相似三角形的复习的学案姓名
(完整版)相似三角形专题复习教案

龙文教育学科老师个性化教案教师学生姓名梁瀚文上课日期学科数学年级九年级教材版本类型知识讲解□:考题讲解□:本人课时统计第()课时共()课时学案主题相似三角形课时数量(全程或具体时间)第()课时授课时段教学目标教学内容相似三角形专题复习个性化学习问题解决查漏补缺,巩固提升教学重点、难点用相似三角形的判定与性质解决简单的几何问题和实际问题。
考点分析理解相似三角形的概念,总结相似三角形的对应角相等、对应边成比例等性质,掌握它们的基本运用。
教学过程学生活动教师活动知识要点1.相似三角形的定义:对应角相等,对应边的比相等的两个三角形。
对应边的比叫做相似比。
三条平行线截两条直线所得的对应线段的比相等。
2.相似三角形的判定:①平行法②三组对应边的比相等(类似于三角形全等判定“SSS”)③两组对应边的比相等,且夹角相等(类似于三角形全等判定“SAS”)④两角对应相等(AA)直角三角形中斜边、直角边对应比相等(类似于直角三角形全等判定“HL”)。
相似三角形的基本图形:判断三角形相似,若已知一角对应相等,可先考虑另一角对应相等,注意公共角或对顶角或同角(等角)的余角(或补角)相等,若找不到第二对角相等,就考虑夹这个角的两对应边的比相等;若无法得到角相等,就考虑三组对应边的比相等。
3.相似三角形的性质:①对应角相等②对应边的比相等③对应的高、中线、角平分线、周长之比等于相似比④对应的面积之比等于相似比的平方。
4.相似三角形的应用:求物体的长或宽或高;求有关面积等。
(三)考点精讲 考点一:平行线分线段成比例 例1、(2011广东肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC = 4,CE = 6,BD = 3,则BF =( )A . 7B . 7.5C . 8D . 8.5例2(2012•福州) 如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)练习:1.(2011湖南怀化,6,3)如图所示:△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( ) A .9 B .6 C .3 D .4ECDB A2.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是( ) A .ED DF EA AB = B . DE EF BC FB = C .BC BF DE BE = D . BF BCBE AE=a b c A B C D EF m n3.(2012•孝感)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D ,若AC=2,则AD 的长是( ) A .512- B .512+ C .51- D .51+考点二:相似三角形的判定 例3、(2011湖北荆州)如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( )A .1对B .2对C .3对D .4对 例4、(2010江苏泰州)一个铝质三角形框架三条边长分别为24cm 、30cm 、36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm 、45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( ) A.0种 B. 1种 C. 2种 D. 3种例5(2012•徐州)如图,在正方形ABCD 中,E 是CD 的中点,点F 在BC 上,且FC= 14BC .图中相似三角形共有( ) A .1对 B .2对C .3对D .4对例6(2012•资阳)(1)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD :GC :EB 的结果(不必写计算过程);(2)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD :GC :EB ; (3)把图(2)中的正方形都换成矩形,如图(3),且已知DA :AB=HA :AE=m :n ,此时HD :GC :EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).练习: 1.(2011江苏无锡,7,3分)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA ∶OC = OB ∶OD ,则下列结论中一定正确的是 ( ) A .