一元二次方程的应用(面积问题)

合集下载

人教版九年级数学上册《一元二次方程的应用——面积问题》教学设计

人教版九年级数学上册《一元二次方程的应用——面积问题》教学设计

一元二次方程的应用—面积问题知识与技能1.以一元二次方程解决的实际问题为载体,使学生初步掌握数学建模的基本方法.2.能根据实际问题正确列出一元二次方程解应用题.3.能够发现,归纳出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决问题.4.提高分析问题,解决问题的能力。

过程与方法通过自主探索、合作交流,使学生经历动手实践、展示讲解、探究讨论等活动,发展学生数学思维,培养学生合作学习意识、动手、动脑习惯,激发学生学习热情。

情感态度与价值观,培养学生数形结合的思想。

重点:二次函数的模型的刻画难点:二次函数的性质的应用教学过程创设情境引入新课.。

[创设情境引入新课]1. 请学生回顾举行的面积公式,并进行两个小题的列方程来巩固矩形的面积公式。

2问:若纸板长为80cm,宽60cm,做成的长方体盒子底面积1500cm2。

同学们想一想怎样求剪去的小正方形的边长。

3 把无盖长方体盒重新展开,又会得到原来的长方形纸板,帮助学生从实际问题1.学生们动手制作,在长方形纸板的四个角上截去四个大小相同的正方形,然后把四边折起做成一个无盖的长方体包装盒..2.小组讨论学生们不难发现截去的正方形的边长就是盒子的高.从学生熟悉的矩形的面积入手,能迅速激发学生参与学习的兴趣;让学生发现生活中有些实际问题可以通过列一元二次方程来解决,从而顺利地引入新课。

启发探究建立模型启发探究,建立模型如图,在一个长为20m,宽为15m的长方形空地,建成一个矩形的花园,要求在花园中修两条互相垂直且宽度相同的小路,剩余的地方种植花草,如图所示,要是种植花草的面积为266m2,那么小道的宽度应为多少米?。

1. 学生观察、相互讨论得出等量关系:(1)大矩形的面积—两条小路的面积=四个小矩形的面积之和;(2)大矩形的面积—四个小矩形的面积之和=两条小路的面积。

2、学生讨论,合作交流,请学生板演讲解.让学生经历从具体情境中抽象出一元二次方程的模型的过程,探索具体问题中的数量关系和变化规律,既起到了深化例题的作用,又复习了根的判别式的知识.一元二次方程应用教学反思这节课是“列一元二次方程解应用题”,讲授在几何问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。

一元二次方程的应用(面积问题)

一元二次方程的应用(面积问题)
2
这里a=1,b=-10,c=30,
b2 4ac (10)2 4 1 30 20 0
此方程无解. 所以用20cm长的铁丝不能折成面积为30cm2的矩形.
例4:如图,一块长和宽分别为60厘米和40厘米的长方 形铁皮,要在它的四角截去四个相等的小正方形,折 成一个无盖的长方体水槽,使它的底面积为800平方厘 米.求截去正方形的边长。
练习:如图是宽为20米,长为32米的矩形耕地,要修筑 同样宽的三条道路(两条纵向,一条横向,且互相垂直), 把耕地分成六块大小相等的试验地,要使试验地的面积 为570平方米,问:道路宽为多少米?
例2:要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积 是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如 何设计四周边衬的宽度? 分析:这本书的长宽之比是9:7,依题 央的矩形两边之比也为9:7
分析:这本书的长宽之比是9:7,正中央的矩 形两边之比也为9:7,由此判断上下边衬与 左右边衬的宽度之比也为9:7
解:设上下边衬的宽为9xcm,左右边衬宽为7xcm
3 依题意得 (27 18 x)(21 14 x) 27 21 4 63 3 解方程得 x 4
左右边衬的宽度为:
21 7 x 2
21 7
3 3 2 42 21 3 1.4 2 4
例2:要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积 是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如 何设计四周边衬的宽度?
变式:一块长方形铁皮的长是宽的两倍,四个角各截 去一个正方形,制成高是5cm,容积是500cm3的无盖长 方体容器,求这块铁皮的长和宽. 2xcm 高 长 xcm 宽 那么制成的长方体容器底面的宽是 (x-10)cm, ; 长是(2x-10)cm. .

