高频电路课程设计 三极管多谐震荡器
多谐震荡电路课程设计报告报告

多谐震荡电路一.设计过程:(1)由老师下发的课程设计资料先了解到要做的是什么,有一个明确的目标。
在通过图书馆和互联网查找相关资料文献等,对此设计的实验有一个理论知识上的铺垫与巩固。
(2)根据设计实验指导书了解实验所需的实验电子器件的功能和工作原理以及实验所用的电路原理图。
(3)设计电路图。
此设计实验主要由555定时器芯片和74LS90芯片构成。
通过参考文献的帮助,了解到555定时器芯片和74LS90芯片各引脚的功能与使用方法,并根据震荡频率公式f=1.4/( R1 +2R2)C及周期大小为1000Hz计算出所需的电容与电阻的阻值大小范围,选取适当的电子元件。
(4)根据实际试验操作,考虑到频率过大,因此要降低频率,要用一个分频器进行分频,使频率降低10倍。
(5)考虑到实验要求计数,因此还需要利用74LS90芯片设计出计数器。
(6)电路设计出后就是进行仿真实验。
在Multisim9上进行所设计的实验的仿真操作,在仿真过程中会反映出实验设计里的一些问题,针对所出问题一一进行调试改进。
(7)最后在数字电子实验室进行实际电路搭接。
通过数字电子电路实验箱搭接自己所设计的电路图,并调试,以输出所需要的正确结果。
二.EDA软件介绍和仿真过程(1)EDA软件介绍EDA在通信行业(电信)里的另一个解释是企业数据架构,EDA给出了一个企业级的数据架构的总体视图,并按照电信企业的特征,进行了框架和层级的划分。
EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪60年代中期从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的EDA工具软件可大致可分为芯片设计辅助软件、可编程芯片辅助设计软件、系统设计辅助软件等三类。
目前进入我国并具有广泛影响的EDA软件是系统设计软件辅助类和可编程芯片辅助设计软件:Protel、Altium Designer、PSPICE、multiSIM10(原EWB的最新版本)、OrCAD、PCAD、LSIIogic、MicroSim、ISE、modelsim、Matlab等等。
三极管多谐振荡器电路原理分析解答

此电路为由两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。
它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成。
若要明白此电路的工作原理必须要有一定的模拟电子技术知识(涉及到三极管的),给你补充如上。
若U CE <U BE ,饱和状态若U BE ≤U on ,截止状态;若U BE >U on ,若U CE >U BE ,放大状态NPN 型ECB三极管有三个工作状态:放大、截止与饱和。
此电路中两个三极管主要工作在截止与饱和状态,并且进行不断的交替变换,形成矩形脉冲输出,从而驱动两个发光二极管交替闪烁。
大致工作原理可做如下理解分析:上电最初,两个管子的基极均处于正向偏置状态,通过33K电阻承受正向电压;两电解电容被充电。
注意:两电解电容在电路连接上是将两个三极管的集电极与对方的基极耦合连接到一起。
随着过程的进行,由于两个三极管本身特性参数的差异,会出现一个优先饱和导通的情况。
假设左侧三极管优先导通,三极管压降会迅速降低至很低,三极管的C-E之间相当于短路,左侧电容导通后其UCE开始通过它放电,这样左侧管子的集电极电压就很低,而这一电压低的特性会通过与之连接的耦合电解电容影响到右侧管子的基极电位,随之变低,从而导致右侧三极管很好的截止,其C-E之间相当于断开,其集电极电位迅速升高。
而由于电容的电压不能突变,这将导致左侧三极管的基极电位不能同步升高,而承受一个负压,这样就导致此三极管由饱和导通变为截止,C-E间相当于断开,而其集电极电压会随着左侧电容的再次充电,电压而逐渐升高,并带动着右侧三极管的基极电位升高,逐步转为饱和导通状态,其C-E间相当于短路,其集电极电压下降,对应侧电解电容放电,而这一电压低的特性会通过与之连接的耦合电解电容影响到左侧管子的基极电位,随之变低,从而导致左侧三极管更好的截止,。
这样为此振荡电路的一个振荡周期。
三极管混频器——高频课程设计

高频电子线路课程设计说明书三极管混频器系、部:电气与信息工程系学生姓名:罗佳指导教师:贾雅琼职称讲师专业:电子信息工程班级:电信0901班学号:09400230123完成时间:2011年6月7日摘要混频,又称变频,也是一种频谱的线性搬移过程,它是使信号自某一个频率变换成另一个频率。
完成这种功能的电路称为混频器。
混频技术的应用十分广泛。
混频器是超外差式收音机中的关键部件。
直放式接收机高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大,灵敏度较低。