①和②相似 B .①和③相似GEADB CP FC .①和④相似D .②和④相似2.(2011新疆乌鲁木齐,10,4分)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且1BP =,点D 为AC 边上一点若60APD ∠=︒,则CD 的长为 A .12B .23C .34D .13. (2012•攀枝花)如图,△ABC ≌△ADE 且∠ABC=∠ADE ,∠ACB=∠AED ,BC 、DE 交于点O .则下列四个结论中,①∠1=∠2;②BC=DE ;③△ABD ∽△ACE ;④A 、O 、C 、E 四点在同一个圆上,一定成立的有( ) A .1个 B .2个 C .3个 D .4个4. (2012•义乌市)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数;(2)如图2,连接AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.A B CDO① ②③④(第7题)考点三:相似三角形的性质 例7、(2010山东烟台)如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BC D .AB ·AD =AD ·CD 例8、(2011浙江嘉兴)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33(C )34(D )36例9(2012•重庆)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则ABC 与△DEF 的面积之比为 .练习1.(2011青海西宁,10,3分)如图6,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为 A .9 B .12 C .16 D .182.(2011四川雅安,9,3分)如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A .△ADE ∽△ABCB .AFC ABF S S △△= C .ABC ADE S S △△41=D .DF=EF ABCDE G FOABDC(例5) A B C DE3.(2011四川内江,加试2,6分)如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,DF 过EC 的中点G 并与BC 的延长线交于点F ,BE 与DF 交于点O .若△ADE 的面积为S ,则四边形BOGC 的面积= . 4.(2011辽宁丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________.Q PECDBA考点四 位似例10(2012•玉林)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=32,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( ) A .16 B .13 C .12 D . 23考点四:相似三角形的应用 例6、(2010安徽芜湖)如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD,AB ∥CD,AB=2m,CD=6m,点P 到CD 的距离是2.7m,则_______m .例7、(2011青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm .练习:1.(2011湖北黄石,13,3分)有甲乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4).将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD,则AB与BC的数量关系为。
相似三角形复习

课题:相似三角形的判定、位似主备:严国香 课型:复习课 审核:八年级数学组班级 姓名 学号:【学习目标】掌握相似三角形的识别方法和性质;能用相似的方法画放大或缩小的相似图形。
【重点难点】重点:有条理的进行证明【基础练习】 1.填空:(1)已知:DE ∥BC ,则________∽________。
(2)已知:∠A =∠D ,则________∽________。
