分式函数的图像与性质

合集下载

常见分式函数的研究

常见分式函数的研究

03 分式函数的运算与变换
分式函数的加减法
分式函数的加减法可以通过通分实现,将分母统一后再进行加减运算。 在进行分式函数的加减法时,需要注意分母不能为零的情况,避免出现无意义的情况。 对于分式函数的加减法,需要注意运算的顺序,先进行乘除运算再进行加减运算。 在进行分式函数的加减法时,可以利用等价无穷小替换简化计算过程。
分式函数的极限与连续性
分式函数的极限:研究分式函数在某点的极限值,以及极限的运算法则
分式函数的连续性:探讨分式函数在某点的连续性,以及连续性的性质和判定方法
分式函数极限与连续性的关系:分析极限与连续性之间的联系,以及在数学分析中的应 用
分式函数极限与连续性的应用:举例说明分式函数极限与连续性在解决实际问题中的应 用
分式函数极值的几 何意义
分式函数极值在实 际问题中的应用
分式函数的凹凸性及拐点问题
分式函数的凹凸性 定义
拐点及其判定条件
分式函数凹凸性的 判别方法
分式函数拐点的求 法
06 分式函数的综合题解析
分式函数的解析几何问题
涉及直线与圆的位 置关系
涉及点到直线的距 离公式
涉及直线的斜率公 式
涉及圆的半径和弦 长公式
分式函数的优化问题
分式函数的极值条件 分式函数的单调性分析 分式函数的凹凸性判断 分式函数的最值求解方法
分式函数的极值问题
分式函数的极值条件 分式函数的极值计算方法 分式函数的极值应用场景 分式函数的极值与连续性的关系
分式函数的最大值与最小值问题
分式函数的极值条 件
分式函数的最大值 与最小值的求解方 法
04 分式函数的应用
分式函数在物理中的应用
力学中速度与时间的关系
电学中电流与电压的关系

《函数》数学PPT课件

《函数》数学PPT课件

经济领域中常见问题建模为函数关系
供需关系
在经济学中,供给和需求是两个重要的概念,它们之间的 关系可以用函数来表示。供给函数和需求函数的交点即为 市场均衡点。
生产成本与产量的关系
在制造业中,生产成本通常与产量有关。随着产量的增加 ,单位产品的成本可能会降低,这可以通过一个递减的函 数来表示。
投资回报与风险的关系
生活中常见问题建模为函数关系
路程、速度和时间的关系
s = vt,其中s是路程,v是速度,t是 时间。这是一个典型的线性函数关系 。
温度随时间的变化
在一天中,气温随时间变化而变化, 可以建立一个以时间为自变量、气温 为因变量的函数关系。
购物总价与数量的关系
总价 = 单价 × 数量。这也是一个线 性函数关系,可以通过函数图像来表 示。
三角函数定义
正弦、余弦、正切等函数 的定义域、值域及基本性 质。
三角函数图像
正弦、余弦、正切函数的 图像及其特点,如周期性 、振幅、相位等。
三角函数关系
同角三角函数关系式,如 平方关系、倒数关系、商 数关系等。
三角函数诱导公式和周期性质
诱导公式
通过角度的加减、倍角、半角等 变换,得到三角函数的诱导公式
当a>0时,二次函数有最小值,无最大值;当a<0时, 二次函数有最大值,无最小值
在实际问题中,可以通过二次函数的最值来解决最优化 问题
03
指数函数与对数函数
指数函数图像与性质
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
指数函数图像
当a>1时,图像在x轴上方,且随 着x的增大而增大;当0<a<1时, 图像在x轴上方,但随着x的增大而 减小。

第二节 分式线形函数及其映射性质

第二节 分式线形函数及其映射性质
它也是分式线性函数,其中 ( )() 0
注:
(1)分式线性函数的定义域可以推广到扩充复平
面 C。 (2)当 0时,规定它把 z 映射成 w ;
(3)当 0 时,规定它把z , z 映射成
w , w