采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。
因为放大功能主要在中放,可以用良好的滤波电路。
采用超外差接收后,调整方便,放大量、选择性主要由中频部分决定,且中频较高频信号的频率低,性能指标容易得到满足。
混频器在一些发射设备中也是必不可少的。
在频分多址信号的合成、微波接力通信、卫星通信等系统中也有其重要的地位。
此外,混频器也是许多电子设备、测量仪器的重要组成部分。
关键字:信号;频率;混频器ABSTRACTFrequency mixing, say again, is also a kind of variable frequency spectrum of linear moving process, it is to make the signal from a certain frequency conversion to another frequency. Complete the functions of the circuit is called the mixer. Mixing technique used widely. The mixer is the superheterodyne key component. Straight put type small signal detection, high-frequency receivers working frequency variation range, the working frequency of high-frequency channels of influence is bigger, a low sensitiity. Using specialized superheterodyne technology after receiving signal frequency mixing into a fixed frequency, put large basic from receive frequency influence, such, frequency signal within the amplification good consistency, sensitivity can do so tall that selective is better also. Because magnifier function mainly in putting, can use good filter circuits. Using specialized superheterodyne after receipt and easy to adjust, put large, selectivity consists mainly of intermediate frequency part decision, and intermediate frequency is of high frequency signals low frequency, performance index easily be satisfied. The mixer in some launch equipment is also essential. In frequency division multiple access signal synthesis, microwave relay communications, satellite communications, etc system also has its important position. In addition, the mixer is also many electronic equipment, measurement instrument important component.Key words signal;frequency;mixer目录摘要 (1)ABSTRACT (2)1、混频器工作原理及系统框图 (4)2、主要部分电路图及原理分析 (5)2.1本地振荡电路 (5)2.1.1振荡器起振条件 (5)2.1.2电路参数选择及性能分析 (6)2.2变频电路 (7)2.2.1混频原理 (7)2.2.2电路参数选择及性能分析 (9)2.3中频滤波网络 (10)3、仿真及结果................................................................................................................... 错误!未定义书签。
三极管三点式振荡电路设计

三极管三点式振荡电路设计
三极管三点式振荡电路是一种广泛应用于无线电技术和电子技术中的振荡电路。
它由三极管、电容和电感等元件组成,可以产生稳定的振荡信号。