(3)已知:∠DAB =∠CAE ,AB ·AD =AE ·AC ,则∠ADE =________。
(4)已知:∠ABP =∠CDP ,则PA ·CD =________。
(5)已知:Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,________∽________∽________。
(6)已知:∠ABC =90°,∠ACB =30°,AD =2AC ,CD =2BC ,则∠D =________。
2.位似变换:位似图形:如果两个图形不仅是 图形,而且每组对应点所在的直线都 ,那么这样的两个图形叫做位似图形,这个点叫做 ,这时的相似比又称为 。
3.已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD.家长签字教师 评价【例题教学】例1、如图,1l ∥2l ∥3l ,直线AB 分别与1l ,2l ,3l 交于点A 、B 、C ,直线DE 分别与1l ,2l ,3l 交于点D 、E 、F ,AB=3,BC=4,DE=2,试探索求EF 长的方法.例2、如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=41CD ,下列结论:①∠BAE=30°,②AE ⊥EF ,③△ABE ∽△AEF ,④△ADF ∽△ECF ,⑤AF=AB+FC , 其中正确的结论为 (填序号),并选择其中的一个证明。
例3、如图:在⊿ABC 中,AB=10 cm ,BC=20cm ,点P 从点A 开始沿边AB 向点B 以2 cm/s 的速度移动,点Q 从B 点开始沿边BC 以2 cm/s 的速度移动。
相似三角形复习课学案

相似形复习课学案 总编号:NO. 22命题人:陈光双 审核人:初二数学组学习目标:1.熟练掌握相似三角形的基础知识 2.灵活应用相似三角形的知识解决数学问题重点、难点:相似三角形知识的应用课前复习:比例的性质 比例的基本性质 和比性质 等比性质定义相似三角形对应中线,对应高,对应角平分线的比等于 相似三角形 性质 相似三角形周长的比等于 相似三角形面积的比等于1. ,两三角形相似2. ,两三角形相似 判定3. ,两三角形相似直角三角形的判定方法是课中探究:一.基础巩固(易错点):1. △ ABC 中,D 、E 分别是AB 、AC 上的点,且∠AED= ∠ B , 那么△ AED ∽ △ ABC ,从而AD ( ) =DEBC2.如图,DE ∥BC, AD:DB=2:3, 则S △ AED:S △ ABC =___.DACB ABCDEA BCDE第1题第2题第5题3. 已知三角形甲各边的比为3:4:6, 和它相似的三角形乙的最大边为10cm , 则三角形乙的最短边为______cm.4.等腰三角形ABC 的腰长为18cm ,底边长为6cm,在腰AC 上取点D, 使△ABC ∽ △BDC, 则DC=______.5. 如图,D 是△ABC 一边BC上一点,连接AD,使 △ABC ∽ △DBA 的条件是( ).A.AC:BC=AD:BDB. AC:BC=AB:ADC. AB 2=CD·BCD.AB 2=BD·BC 二·基础巩固(易漏点)6·D 、E 分别为△ABC 的AB 、AC 上的点,且DE ∥BC ,∠DCB= ∠ A ,把每两个相似的三角形称为一组,那 么图中共有相似三角形_______组。
7·已知菱形ABCD 的边长为8,点E 在直线AD 上,DE 等于4,连接BE 与对角线AC 相交于点N ,则 NC:AN=三.跟踪检测:第6题 8.如图,△ADE ∽ △ACB, 则DE:BC=_____ 第8题 9.·如图若∠1=∠2=∠3,则图中相似的三角形有( )A 、1对B 、2对C 、3对D 、4对 第9题10、如图:DE ∥BC, AD:DB=3:4, △ADE 与 △ ABC 的周长比为 , △ABC 与四边形DBCE 的面积的比为A BEDC A C BD E 2733图6A四·重点知识应用:11..如图,AB ∥CD ,AO=OB ,DF=FB ,DF 交AC 于E , 求证:ED 2=EO · EC探究:12.已知:如图,△ABC 中,P 是AB 边上的一点,连结CP .满足什么条件时△ ACP ∽△ABC .13.将两块完全相同的等腰直角三角板摆成如图的样子,假设图形中的所有点、线都在同一平面内,则图中有相似三角形吗?如有,把它们一 一写出来.ABCDEFOA P BC 1 24课后延伸:(用相似知识解决实际问题)14.如图:A , B 两个工厂合用一个变压器,两厂位于高压输电线的同一侧,A 厂据高压线30千米,B 厂据高压线40千米,D ,C 两点之间的距离为80千米,试问变压器装在何处,所用电线最短?ABD E GBD。