二、分式线性函数的拓广
由此,我们可以解出分式线性函数。显然 这样的分式线性函数也是唯一的。
注:
z z1 : z3 z1 和 w w1 : w3 w1 分别称为 z z2 z3 z2 w w2 w3 w2 及 z1, z2, z, z3 的交比。w1, w2, w, w3 分别记为 (z1, z2 , z, z3 ) ,(w1, w2 , w, w3 )
2
2i
则得圆的复数表示:
azz z z d 0,
其中a,b,c,d是实常数,

1 2
(b

ic)
是复常数。
函数 w 1 把圆映射成为 z
dww w w a 0,
即w平面的圆(如果d=0,它表示一条直线, 即扩充w平面上半径为无穷大的圆)。
注解:
(1)、设分式线性函数把扩充z平面上的圆C映射 成扩充w平面上的圆C‘。于是,C及C’把这两个 扩充复平面分别分成两个没有公共点的区域, D1, D2 及 D1', D2 ',其边界分别是C及C'。
(3)、w rz 确定一个以原点为相似中心的相 似映射;
(4)、w

1 z
是由 z1

1 z
映射及关于实轴的对称
映射 w z1 叠合而得。
四、映射的性质
1、保圆性
规定:在扩充复平面上,任一直线看成半径是无 穷大的圆。 定理6.6 在扩充复平面上,分式线性函数把圆映射 成圆。

有理分式函数的图象及性质

有理分式函数的图象及性质

有理分式函数的图象及性质【知识要点】1.函数(0,)ax b y c ad bc cx d+=≠≠+(1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c-∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c- (5)奇偶性:当0a d ==时为奇函数。

(62.函数(0,0)b yax a b x =+>>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。

3.函数(0,0)b y ax a b=+><的图象和性质:【例题精讲】1.函数11+-=x y 的图象是 ( )A B C D2.函数23(1)1x y x x +=<-的反函数是 ( ) 3333.(2) . (2) . (1) .(1)2222x x x x A y x B y x C y x D y x x x x x ++++=<=≠=<=≠---- 3.若函数2()x f x x a+=+的图象关于直线y x =对称,则a 的值是 ( ) . 1 . 1 . 2 .2A B C D --4.若函数21()x f x x a-=+存在反函数,则实数a 的取值范围为 ( ) 11. 1 . 1 . .22A aB aC aD a ≠-≠≠≠- 5.不等式14x x>的解集为 ( ) 1111111. (,0)(,) . (-,)(,) . (,0)(0,,+) .(,0)(0,)2222222A B C D -+∞∞-+∞-∞-6.已知函数2()ax b f x x c+=+的图象如图所示,则,,a b c 的大小关系为 ( ) . . . .A a b c B a c b C b a c Db c a >>>>>>>>7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。

反比例、分式函数

反比例、分式函数

反比例函数、一次分式函数班级__________姓名____________ ______年____月____日 1、 理解分式函数的概念2、 掌握一次分式函数的图像画法及性质3、 掌握反比例函数的性质 【教学过程】一、 知识梳理: 2、 一次分函数的定义我们把形如(0,)cx dy a ad bc ax b +=≠≠+的函数称为一次分函数。

4、 一次分函数(0,)cx dy a ad bc ax b+=≠≠+的图象和性质图象:其图象如图所示.第 2 页 共 4 页定义域:_________________;值域:____________________;对称中心:___________________;渐近线方程:______________________; 单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)ba-+∞分别单调递减;当ad<bc 时,函数在区间(,)b a -∞-和(,)ba-+∞分别单调递增;二、回归教材1.函数111--=x y 的图象是 . 2.已知反比例函数x y 6-=的图象经过点),2(a P ,则a=__________.3.()10xy x x-=≠的值域是 . 4.函数21()3x f x x +=+的单调增区间是 .5.函数21()3x f x x -=+的对称中心是 .6.函数()xf x x=是 函数.(填“奇”“偶”“非奇非偶”) 三、典型题型: 【例1】填空题:(1)函数21()3x f x x -=+(()5,2-∈x ),则()x f 的值域是________. (2)函数21()3x f x x -=+(())5,2(4,5⋃--∈x ),则()x f 的值域是________.(3)已知函数()ax x x f -+=12,若*∈∀N x ,()()5f x f ≥恒成立,则a 的取值范围是 . (4)若函数21()x f x x a+=+的图象关于直线y =x 对称,则实数a = .第 3 页 共 4 页【例2】(2004年江苏)设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有几个?【例3】已知函数2()1ax af x x +-=+,其中a R ∈。