以下为三极管三点式振荡电路的设计步骤:
1. 确定振荡频率:首先确定所需的振荡频率,根据应用要求选择合适的频率范围。
2. 选择三极管:根据所需的频率范围选择合适的三极管。
常见的三极管有NPN型和PNP型,选择时需要考虑其最大功率、最大频率等参数。
3. 选择电容和电感:根据振荡频率计算所需的电容和电感值。
振荡电路中的电容和电感形成谐振回路,决定了振荡频率。
4. 确定电源电压:根据所选的三极管和电路要求,确定所需的电源电压。
通常情况下,三极管的电源电压为5V或12V。
5. 连接电路:根据设计要求,将三极管、电容和电感等元件按照电路图连接起来。
6. 调试电路:连接好电路后,将电源接入电路中并逐步调整参数,观察振荡波形和频率是否符合要求。
7. 优化电路:根据实际测试结果,对电路进行优化。
可以通过改变元件值、调整电路拓扑结构等方式来改善振荡性能。
8. 稳定性设计:为了保证振荡信号的稳定性,可以添加负反馈电路或采用特殊的反馈网络进行稳定性设计。
需要注意的是,在设计振荡电路时要考虑电路中的共模干扰、非理想性等问题,以保证电路的稳定性和可靠性。
同时,三极管三点式振荡电路还可以根据具体的应用需求进行进一步的改进和扩展。
三极管 高频振荡器 电路

三极管高频振荡器电路英文回答:High-Frequency Transistor Oscillator Circuit.Introduction.Transistor oscillators are electronic circuits that generate periodic waveforms. They are used in a widevariety of applications, such as radio transmitters, clocks, and frequency synthesizers. High-frequency transistor oscillators are capable of generating waveforms with frequencies in the megahertz (MHz) or even gigahertz (GHz) range.Circuit Design.The basic design of a high-frequency transistoroscillator is shown in Figure 1. The circuit consists of a transistor, a resonant circuit (L1 and C1), and a feedbackresistor (R1). The transistor is connected in a common-emitter configuration, and the resonant circuit is connected between the collector and emitter terminals. The feedback resistor is connected between the base and collector terminals.Operation.When the circuit is powered on, the transistor begins to conduct. This causes current to flow through the resonant circuit, which causes the voltage across the resonant circuit to oscillate. The oscillating voltage is then fed back to the base of the transistor through the feedback resistor, which causes the transistor to continue conducting. This process continues, resulting in a continuous oscillation.The frequency of the oscillation is determined by the resonant frequency of the resonant circuit. The resonant frequency is given by the following equation:f = 1 / (2π√LC)。
三极管无稳态多谐振荡器电路

课题一、三极管无稳态多谐振荡器电路一、设计课题《三极管无稳态多谐振荡器电路》二、设计要求1、不上电,灯不亮。
2、上电后,两颜色灯亮交替闪亮(一直亮)。
3、设计时请注意提高抗干扰性,以免误动作。
亮灯时间可通过RC调节。