九年级数学《相似三角形判定-复习课》教案

22.1.2 相似三角形判定复习课一、学习目标1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。
2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。
二、教学过程尝试教学六环模式教师活动学生活动设计意图备注复习导入复习引入:1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交于点E,与DC交于点F,则图中相似三角形共有()A 3对B 4对C 5对D 6对FEAB GDC2.要判定△ABC∽△A'B'C',已知条件AB BC=A B B C,,,,(1)还要添加条件____或____.(2)若∠A=∠A′,可添加条件____学生完成,回顾相似三角形判定方法。
帮助学生回忆相似三角形的几种判定方法。
以简单的选择、判断题复习相关知识点。
目标展示:1、熟练掌握三角形相似的判定方法,理解各判定方法之间的区别与联系。
2、能够从题目的条件和结论出发,选取合适的判定方法解决三角形相似问题。
学生熟悉学习目标学生按照学习目标复习知识点。
帮助学生梳理知识要点。
学教新课自学指导:1 你能记得多少种判定三角形相似的方法?2 三角形相似的基本图形是有哪些?根据自学指导的思考题,回顾知识要点。
以相似三角形的基本图形为主线回顾知识点。
从形的角度帮助学生更好地理解知识点。
议探交流尝试练习:学生完成尝试练习1、2两题。
议探交流:组内相互交流,先对议,再互议。
教师适时巡堂,深入小组,进行个别指导。
学生独立自主完成学生相互交流,师徒互教,组内互教,小组展示小组展示:归纳总结:1D,E分别为△ABC的AB, AC上的点,且DE∥BC,∠DCB=∠A,把每两个相似的三角形称为一组,那么图中共有相似三角形_____组,(选择其中一组并加以证明。
)变式:D,E分别为△ABC的AB, AC上的点,若AB=10,AC=8,AD=5,当AE=_____△ADE与△ABC相似。
各组内定代表,师友共同抢答,展示各自的结论,其他同学适时补充纠正。
相似三角形的复习教案

时间: 2013年 1 月 日 课题 相似三角形的复习 课型 复习课现代教育技术手段教学目标知识目标1、掌握相似三角形的性质和判定,相似三角形的应用 能力目标2、会灵活应用性质和判定解决问题育人目标3、事物间的相互联系,相互转化,周长比转化为相似比,面积比转化为相似比的平方Z 知识点 Z1 相似三角形的性质 Z2 相似三角形的判定N 能力点学科能力点 NX1 合情推理能力 NX2计算能力一般能力点NY1自然观察能力。
NY2抽象概括思维能力。
知识点与 能力点的 关系 Z1Z2 N X1 NX2 NY1 NY2 D 德育点D1 事物相互联系观点。
D2事物相互转化观点。
知识点与 德育点的 关系Z1 (渗透)D1 D2 Z2 L应遵循的 教学规律L1:演绎原理认知律—— Z2先感知原理结构形式,运用已学原理进行推理,最后形成原理本节课:通过对相似三角形性质的认识,逐步理解抽象出位似,在进行应用推广到平面直角坐标系中在环节上用▲表明重点;用※表明难点本课自评分:巩固作业适应学生检查方式拓展作业适应学生检查方式补偿作业适应学生检查方式板书知、能反思育人反思技术手段反思时间环节(体现课型)学习方式教学方式体现教学规律和教学策略2感知现象1、复习旧知1、提问2、引导评价5得出命题Z1Z21、观察、猜想NY22、探究分析3、自主推理5、交流思路。
验证猜想6、归纳性质8、记忆9、辨析1、提出问题、引导观察2、引导3、规范表达 ----探究式4、讲解、示范5、组织参与讨论L16、引导,规范语言8、检查、指导9、出示口答题,评价内化命题1、比较联系与区别2、记忆性质,互相检查3、辨析1、引导比较、补充2、指导检查3、出示判断、填空题,强化关键点L11112 直接应用⎩⎨⎧已知条件图形化已知、问题、审题12、独立思考3、交流思路4、归纳解决问题的方法NY25、独立解决NX36、总结易错点——关键点的确定7、体悟1、引导2、个别指导3、组织、点拨4、示范、讲解过程书写要求 ---启发式5、指导6、引导、强调7、评价7 灵活应用、审题12、独立思考,交流思路,3、判断所用知识类型:性质4、观察,得出结论5、体悟反思1、引导与指导2、引导与指导3、引导或补充4、尝试变化并演示5、评价3 知识梳理1、总结收获2、反思易错点及注意事项1、引导补充2、强化NX1、D1NX1D2、D3。