复变函数7.2第7.2节分式线性函数

复变函数7.2第7.2节分式线性函数
即w平面的圆(如果d=0,它表示一条直线,即 扩充w平面上半径为无穷大的圆)。
注解:
注解1、设分式线性函数把扩充z平面上的圆C映 射成扩充w平面上的圆C‘。于是,C及C’把这两 个扩充复平面分别分成两个没有公共点的区域 ,D1, D2 及D1', D2',其边界分别是C及C'。
注解2、此分式线性函数把 D1映射成之中 D1', D2' 的一个区域;
注解3、利用此定理也可以解释关于直线的对称点 。
y
w1
z x
w 1/ z
引理4.1:
引理4.1 不同两点 z1 及 z2 是关于圆C的对称点的 必要与充分条件是:通过 z1 及 z2 的任何圆与圆 C直交。
证明:如果C是直线(半径为无穷大的圆);或 者C是半径为有限的圆, z1 及 z2 之中有一个是 无穷远点,则结论显然。
w az b , cz d
定理 4.2的证明:
那么,由
w1

az1 cz1

b d
,
w2

az2 cz2

b d
,
w2

az2 b cz2 d

w

w1

(az

b)(cz1 d ) (az1 b)(cz (cz d )(cz1 d )

d
)
(z z1)(ad bc)
分式线性函数的反函数为 z w , w
它也是分式线性函数,其中 ( )() 0
注解:
注解1、当 0 时,所定义的分式线性函数是 把z平面双射到w平面,即把C双射到C的单叶解 析函数;

(完整版)分式函数的图像与性质

(完整版)分式函数的图像与性质

分式函数的图像与性质1、分式函数的概念形如22(,,,,,)axbx c y a b c d e fR dx ex f ++=∈++的函数称为分式函数。

如221x y x x +=+,212x y x +=-,413x y x +=+等。

2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。

如22112x xy +=-,sin 23sin 3x y x +=-,23y x =+等。

※ 学习探究 探究任务一:函数(0)by ax ab x=+≠的图像与性质 问题1:(,,,)ax by a b c d R cx d+=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。

【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。

如下表所示:12111211y y y x x x =−−→=−−→=+--右上 由此可以画出函数211x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞U ; 对称中心:(1,2)。

【反思】(,,,)ax by a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定?【小结】(,,,)ax by a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。

分式函数(,,,)ax by a b c d R cx d+=∈+的图像与性质 (1)定义域:{|}dx x c ≠- ;(2)值域:{|}ay y c≠;(3)单调性:单调区间为(,),(,+)d dc c-∞--∞;(4)渐近线及对称中心:渐近线为直线,d a x y c c=-=,对称中心为点(,)d ac c-;(5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)by ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x=+的图像,并结合函数图像指出函数具有的性质。