一元二次方程解决面积问题

一元二次方程解决面积问题

一元二次方程解决面积问题面积问题在数学中广泛存在,而解决这类问题时,一元二次方程是一个重要的工具。

一元二次方程是一个带有一个未知数的二次方程,通常写作ax² + bx + c = 0,其中a、b和c是已知常数,且a不等于0。

当涉及到面积问题时,我们可以利用一元二次方程来求解。

例如,考虑一个长方形的问题:给定长方形的宽度x,其长度为(3x + 4)。

我们希望求解这个长方形的面积。

首先,我们需要确定长方形的面积公式。

长方形的面积等于长度乘以宽度,即A = x(3x + 4)。

然后,我们将这个面积公式转化为一个一元二次方程。

展开表达式,我们得到A = 3x² + 4x。

现在,我们要解决的问题是找到一个x的值,使得面积A达到最大或最小。

我们可以利用一元二次方程的特性来求解这个问题。

一元二次方程的图像是一个抛物线,对于正系数a,抛物线开口向上。

因此,当a大于0时,抛物线的最小值出现在顶点处。

通过求解一元二次方程的顶点,我们可以找到长方形的最大或最小面积。

一元二次方程的顶点的x坐标由公式x = -b/2a给出。

对于我们的长方形问题,a = 3,b= 4,所以x = -4/(2*3)。

计算得出x = -2/3。

将这个值代入原方程,我们可以计算出面积A的最小值或最大值。

这样,我们就可以通过求解一元二次方程来解决长方形的面积问题。

一元二次方程在解决面积问题以及其他数学问题中具有广泛的应用。

通过灵活运用一元二次方程的特性,我们能够解决各种各样的面积问题。

一元二次方程应用题专题训练

一元二次方程应用题专题训练

一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。

- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。

根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。

展开方程得到x²+2x - 100 = 0。

对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。

则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。

因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。

2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。

- 解析:设原来正方形铁皮的边长为x分米。

那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。

根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。

这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。

列一元二次方程解面积类应用题教案

列一元二次方程解面积类应用题教案

成共识6、(CAI动态演示)各图形中路的平行移动过程,师概括点明做此类题目的方法并板书过程。

7、观察图形⑸,能否用上述方法,又如何理解呢?同学们讨论得出将图⑹的路平行向四周移动可得图⑸(CAI动态演示)。

8、学生独立完成此题。

(CAI课件展示)例2、要设计一本书的封面,封面长27 cm ,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).1、讨论:此题与上题的图⑸有什么不同?又如何解答?2、师讲解:如何由封面及正中的长宽比例相同为9:7,得出上、下边衬宽与左、右边衬宽的比也是9:7.。

3、学生讨论得出直接设中央的长与宽的比9X:7X,从而列方程求解。

4、一人演板。

5、集体订正,强调结果验证。

1、如图,某中学为方便师生活动,准备在长30 m,宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?论形成的结果,易记熟且能灵活运用。

设疑,激发学生积极思考用题目之间的联系培养学生灵活处理问题的能力。

此方法不易理解,但可以借助图⑸,拓宽了学生的知识面。

设元的灵活性。

触类旁通,你有哪些心得体会。

拓展延伸总结反思2、有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?归纳小结:系统地总结此类应用题的解法。

布置作业:(略)板书设计:12.6 一元二次方程的应用(二)例1.略例2.略解:设………解:………………………………课后反思,本节课的收获,还有没有需要老师帮助解决的问题。

18米2米。

一元二次方程应用题(几何图形面积问题)

一元二次方程应用题(几何图形面积问题)

解题思路
假设长方形的长为l,宽为w, 通过列方程建立方程组,然后 求解得出面积。
解答与解析
通过解方程组,得出长方形的 长、宽和面积的具体数值,详 细解析计算过程和答案。
实例3 :三角形面积问题
问题提出
已知直角三角形的斜边长度为c, 某一直角边的长度为a,求三角形 的面积。
解题思路
根据已知条件,利用勾股定理和三 角形面积公式建立方程,然后求解 得出面积。
一元二次方程应用题(几 何图形面积问题)
本演示将介绍一元二次方程的应用,特别是在解决几何图形面积问题时的应 用。通过精彩的实例和深入的讲解,帮助你全面理解和掌握这一知识点。
一元二次方程介绍
简要介绍一元二次方程的概念、形式和解法方法,以及元二次方程解决几何图形的面积问题,通过代入、求解方程, 计算各种图形的面积。
解答与解析
通过解方程和应用三角形面积公式, 得出三角形的面积的具体数值,详 细解析计算过程和答案。
总结与实践建议
总结一元二次方程在解决几何图形面积问题中的应用要点,并提供一些建议和实践步骤,以帮助你更好地掌握这一 知识。
实例1:正方形面积问题
1
问题提出
给定正方形的对角线长度为d,求正方形的面积。
2
解题思路
假设正方形的边长为x,利用勾股定理建立方程,然后求解得出面积。
3
解答与解析
通过解方程,得出正方形的边长和面积的具体数值,详细解析计算过程和答案。
实例2 :长方形面积问题
问题提出
已知长方形的周长为P,求长方 形的面积。

12.解一元二次方程的实际应用——面积问题

12.解一元二次方程的实际应用——面积问题

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试
x
35-2x 当x=7.5时,35-2x=20>18,因此不合题意,舍去;
当x=10时,35-2x=15. 答:鸡场的长、宽分别为15米、10米.
例2 某校为了美化校园,准备在一块长32米,宽20米的长方形场地四周修
筑等宽的道路,中间的矩形部分作草坪, 若草坪的面积为540米2,求图中道路 的宽是多少? x x 32-2x 20-2x x x 解:设草坪四周道路的宽为x米, 则草坪的长为(32-2x)米,宽为(20-2x)米.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
高考总分:711分 毕业学校:北京八中 语文139分 数学140分
英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出