《4.5相似三角形4.6相似三角形的判定复习》

《4.5相似三角形4.6探索三角形相似的条件》复习学案姓名 学习目标:1掌握相似三角形的概念,性质和判定三角形相似的条件 2能利用相似比、相似的性质进行计算,判断是否相似重点:掌握相似的性质、判定三角形相似的条件 难点:相似的性质的应用,判断是否相似一、知识梳理1.相似三角形的定义:三角 ,三边 的两个三角形叫做相似三角形。
如图,在ABC ∆与DEF ∆中,如果D A ∠=∠,E B ∠=∠,F C ∠=∠且FD CAEF BC DE AB ==, 那么我们说ABC ∆与DEF ∆是 三角形,记为ABC ∆ D E F ∆, 2.相似三角形的性质:相似三角形对应角 ,对应边 。
∵ABC ∆∽DEF ∆∴A ∠= B ∠= C ∠= ;3.三角形相似的条件:(1) 对应相等,两个三角形相似(AA )(2)三边对应 ,两个三角形相似(SSS )(3)三角形两边对应成比例,且 相等,两个三角形相似(SAS )二、巩固练习1.若ABC ∆∽ DEF ∆,① 若A ∠=040、B ∠=060,则D ∠= ,E ∠= ,F ∠= ;②若 ,则 , . ③若5=AB ,7=DE ,10=BC ,则=EF2.如图在△ABC 中,P 是AB 上一点,连结 CP ,当满足条件∠ACP= 或∠APC= 时,△ACP ∽△ABC .3.如图,由下列条件不能判定△ABC 与△ADE 相似的是( )A .AE AC AD AB = B . AE DE AC BC =C .∠B=∠ADED .∠C=∠AED4.如图,已知cm AB 3=,cm BC 4=,cm EF cm CA 6,2==.求线段DE 、DF 的长.5.如图所示,ABCD 是矩形,E 在CD 上,F 在BC 上,∠AEF=90º. △ADE ∽△ECF 吗?为什么?FEDCB A ()()()()ABDE ==32=DE AB ()()=EF BC =DF AC ()()2题图3题图4题图FE DC B AFE DCB AABDEcF 5题图三、当堂检测1.如图1,在下面的两组图形中,各有两个相似三角形,x= ,y= ,m= ,n=2如图2,AB//CD ,BO :OC=1:4,点E 、F 分别为OC 、OD 的中点,则EF :AB 的值为 .3如图3,AB ∥CD ,AD 与BC 相交于点O ,那么在下列比例式中,正确的是( )A.ADOACD AB = B.BC OB OD OA = C.OC OB CD AB = D.ODOBAD BC = 4如图4,D 为△ABC 的边AB 上一点,且∠ABC =∠ACD ,AD =3 cm, AB =4 cm ,则AC 的长为( )A.2 cmB.3 cmC.12 cmD.23 cm5.如图5,已知△ABC ∽△ADE ,AE =50 cm,EC =30 cm,BC =70 cm,∠BAC =45°,∠ACB =40°,求∠AED 和∠ADE 的度数及DE 的长度.6.在△ABC 中,AB=24,AC=18.D 是 AC 上一点,AD=12,在AB 上取一点 E ,使得以 A 、D 、E 为顶点的三角形与△ABC 相似,求AE 的长.BA CD24 1812 图4 图3 图2图1 图5。
学案35:相似三角形复习

相似三角形复习学案班级: 姓名: 学号: 命题人:崔建宁 审核人:徐先华 NO :35 学习目标:1、通过对一道中考题的解答,认识到有时利用相似三角形解决问题较简便。
2、梳理相似三角形的基本图形,并重点得到“三垂直型”;熟练掌握基本题型。
3、通过变式训练感受图形从一般到特殊的变化;感受到题目的多解性;提高分析问题、解决问题的能力。
4、通过拓展训练感受图形从特殊到一般(“三垂直型”拓展到“三角相等型”);加强对图形的感觉。
5、学会用分类思想解决问题;巩固“三垂直型”和 “三角相等型”。