函数详解之分式函数

函数详解之分式函数

函数详解之分式函数30.函数xa x x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.解:(1)显然函数)(x f y =的值域为),22[∞+;(2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f > 成立, 即0)2)((2121>+-xx ax x 只要212x x a -<即可,由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a , 故a 的取值范围是]2,(--∞; (3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a-上单调减,在]1,[22a -上单调增,无最大值,当22a x-=时取得最小值a22-.31.已知函数21()(0,0,)ax f x a b c R bx c+=>>∈+是奇函数,当0x >时,有()f x 最小值2,其中b N ∈,且5(1)2f =.(Ⅰ)试求函数()f x 的解析式;(Ⅱ)问函数()f x 的图像上是否存在关于点(1,0)对称的两点?若存在,求出点的坐标;若不存在,请说明理由. 解 (Ⅰ)由2211()()ax ax f x f x bx cbx c++-=-⇒=--++,即bx c bx c -+=--,0c ∴= ……………………………………………2分0,0,0a b c >>= ,21()ax f x bx+∴=b a∴= ……………………4分又515(1)22a f b+<∴<,即221525202b b b b+<⇒-+<12()1,2b b N b⇒<<∈⇒=∴11abc=⎧⎪=⎨⎪=⎩……………………………6分(Ⅱ)设00(,)M x y关于点(1,0)的对称点为N,则00(2,)N x y--,………………8分00020000121122y xxx xy xx⎧=+⎪⎪∴⇒--⎨⎪-=-+⎪-⎩⇒01222xy⎧=+⎪⎨=⎪⎩或01222xy⎧=-⎪⎨=-⎪⎩…………11分∴存在两点(12,22)M+与(12,22)N--关于点(1,0)对称.………12分32.已知函数2211()af xa a x+=-,常数0>a.(1)设0m n⋅>,证明:函数()f x在[]m n,上单调递增;(2)设0m n<<且()f x的定义域和值域都是[]m n,,求常数a的取值范围.解:(1)任取1x,],[2nmx∈,且12x x<,12122121()()x xf x f xa x x--=⋅,因为12x x<,1x,],[2nmx∈,所以12x x>,即12()()f x f x<,故)(xf在],[nm上单调递增.或求导方法.(2)因为)(xf在],[nm上单调递增,)(xf的定义域、值域都是⇔],[nm(),()f m m f n n==,即nm,是方程2211aa a xx+=-的两个不等的正根1)2(222=++-⇔xaaxa有两个不等的正根.所以04)2(222>-+=∆aaa,222a aa+>⇒12a>33.已知定义域为R的函数abxfxx++-=+122)(是奇函数.(1)求a,b的值;(2)若对任意的Rt∈,不等式0)2()2(22<-+-ktfttf恒成立,求k的取值范围.解(1)因为)(xf是R上的奇函数,所以1,021,0)0(==++-=babf解得即从而有.212)(1axfxx++-=+又由aaff++--=++---=1121412)1()1(知,解得2=a(2)解法一:由(1)知,121212212)(1++-=++-=+xx xx f由上式易知)(x f 在R 上为减函数,又因)(x f 是奇函数,从而不等式0)2()2(22<-+-k t f t t f 等价于).2()2()2(222k t f k t f t t f +-=--<-因)(x f 是R 上的减函数,由上式推得.2222k t t t +->- 即对一切,0232>--∈k t t R t 有从而31,0124-<<+=∆k k 解得解法二:由(1)知,2212)(1++-=+x xx f又由题设条件得0221222121221222222<++-+++-+--+--k t kt t t tt即0)12)(22()12)(22(2222212212<+-+++-+-+--+-kt t t tt k t整理得12232>--kt t,因底数2>1,故0232>--k t t上式对一切R t ∈均成立,从而判别式.31,0124-<<+=∆k k 解得34.已知函数()a f x x x =-.(1)若13log [8()]y f x =-在[1,)+∞上是单调减函数,求实数a 的取值范围;(2)设1,a x y k =+=,若不等式22()()()2k f x f y k≥-对一切,(0,)x y k ∈恒成立,求实数k的取值范围.解: (1)令8a t x x=-+,则要使13log [8()]y f x =-在[1,)+∞上是单调减函数,则/21080a t xa t x x ⎧=-≥⎪⎪⎨⎪=-+>⎪⎩在[1,)+∞上恒成立,则21180a x a ⎧≥-≥-⎨-+>⎩所以, 19a -≤< (7)分 (2) 2222111()()()()()x y x yf x f y x y x y xy-++=--=222221212(0)4k xy x yk kxy xy xyxy-++-==++<≤. (10)分 令u xy=,则221()()2,(0,]4k kf x f y u u u-=++∈当2214kk -≥即0252k <≤-时,21()()2k f x f y u u -=++在2(0,]4ku ∈上为减函数,所以 2222min22142[()()]22()4424kk kk f x f y kkk-=++=+-=-即当0252k <≤-时,22()()()2k f x f y k≥-……………………………12分 当2214kk -<,222min 242[()()]2122()42kk f x f y k kk=-+<+-=-与题意不合.