -b/2a给出。
对于我们的长方形问题,a = 3,b= 4,所以x = -4/(2*3)。
计算得出x = -2/3。
将这个值代入原方程,我们可以计算出面积A的最小值或最大值。
这样,我们就可以通过求解一元二次方程来解决长方形的面积问题。
一元二次方程在解决面积问题以及其他数学问题中具有广泛的应用。
通过灵活运用一元二次方程的特性,我们能够解决各种各样的面积问题。
12.解一元二次方程的实际应用——面积问题

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试
x
35-2x 当x=7.5时,35-2x=20>18,因此不合题意,舍去;
当x=10时,35-2x=15. 答:鸡场的长、宽分别为15米、10米.
例2 某校为了美化校园,准备在一块长32米,宽20米的长方形场地四周修
筑等宽的道路,中间的矩形部分作草坪, 若草坪的面积为540米2,求图中道路 的宽是多少? x x 32-2x 20-2x x x 解:设草坪四周道路的宽为x米, 则草坪的长为(32-2x)米,宽为(20-2x)米.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
高考总分:711分 毕业学校:北京八中 语文139分 数学140分
英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出
一元二次方程——面积问题

面积问题:1、如图所示,某小区规划在一个长为40米,宽为26米的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB平行,另一条与AB垂直,其余部分种草,若使每一块草坪的面积都为144米2,求甬路的宽度?2、如图所示,要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为a m,另三边用竹篱笆围成,已知篱笆总长为35m.(1)求鸡场的长与宽各为多少米?(2)题中的墙长度a m对题目的解起着怎样的作用?3、如图、AD是⊿ABC的高,点G,H在BC边上,点E在AB边上,点F在AC边上,BC=10cm,AD=8cm四边形EFHG是面积为15CM的矩形求矩形的长和宽。
4、在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度。
5、等腰梯形的面积为160cm2,上底比高多4cm,下底比高多20cm,求这个等腰梯形的高。
6、有一张长为80cm,宽为60cm的薄钢片,在4个角上截去相同的4个边长为的小正方形,然后做成底面积为1500cm3 无盖的长方体盒子。
求截去小正方形的边长。
7.某工厂拟建一座平面图形为矩形且面积为200m²的三级污水处理池(平面图如图)。
由于地形限制,三级污水处理池的长、宽都不能超过60米。
如果外圈周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计)。
(1)当三级污水处理的总造价为472000元时,求池长x;(2)如果规定总造价越低越合适,那么根据题目提供的信息,以47200元为总造价来修建三级污水处理池是否合算?请说明理由。
中考试题:1、如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?2.现有一块矩形场地,如图12所示,长为40m,宽为30m,要将这块地划分为四块分别种植:.兰花;.菊花;.月季;.牵牛花.求出这块场地中种植菊花的面积与场地的长之间的函数关系式;并写出自为量的取值范围.。
一元二次方程应用题面积问题