4、为了方便检查,用黄色LED和红色LED代替电灯三、原理分析三极管无稳态多谐振荡器电路工作原理如下:此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。
如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:图3 当VCC通电瞬间图4 C2放电,C1充电回路(1)如图3当VCC接上瞬间,Q1、Q2分别由RB1、RB2获得正向偏压,同时C1、C2亦分别经RC1、RC2充电。
(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。
同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。
图5 C1放电,C2充电回路(3) Q1 ON、Q2 OFF的情形并不侍定的,当C2放电完后(T2=0.7 RB2 C2秒),C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE 极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。
Q1截止(OFF),C2经RC1及Q2B-E 极于短时间充至VCC,如图5所示。
(4)同理,C1放完电后(T=0.7 RB2 C1秒),Q1经RB1获得偏压而导通,Q2 OFF如此反覆循环下去。
如图所示波形。
周期T=T1+T2=0.7 RB1 C1+0.7 RB2 C2若RB1= RB2=RB C2=C1=C则T=1.4RBC f=如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。
多谐振荡电路课程设计

多谐振荡电路课程设计一、课程目标知识目标:1. 学生能理解多谐振荡电路的基本原理,掌握其组成元件及功能。
2. 学生能掌握多谐振荡电路的频率计算方法,并运用相关公式进行简单计算。
3. 学生能了解多谐振荡电路在实际应用中的优缺点,如电子音乐设备、无线通信等领域。
技能目标:1. 学生能通过实验操作,搭建并测试多谐振荡电路,观察其振荡现象。
2. 学生能运用所学知识,分析多谐振荡电路的故障原因并进行排除。
3. 学生能运用多谐振荡电路设计简单的电子电路,提高实际操作能力。
情感态度价值观目标:1. 学生通过学习多谐振荡电路,培养对电子科学的兴趣,增强探索精神。
2. 学生在小组合作中,学会沟通、协作,培养团队意识。
3. 学生能关注多谐振荡电路在科技发展中的应用,认识到科技对社会进步的重要性。
课程性质:本课程为电子技术基础课程,旨在让学生了解多谐振荡电路的基本原理和实际应用,培养其实践操作能力和科技创新意识。
学生特点:本课程针对高中年级学生,他们对电子技术有一定的基础知识,具备一定的实验操作能力,但对多谐振荡电路的了解较为有限。
教学要求:结合学生特点,注重理论与实践相结合,强调实验操作和实际应用,提高学生的动手能力和创新思维。
在教学过程中,关注学生的个体差异,激发学生的学习兴趣,培养其科学素养。
通过课程学习,使学生达到以上设定的课程目标,为后续电子技术课程打下坚实基础。
二、教学内容本课程教学内容主要包括以下三个方面:1. 多谐振荡电路基本原理:- 振荡电路的定义、分类及基本工作原理。
- 多谐振荡电路的组成元件:放大器、反馈网络、正反馈与负反馈。
- 多谐振荡电路的频率计算公式及其推导。
2. 多谐振荡电路的实验操作:- 搭建多谐振荡电路实验装置,观察振荡现象。
- 测试不同参数对振荡频率、幅值等特性的影响。
- 故障分析与排除,提高实际操作能力。
3. 多谐振荡电路的应用与拓展:- 多谐振荡电路在电子音乐设备、无线通信等领域的应用案例分析。
三极管多谐振荡器

三极管多谐振荡器
图1(来自LTspice IV 的例子)
图1是个多谐振荡器电路。
电容C1和C2的充电电流和放电电流方向如图2,图3。
图2 C1充放电电流
图3 C2充放电电流
图4中有4个波形,分别如下:
I(C1):是流过C1的电流,参考方向与C1的充电方向相同;
I(C2):是流过C2的电流,参考方向与C2的放电方向相同;
V(n003):Q1集电极的电压波形;
V(n002):Q2集电极的电压波形。
电路的工作过程(从Q1开始向截止转变说起):
1.C1充电,C2放电:
Q1开始向截止转变时,C1开始充电,充电的速度非常快,在图4中可以看到I(C1)出现了一个向上的尖峰。
因为这个充电电流,Q2很快饱和。
同时C2也在放电,这个短暂的时间,C2放电电流很大。
因为电容C2两端电压不能突变,使Q1基极电压变成-5V,这样Q1就截止。
2.C2放电:
Q1截止,Q2饱和后,C2继续放电,放电电流从Q1集电极经R4,再由C2流向Q2的集电极,因为R4存在,所以这个电流非常小,C2放电也就非常慢。
可能这时候会有个疑问。