所以,所求的k 的取值范围为 : 0252k <≤-. ………………………14分35.(本小题满分14分)设关于x 的方程2x 2-ax -2=0的两根为α、β(α<β),函数14)(2+-=x a x x f .(Ⅰ)求f (α)·f (β)的值;(Ⅱ)证明f (x )是[α,β]上的增函数;(Ⅲ)当a 为何值时,f (x )在区间[α,β]上的最大值与最小值之差最小? 解:(Ⅰ)由题意知α+β=2a ,α·β=-1,∴α2+β2=242+a,∴f (α)·f (β)=1)(41614142222222+++++-=+-⋅+-ββαβααβββααa aa a a41241216222-=++++--=aa a .……………………………………………………… 4分(Ⅱ)证明:当α≤x ≤β时,22\22\\)1()1)(4()1()4()(++--+-=xx a x xa x x f222222)1()22(2)1(2)4()1(4+---=+⋅--+=x ax x x xa x x ………… 6分∵α、β是方程2x 2-ax -2=0的两根, ∴当α≤x ≤β时,恒有2x 2-ax -2≤0, ∴)(\x f ≥0,又)(x f 不是常函数,∴)(x f 是[α,β]上的增函数.……………………………………………… 9分 (Ⅲ)f (x )在区间[α,β]上的最大值f (β)>0,最小值f (α)<0,又∵| f (α)·f (β) |=4, ……………………………………………………… 10分 ∴f (β)-f (α)=| f (β)|+| f (α)|≥4)()(2=⋅βαf f当且仅当| f (β)|=| f (α)|=2时取“=”号,此时f (β)=2,f (α)=-2 …… 11分∴⎪⎩⎪⎨⎧=--=+-)2(022)1(21422 ββββa a……………………………………… 13分由(1)、(2)得0)16(2=+a a ,∴a =0为所求.…………………………………………………… 14分 36.已知函数)0()(>+=t xt x x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64 , 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值.解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(xt x f -=', ∴切线PM 的方程为:))(1()(12111x x x t x t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , ………………………………………………(1) …… 2分同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * ) ……………………… 4分22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-=])1(1][4)[(22121221x x t x x x x -+-+=,把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g . ……………………5分(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴1111--+x x t x =1222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) …………… 7分把(*)式代入(3),解得21=t .∴存在t ,使得点M 、N 与A 三点共线,且 21=t . ……………………9分(Ⅲ)解法1:易知)(t g 在区间]64,2[nn +上为增函数,∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i ,则)64()()()()2(21n n g m a g a g a g g m m +⋅≤+++≤⋅ .依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, …………11分)64(20)n6420(n 22022022nn m +++<⋅+⋅,即)]64()n64[(n 612nn m +++<对一切的正整数n 恒成立,.1664≥+nn , 3136]1616[61)]64()n64[(n 6122=+≥+++∴nn ,3136<∴m .由于m 为正整数,6≤∴m . ……………………………13分 又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6. ……………………………14分 解法2:依题意,当区间]64,2[nn +的长度最小时,得到的m 最大值,即是所求值.1664≥+nn ,∴长度最小的区间为]16,2[, …………………11分当]16,2[∈i a )1,,2,1(+=m i 时,与解法1相同分析,得)16()2(g g m <⋅,解得3136<m .37.