一元二次方程应用题面积问题1. 引言:面积问题的迷人世界大家好!今天咱们聊聊一元二次方程中的面积问题。
别急着皱眉头,这个话题其实特别贴近咱们的生活,学会了,能让你在解答一些日常问题时得心应手。
比如说,买草坪、规划花园、甚至是设计墙面装饰,这些都能用到哦!2. 面积问题的基础:概念简述2.1 什么是面积问题?说白了,面积问题就是要求你计算一个区域的大小。
在几何中,咱们经常需要找出矩形、三角形或者其他形状的面积。
那一元二次方程为什么会出现在这个问题里呢?好问题!因为有些面积计算需要用到二次方程来解决。
2.2 为什么用一元二次方程?一元二次方程,看起来有点复杂,但其实就是形如 ( ax^2 + bx + c = 0 ) 的方程。
它能帮我们解决一些涉及面积的实际问题,比如说,计算一个长方形的面积,特别是当这个长方形的边长变化时,就需要用到这样的方程了。
3. 实际例子:如何应用一元二次方程解决面积问题。
3.1 示例一:草坪面积假设你想在家里的花园里铺草坪,花园的长度是 ( x ) 米,宽度比长度少 5 米。
那么,花园的宽度就是 ( x 5 ) 米。
你知道草坪的面积是 84 平方米。
我们可以用一元二次方程来找出长度和宽度。
首先,面积 ( A ) = 长度 ( times ) 宽度。
根据题意,有:[ A = x times (x 5) = 84 ]。
简化一下,得到方程:[ x^2 5x = 84 ]接着,把 84 移到方程的另一边:[ x^2 5x 84 = 0 ]现在咱们可以用因式分解法或者求根公式来解这个方程。
因式分解的话,我们可以得到:[ (x 9)(x + 4) = 0 ]。
从中可以得到 ( x = 9 ) 或 ( x = 4 )。
因为长度不能是负数,所以我们取 ( x = 9 ) 米。
这样,花园的宽度就是 ( 9 5 = 4 ) 米。
3.2 示例二:墙面装饰再来一个例子,假如你要装饰一面墙,墙的高度比宽度多 2 米,装饰的总面积是60 平方米。
一元二次方程面积问题

使用图形解释一元二次方程与 面积的关系
通过绘制图形并演示一元二次方程与图形的面积之间的关系,我们将帮助您 更好地理解这一概念。
总结与展望
在本次演讲中,我们概述了一元二次方程与面积问题的关联,并展望了进一 步学习和应用这一概念的可能性。
求解一元二次方程的方法
我们将详细讨论解决一元二次方程的不同方法,并解释每种方法的优缺点。
如何利用一元二次方程解决面积问题
我们将展示如何将一元二次方程应用于不同类型的面积问题,并提供实用的技巧和策略。
实际应用案例分析
通过分析真实世界中的面积问题,我们将展示一元二次方程在解决实际应用 中的重要性和价值。
一元二次方程面积问题
欢迎来到本次演讲,我们将探讨一元二次方程与面积之间的关系,并解决一 些有趣的面积问题。
问题引入
通过引入一个刺激和实际的面积问题,我们将向您展示一元二次方程的重要 性,以及如何将其应用于现实生活中的计算。
一元二次方程的Biblioteka 义和一般形 式我们将介绍一元二次方程的基本定义和形式,使您能够理解解决问题所需的 基本方程。
一元二次方程的应用(面积问题)