一元二次方程应用题面积问题

一元二次方程应用题面积问题

一元二次方程应用题面积问题1. 引言:面积问题的迷人世界大家好!今天咱们聊聊一元二次方程中的面积问题。

别急着皱眉头,这个话题其实特别贴近咱们的生活,学会了,能让你在解答一些日常问题时得心应手。

比如说,买草坪、规划花园、甚至是设计墙面装饰,这些都能用到哦!2. 面积问题的基础:概念简述2.1 什么是面积问题?说白了,面积问题就是要求你计算一个区域的大小。

在几何中,咱们经常需要找出矩形、三角形或者其他形状的面积。

那一元二次方程为什么会出现在这个问题里呢?好问题!因为有些面积计算需要用到二次方程来解决。

2.2 为什么用一元二次方程?一元二次方程,看起来有点复杂,但其实就是形如 ( ax^2 + bx + c = 0 ) 的方程。

它能帮我们解决一些涉及面积的实际问题,比如说,计算一个长方形的面积,特别是当这个长方形的边长变化时,就需要用到这样的方程了。

3. 实际例子:如何应用一元二次方程解决面积问题。

3.1 示例一:草坪面积假设你想在家里的花园里铺草坪,花园的长度是 ( x ) 米,宽度比长度少 5 米。

那么,花园的宽度就是 ( x 5 ) 米。

你知道草坪的面积是 84 平方米。

我们可以用一元二次方程来找出长度和宽度。

首先,面积 ( A ) = 长度 ( times ) 宽度。

根据题意,有:[ A = x times (x 5) = 84 ]。

简化一下,得到方程:[ x^2 5x = 84 ]接着,把 84 移到方程的另一边:[ x^2 5x 84 = 0 ]现在咱们可以用因式分解法或者求根公式来解这个方程。

因式分解的话,我们可以得到:[ (x 9)(x + 4) = 0 ]。

从中可以得到 ( x = 9 ) 或 ( x = 4 )。

因为长度不能是负数,所以我们取 ( x = 9 ) 米。

这样,花园的宽度就是 ( 9 5 = 4 ) 米。

3.2 示例二:墙面装饰再来一个例子,假如你要装饰一面墙,墙的高度比宽度多 2 米,装饰的总面积是60 平方米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的应用
------面积问题
【小知识大作用】
1、直角三角形面积公式:一般三角形面积公式:
2、正方形周长公式:正方形面积公式:
3、矩形周长公式:矩形面积公式:
4、梯形面积公式:
5、平行四边形面积公式:菱形面积公式:
6、圆的周长公式:圆的面积公式:
小贴士:这些简单的公式,在我们解决生活中的实际问题时发挥着很大的作用.
【学习交流】
类型一:
1、有一根1m长的铁丝,怎样用它围成一个面积为的长方形
2、如图,是长方形鸡场平面示意图,一边靠墙,另
外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为多少
3、如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.要围
成苗圃的面积为81m2,矩形的长、宽分别为多少
类型二:
1、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条一样宽的道路,余下部分作草坪,并请全校同学参与设计,现在有四位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路
的宽分别是多少使图中的草坪面积为540米2.
【元调真题】
世博会中国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个全等的正方形是展厅.已知核心筒的边长比展厅的边长的一半多1米,外框的面积刚好是四个核心筒面积和的9倍.求核心筒的边长.【能力提升】
如图,一个矩形恰好分成六个正方形,其中最小的正方形的边长是1cm,求这个矩形的面积。

【检测】
1.如图,在宽为20米、长为30米的矩形地面上修建
两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为()
A.1米 B.1.5米
C.2米 D.2.5米
2.在一幅长为80cm,宽为50cm的矩形风景画的四周
镶一条相同宽度的金色纸边,制成一幅矩形挂图,
如图所示,如果要便整个挂图的面积为5400cm2,设金色纸边的宽为x cm,那么满足的方程是()
A.2653500
x x
+-= B.213014000
x x
+-=
C.2653500
x x
--= D.213014000
x x
--=
3.从一块长30cm,宽20cm的长方形合金板中央截去一个小长方形,做成
一个四周宽度相同的镜框,使镜框的面积占合金板面积的3
8
,求镜框的宽度.
4.如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2︰3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度
分析:由横、竖彩条的宽度比为2︰3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:如图②,用含x的代数式表示:
AB = cm;
AD = cm;
矩形ABCD的面积为 cm2;
列出方程并完成本题解答.
5、用一块长28cm、宽 20cm的长方形纸片,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,求截去的小正方形的边长.
半径;若不成立,说明理由.
6、某校九年级6个班的学生在学校矩形操场上举行庆新年的联谊活动,学
校划分6个全等的矩形场地分给各班级之间留4米宽的过道(如图所示),

已知操场的长是宽的2倍,6个班级所占场地面积的总和是操场面积的9
16
求学校操场的宽为多少米.
7、要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、
Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形
ABCD面积的1
,求P、Q两块绿地周围的硬化路面的宽.
4
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为
O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,
其余为硬化地面,如图②所示,这个设想是否成立若成立,求出圆的。

相关文档
最新文档