已知函数xa x y +=有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数y =x +x b2(x >0)的值域为[6,+∞),求b 的值; (2)研究函数y =2x +2xc(常数c >0)在定义域内的单调性,并说明理由;(3)对函数y =x +xa 和y =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数)(x F =nx x )1(2++nx x)1(2+(n 是正整数)在区间[21,2]上的最大值和最小值(可利用你的研究结论).(理)解:(1)函数2(0)by x x x=+>的最小值是2b2,则226b=,∴2log 9b =(2)设120x x <<,222221212122222112()(1)c c c y y x x x x xxx x-=+--=--⋅.当412c x x <<时,21y y >,函数22c y x x=+在[4c ,+∞)上是增函数;当4120x x c <<<时,21y y <,函数22c y x x=+在(0,4c ]上是减函数.又22c y x x=+是偶函数,于是,该函数在(-∞,-4c ]上是减函数, 在[-4c ,0)上是增函数;(3)可以把函数推广为(0)n na y x a x=+>,其中n 是正整数.当n 是奇数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数,在(-∞,-na 2]上是增函数, 在[-n a 2,0)上是减函数;当n 是偶数时,函数n na y x x=+在(0,n a 2]上是减函数,在[n a 2,+∞) 上是增函数, 在(-∞,-na 2]上是减函数, 在[-n a 2,0)上是增函数;21()()nF x x x=++nx x)1(2+=)1()1()1()1(323232321220nnn n rn rn r n n n n nnn xx C xx C xxC xxC ++++++++----因此()F x 在 [21,1]上是减函数,在[1,2]上是增函数.所以,当12x =或2x =时,()F x 取得最大值9924nn⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;当1x =时,()F x 取得最小值12n +.38已知函数()()2211xf x x R x x-=∈++.(Ⅰ)求函数()f x 的单调区间和极值; (Ⅱ)若()2220t t t e x e x e +++-≥对满足1x ≤的任意实数x恒成立,求实数t 的取值范围(这里e 是自然对数的底数);(Ⅲ)求证:对任意正数a 、b 、λ、μ,恒有2222a b a b a b f f λμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫+++-⎢⎥ ⎪ ⎪ ⎪+++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥22a b λμλμ+-+.【解】(Ⅰ)()()()()()()()()22222223232121111x x x x xx x f x x x x x ⎡⎤⎡⎤---+⋅----++-+-⎣⎦⎣⎦'==++++∴()f x 的增区间为()23,23---+,()f x 减区间为(),23-∞--和()23,-++∞.极大值为()23233f -+=,极小值为()23233f --=-.…………4′(Ⅱ)原不等式可化为()22211t x e x x-++≥由(Ⅰ)知,1x ≤时,)(x f 的最大值为332.∴()22211xx x-++的最大值为433,由恒成立的意义知道433t e ≥,从而433t ln≥…8′(Ⅲ)设()()()22101xg x f x x x x x x-=-=->++则()()()()()243222224124621111x x x x x x g x f x x x x x -++++++''=-=-=-++++.∴当0x >时,()0g x '<,故()g x 在()0,+∞上是减函数,又当a 、b 、λ、μ是正实数时,()()222220a b a b a bλμλμλμλμλμλμ-⎛⎫++-=- ⎪+++⎝⎭≤ ∴222a b a bλμλμλμλμ⎛⎫++ ⎪++⎝⎭≤. 由()g x 的单调性有:222222a b a b a b a b f f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥, 即222222a b a b a b a bf f λμλμλμλμλμλμλμλμ⎡⎤⎛⎫⎛⎫⎛⎫++++--⎢⎥ ⎪ ⎪ ⎪++++⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦≥.…………12′ 39.(本题12分) 已知函数()1bx c f x x +=+的图象过原点,且关于点(-1,1)成中心对称.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若数列{}n a (*)n N ∈满足:()2110,1,()n n n a a a f a +>==,求数列{}n a 的通项n a ; (Ⅲ)若数列{}n a 的前n 项和为n S ,判断n S 与2的大小关系,并证明你的结论. 解 (Ⅰ) 因为函数()1bx c f x x +=+ 的图象过原点,所以c =0,即()1bx f x x =+.又函数()11bx bf x b x x ==-++的图象关于点(-1,1)成中心对称,所以1,()1xb f x x ==+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式函数的图像与性质1、分式函数的概念形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。