一元二次方程的运用------面积问题【小常识大感化】1.直角三角形面积公式:一般三角形面积公式:2.正方形周长公式:正方形面积公式:3.矩形周长公式:矩形面积公式:4.梯形面积公式:5.平行四边形面积公式:菱形面积公式:6.圆的周长公式:圆的面积公式:小贴士:这些简略的公式,在我们解决生涯中的现实问题时施展着很大的感化.【进修交换】类型一:1、2的长方形?2、如图,是长方形鸡场平面示意图,一边靠墙,别的三面用篱笆笆围成,若篱笆笆总长为35m,所围的面积为150m2,则此长方形鸡场的长.宽分离为若干?3、如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.要围成苗圃的面积为81m2,矩形的长.宽分离为若干?类型二:1.某校为了美化校园,预备在一块长32米,宽20米的长方形场地上构筑若干条一样宽的道路,余下部分作草坪,并请全校同窗介入设计,如今有四位学生各设计了一种计划(如图),依据两种设计计划各列出方程,求图中道路的宽分离是若干?使图中的草坪面积为540米2.【元调真题】世博会中国国度馆模子的平面图如图所示,其外框是一个大正方形,中心四个全等的小正方形(暗影部分)是支持展馆的焦点筒,标识表记标帜了字母的五个全等的正方形是展厅.已知焦点筒的边长比展厅的边长的一半多1米,外框的面积刚好是四个焦点筒面积和的9倍.求焦点筒的边长.【才能晋升】如图,一个矩形正好分成六个正方形,个中最小的正方形的边长是1cm,求这个矩形的面积.【检测】1.如图,在宽为20米.长为30米的矩形地面上建筑两条同样宽的道路,余下部分作为耕地.若耕地面积须要551米2,则建筑的路宽应为()2.在一幅长为80cm,宽为50cm的矩形景致画的四周镶一条雷同宽度的金色纸边,制成一幅矩形挂图,如图所示,假如要便全部挂图的面积为5400cm2,设金色纸边的宽为x cm,那么知足的方程是()A.2653500x x+-= B.213014000x x+-=C.2653500x x--= D.213014000x x--=3.从一块长30cm,宽20cm的长方形合金板中心截去一个小长方形,做成一个四周宽度雷同的镜框,使镜框的面积占合金板面积的38,求镜框的宽度.4.如图①,要设计一幅宽20cm,长30cm的矩形图案,个中有两横两竖的彩条,横.竖彩条的宽度比为2︰3,假如要使所有彩条所占面积为原矩形图案面积的三分之一,应若何设计每个彩条的宽度?剖析:由横.竖彩条的宽度比为2︰3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地查找标题中的等量关系,将横.竖彩条分离分散,原问题转化为如图②的情形,得到矩形ABCD.联合以上剖析完成填空:如图②,用含x的代数式暗示:AB = cm;AD = cm;矩形ABCD的面积为cm2;列出方程并完成本题解答.5.用一块长28cm.宽 20cm的长方形纸片,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,求截去的小正方形的边长.6.某校九年级6个班的学生在黉舍矩形操场上举办庆新年的联谊运动,黉舍划分6个全等的矩形场地分给各班级之间留4米宽的过道(如图所示),已知操场的长是宽的2倍,6个班级所占场地面积的总和是操局势积的916,肄业校操场的宽为若干米.7.要对一块长60米.宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计计划如图①所示,矩形P.Q为两块绿地,其余为硬化路面,P.Q 两块绿地四周的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的14,求P.Q两块绿地四周的硬化路面的宽.(2)某同窗有如下假想:设计绿化区域为相外切的两等圆,圆心分离为O1和O2,且O1到AB.BC.AD的距离与O2到CD.BC.AD的距离都相等,其余为硬化地面,如图②所示,这个假想是否成立?若成立,求出圆的半径;若不成立,解释来由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时几何图形与一元二次方程
教学目标:
1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
2.继续探究YI实际问题中的数量关系,列出一元二次方程解应用题.
3.通过探究体会列方程的实质,提高灵活处理问题的能力.
教学过程:
一、情境导入
如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?
二、合作探究
探究点:用一元二次方程解决图形面积问题
【类型一】利用面积构造一元二次方程模型
(2014·甘肃陇南)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( ) A.x(5+x)=6 B.x(5-x)=6
C.x(10-x)=6 D.x(10-2x)=6
解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.
方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.
(2014·黑龙江农垦)现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.
解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.
解:设小正方形的边长为x cm ,则可得这个长方体盒子的底面的长是(80-
2x )cm ,宽是(60-2x )cm ,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x )(60-2x )=1500,整理得x 2-70x +825=0,解得x 1=55,x 2=15.又60-2x >0,∴x =55(舍).∴小正方形的边长为15cm.
方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可. 【类型二】整体法构造一元二次方程模型
(2014·甘肃兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x 米,根据题意可列出的方程为______________.
解析:解法一:把两条道路平移到靠近矩形的一边上,用含x 的代数式表示草坪的长为(22-x )米,宽为(17-x )米,根据草坪的面积为300平方米可列出方程(22-x )(17-x )=300.
解法二:根据面积的和差可列方程:22×17-22x -17x +x 2=300.
方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解. 【类型三】利用一元二次方程解决动点问题
如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A 出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s 的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC 的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC与CQ的长,根据面积
公式建立方程求解.
解:(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得
1
2
·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.
(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得
1
2
(6-x)·2x=
1
2
×
1
2
×6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于△ABC面积一半的时刻.
板书设计
教学反思
与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。