学习过程:课前巩固1、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为2、如图(1),已知CA=8,CB=6,AB=5,CD=4,若CE= 3,则DE=____3、如图(2),已知CA=8,CB=6,AB=5,CD=4,若CE=316 ,则DE=____ 4、如图(3),在⊿ABC 中,D 为AC 边上一点,∠DBC= ∠A ,BC=6 ,AC=3,则CD 的长为5、如图(4),∠ABC=900,BD ⊥AC 于D ,DC=4 ,AD=9,则BD 的长为6、如图(5),F 、C 、D 共线,BD ⊥FD, EF ⊥FD , BC ⊥EC ,若DC=2 ,BD=3,FC=9,则EF 的长为课中探究一、合作探究:7、如图,在矩形ABCD 中,E 在AD 上,EF ⊥BE ,交CD 于F ,连结BF ,则图中与△ABE 一定相似的三角形是( )A .△EFB B .△DEFC .△CFBD .△EFB 和△DEF8、矩形ABCD 中,把DA 沿AF 对折,使D 与CB 边上的点E 重合,若AD=10, AB= 8,则EF=______A D BC E F9、如图,在矩形ABCD 中,E 在AD 上,连结BE 、EF 、BF 。
已知AE=4,ED=2,AB=3,若△ABE 和△EDF 相似,则DF=10、如图,在直角梯形ABCD 中,AD ∥BC , ∠B=900, AD=3,BC=6,点P 在AB 上滑动。
《相似三角形》学案 位似

《相似三角形》学案7课题:位似 初备人:彭伟坚 审核人:初三数学备课组班别: 学号: 姓名:【教学目标】知识与技能:了解位似图形的意义,能根据位似图形的特征,将图形进行放大和缩小; 过程与方法:理解位似图形的性质、选择适当的方式进行图形的放大和缩小;情感态度与价值观:从具体操作活动中,培养学生动手操作能力,空间想象能力。
【教学重点】能根据位似图形的特征,将一个图形进行放大和缩小【教学难点】理解位似图形的性质、选择适当的方式进行图形的放大和缩小【中考考点】将一个图形位似图形进行放大和缩小【课时安排】 1课时【教学方法】讲练结合法【教学过程】一、 位似图形的概念:看书本第59页得到: 叫做位似图形;这个点叫做位似中心;二、讲授新课例1.等边△ABC 与等边△A ′B ′C ′是位似图形,请找出位似中心,并求出位似比。
从中,我们可以看到,位似中心是点O ,△ ABO ∽△A ′B ′O,则OA OA ′ =OB OB ′ =AB A ′B ′. △小结:位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.例2.位似图形的画法如图,△ABC 三个顶点坐标分别位A (2,3),B(4,6),C(8,2),以点O 为位似中心,相似比为21,将△ABC 缩小,△A ′B ′C ′,则它的顶点A ′、B ′、C ′的坐标各是多少?.堂上练习:A 组1、四边形ABCD 缩小到原来的1/2,====ODOD OC OC OB OB OA OA ''''2、如图,以O 为位似中心,将△ABC 放大为原来的两倍,===OCOC OB OB OA OA '''.3、如下左图,在直角坐标系中,△ABC 的各个顶点的坐标为A (-1,1),B (2,3),C (0,3).以坐标原点O 为位似中心,位似比为2,作△ABC 的位似图形△A ′B ′C ′,则它的顶点A ′、B ′、C ′的坐标各是多少?堂上练习:B 组如上右图,已知△ABC 和点O.以O 为位似中心,求作△ABC 的位似图形,并把△ABC 的边长缩小到原来的32.【课堂小结】位似图形的性质,根据位似图形的特征将一个图形进行放大和缩小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的复习的学案 姓名________
1、如图:直角梯形ABCD,AD//BC, ∠A=90°,∠B=90°, ⊿AED 与⊿BCE 相似吗?
2、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC ∥OA,OA=5,AB=2,∠ COA= ∠ CPB=60°,点P 为x 轴上的一个动点,点P 不与点0、点A 重合. 求这时点P 的坐标;
3、如图,已知Rt △ABC, ∠ACB=90°,AC=BC=1,点P 在斜边AB 上移动(点P 不与点A 、B 重合),以点P 为顶点作∠CPQ=45°,射线PQ 交BC 边与点Q,BQ=0.5, 试求AP 的长.
E
D C B A A C
Q P
4、△ABC 、 △ DEF 均为正三角形,点D 、E 分别在边AB 、BC 上,请在图中找出一个与△DBE 相似的三角形并证明
5、如图,已知抛物线的对称轴是直线x=4,该抛物线与x 轴交于A,B 两点,与y 轴交于C 点,且
A 、C 点的坐标分别是(2,0)、(0,3)
(1)求抛物线的解析式
(2)抛物线上有一点P,满足∠PBC=90°,求点P 的坐标. x=4
o y x
A B C
P。