如221x y x x+=+,212x y x +=-,413x y x +=+等。

2、分式复合函数形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。

如22112x xy +=-,sin 23sin 3x y x +=-,y =等。

※ 学习探究探究任务一:函数(0)b y ax ab x=+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d +=∈+的图像是怎样的? 例1、画出函数211x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。

【分析】212(1)112111x x y x x x --+===+---,即函数211x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。

如下表所示:由此可以画出函数211x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞;值域:(,2)(2,)-∞+∞;对称中心:(1,2)。

【反思】(,,,)ax b y a b c d R cx d+=∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax b y a b c d R cx d+=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。

分式函数(,,,)ax b y a b c d R cx d +=∈+的图像与性质 (1)定义域:{|}d x x c≠- ; (2)值域:{|}a y y c≠; (3)单调性:单调区间为(,),(,+)d d c c-∞--∞; (4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d a c c-; (5)奇偶性:当0a d ==时为奇函数;(6)图象:如图所示问题2:(0)b y ax ab x=+≠的图像是怎样的? 例2、根据y x =与1y x =的函数图像,绘制函数1y x x =+的图像,并结合函数图像指出函数具有的性质。

【分析】画函数图像需要考虑函数的定义域、值域、单调性与单调区间,奇偶性,周期性,凸凹性(此点不作要求),关键点坐标(最值点、与坐标轴交点)、辅助线(对称轴、渐近线)。

绘图过程中需综合考虑以上要素,结合逼近与极限思想开展。

解:函数的定义域为:{|0}x x ≠;根据单调性定义,可以求出1y x x=+的单调区间 增区间:(,1][1,)-∞-+∞减区间:[1,0),(0,1]-函数的值域为:(,2][2,)-∞-+∞函数的奇偶性:奇函数函数图像的渐近线为:,y x =0x =函数的图像如下:【反思】如何绘制陌生函数的图像?研究新函数性质应从哪些方面入手?【小结】分式函数(,0)b y ax a b x=+>的图像与性质: (1)定义域:{|0}x x ≠;(2)值域:{|y y y ≥≤-或;(3)奇偶性:奇函数;(4)单调性:在区间(,[,+)b a-∞∞上是增函数,在区间上为减函数; (5)渐近线:以y 轴和直线y ax =为渐近线;(6)图象:如右图所示例3、根据y x =与1y x =的函数图像,绘制函数1y x x =-的图像,并结合函数图像指出函数具有的性质。

【分析】结合刚才的绘图经验,不难绘制出1y x x=-的图像 解:函数的定义域为:{|0}x x ≠;根据单调性定义,可以判断出1y x x=-的单调性,单调增区间为:(,0),(0,)-∞+∞函数的值域为:R函数的奇偶性:奇函数函数图像的渐近线为:,y x =0x =函数的图像如下:【反思】结合刚才的两个例子, 1y x x =--与1y x x=-的图像又是怎样的呢?思考12+y x x =与23y x x =-的图像是怎样的呢?(,,0)b y ax a b R ab x=+∈≠的图像呢? 函数1y x x=--的图像如下,绘制的过程可以根据刚才的绘图经验。

【注】11()y x x x x=--=-+,由于()y f x =与()y f x =-的图像关于x 轴对称,所以还可以根据1y x x =+的图像,对称的画出1y x x =--的图像。

同样的道理1y x x =-的图像与1y x x=-的图像关于x 轴对称,所以图像如下:【小结】(,,0)b y ax a b R ab x=+∈≠的图像如下: (i )(0,0)b y ax a b x=+>> (ii) (0,0)b y ax a b x=+>< (iii) (0,0)b y ax a b x=+<>(iv) (0,0)b y ax a b x=+<<[来源:学+科+网Z+X+X+K] (,,0)b y ax a b R ab x=+∈≠的单调性、值域、奇偶性等,可以结合函数的图像研究。

探究任务二:函数22(,,,,,)ax bx c y a b c d e f R dx ex f++=∈++的图像与性质 问题3:函数2211x x y x ++=+的图像是怎样的?单调区间如何? 【分析】22212(1)3(1)222(1)3111x x x x y x x x x +++-++===++-+++ 所以2211x x y x ++=+的图像与22y x x=+的图像形状完全相同,只是位置不同。

图像的对称中心为:(1,3)--单调增区间为:(,2][0,)-∞-+∞单调减区间为:[2,1),(1,0]---值域:(,7][1,)-∞-+∞图像如下:【反思】函数2121x y x x +=++的性质如何呢?单调区间是怎样的呢? 【小结】对于分式函数22(,,,,,)ax bx c y a b c d e f R dx ex f++=∈++而言,分子次数高于分母时,可以采用问题3中的方法,将函数表达式写成部分分式,在结合函数的图像的平移,由熟悉的四类分式函数的图像得到新的函数图像,再结合函数的图像研究函数的性质。

对于分子的次数低于分母的次数的时候,可以考虑分子分母同时除以分子(确保分子不为0),再着力研究分母的性质与图像,间接地研究整个函数的性质。

如: 二次分式函数具有形式22(,()0)Ax Bx C y f x Dx A Ex B F++==++不同时为. 我们将要研究它的定义域,值域,单调性,极值.1. 定义域和有界性20Dx Ex F ++=当方程有解,设12122,0(=Dx Ex x x x x F ++≤)是两个根 .则函数定义域12{|}x x x x x ∈≠∧≠R .当122211220,lim 0,lim x x x x Ax Bx C Ax Bx C →→++≠=∞++≠=∞或.此时函数无界.当221122=0=0Ax Bx C Ax Bx C ++++且,函数有界且为常值函数(很少遇到的情况,比如2211x y x -=- ).所以通常当240E DF -≥ ,二次分式函数是无界的.12,x x x x == 是函数的渐近线.当240E DF -<,函数定义域为R .函数有界.2. 单调性,极值,值域当240E DF -<,20Dx Ex F ++≠,可以将函数化为()22=.y Dx Ex F Ax B x x C ++++的方程 .()()2B 0x Dy A x Ey Fy C -+-+-=即.对于值域中的每一个y,方程都有实数解,0,=00,,Dy A Dy A -≠-∆≥当验当证是否有解 .这样就可以求出值域.值域的两个端点(方程的两个解)为函数极大值和极小值.但为了计算在何处取得极值,需将极值代入()()2B 0x Dy A x Ey Fy C -+-+-=函数解出x ,计算可能有点慢.下文会给出一个简便的计算方法.lim ()x A f x D →∞= ,根据极值与A D 的大小即可判断单调区间.240E DF -<这种情况最多有三个单调区间.当240E DF -≥,用判别式法可能会产生增根.此时通常会解出y ∈R .出现这种情况,求解20Dx Ex F ++=和20Ax Bx C ++= .分式可化为一次分式,根据定义去求出这个一次分式值域.比如()()()()2221121311221222x x x x y x x x x x x x x-+-+-+====-≠≠--++-++++且 分离变量和换元再用基本不等式求解也是解决二次分式的常规方法,再.下面给出一个具体例子.223325x x x y x +--++= .首先定义域2{|50}x x x -++≠ 解得((111){|(1}22x x x ∧≠≠ .分离分子中的二次项得261335x y x x +=-+-++ . 13613,6t t x x -=+=令 .代入得函数值域(-)∞∞Ç 根据2233m 2l 35i x x x x x →∞+-++=--,可判断出单调区间((((((((1111(-,13),(13,1),(1,+) 66221111(13,1),(1,13)6226∞∞--+---增区间减区间 共有5个单调区间顺便再算一下函数零点((212113320=3,=366x x x x +----解得= 有了这些信息,我们很容易画出函数大致图像。

相关文档
最新文档