为啥Q1基极电压是负的,而Q2集电极电压为正,C2的放电电流还会从负电压流向正电压呢?也许可以吧R4和C2看做个简单的RC 电路,只不过此时C2有个初值为-5V的电压。
3.C2充电,C1放电:
当C2放完电,Q1电压也变成正的,Q1离开截止区,C2开始充电,C1开始放电,Q2开向截止区去,Q1开始向饱和区去。
这和“1.C1充电,C2放电”的情况一样了。
4.C1放电:
过程同C2放电。
图4 相关的电压电流波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华中师范大学武汉传媒学院
传媒技术学院
课程设计
题目三极管多谐振荡器
班级电信B1101
姓名
学号
三极管多谐震荡器
一、设计要求
多谐振荡电路是模拟电子技术中比较重要的部分之一,但这部分电路分析相对来说比较复杂,我们做这个最基础的分立元件无稳态多谢振荡电路就是为了锻炼一下,并和各位电子爱好者相互交流学习。
二、设计方案
三级多谐振荡器是一种简单的振荡电路。
它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。
多谐振荡器可以由三极管构成,也可以用555 或者通用门电路等来构成。
用两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。
在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。
在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。
三、硬件框图
四、电路原理图及分析
当电源一接通,两只双极管就要先导通,但由于元件有差异,只有某一只管子最先导通。
假如VT1最先导通,那么VT1集电极电压下降,VD1被点亮,电容C1的左端接近零电压,由于电容器两段的电压不能突变,所以VT2基极也被拉到近似零电压,使VT2截止,VD2不亮。
随着电源通过电阻R1对C1的充电,使三极管VT2基极电压逐渐升高,当超过0.6伏时,VT2由截止状态变为导通状态,集电极电压下降,当超过0.6伏时,VT2由截止状态变为导通状态,集电极电压下降,VD2被点亮。
与此同时三极管VT2集电极电压的下降通过电容器C2的作用使三极管VT1的基极电压也下跳,VT1由导通变为截止,VD1熄灭。
如此循环,电路中两只三极管便轮流导通和截止,两只发光二极管就不停地循环发光。
改变电容的容量可以改发光管循环的速度。
工作电压:DC3V—9V
五、制作与调试
电路上电瞬间,两个发光二极管同时开始亮,但是有一个二极管是闪亮瞬间后变为微亮,紧接着熄灭。
另外一个二极管则亮一段时间熄灭,同时之前灭掉的二极管开始点亮并持续一段时间再熄灭同时另一个二极管点亮……形成交替点亮的循环模式。
电路电源接通瞬间,电容对于变化的电压近似看做短路,所以瞬间D1和D2点亮,且电容充电开始时电流大,所以点亮瞬间亮度较大,之后会较暗。
此时三极管VT1和VT2都处于导通状态,电容C1和C2都在进行充电,充电至将近电源电压3V(瞬间),在对电容充电时,B点和D点电势升高,导致两个三极管基极点位升高,虽然两个三极管及其它元件相同,但由于其工艺不可能完全相同,所以,一定有一个三极管初始时间的导电量大,因而这个三极管的集电极电流升高的快,假设VT1初始时间导电量大,此时VT1中集电极电流升高的比VT2集电极电流升高的快,所以VT1集电极电位比VT2集电极电位降低的快,因而A电位降低的快,D电位降低的慢,所以耦合到B点和C点的点位时,B点电位下降的比C点快,导致VT2先进入截止状态,VT1仍处于导通状态,此时,电容C2通过绿色发光二极管D2和VT1的发射结接地充电(此时D2因为VT2截止而不亮,但其仍然导通,因为二极管两端电压只要达到0.7V就导通,只是电压没有达到发光二极管的发光电压)电容C1通过电阻R1接电源正极和VT1的ce极接电源负极进行放电,当C1放电完全时,B点电位开始升高使VT2基极点位升高,直到VT2进入导通状态,绿色二极管亮,此时,VT2近似开做是导通状态,C2正极瞬间接低电位(D经VT2ce极接地),D点位瞬间拉低同样耦合到C端点位瞬间拉低,导致VT1基极点位瞬间拉低,VT1进入截止状态,红色二极管灭。
此时,C1正极经D1接电源正极,负极经VT2be极接地进行充电;C2负极经R2接电源正极,正极经VT2ce极接电源负极,进行放电,C2放电完成时,C端电位开始上升(VT1基极点位开始上升),直至VT1基极点位达到开启电压,VT1导通红色二极管亮,VT1导通瞬间A端接地电位,A端点位瞬间点位拉低,耦合到B端点位也瞬间拉低,使VT2基极点位瞬间拉低,VT2截止绿色二极管灭,C1正极经D1接电源正极,负极经VT2be极接电源负极开始充电,C2负极经R2接电源正极,正极经VT2ce级接电源负极,开始放电……形
成一个交替亮的循环。
六、心得体会
通过了这次试验我们做了很多步骤性的东西。
闪光电路是模拟电子技术中比较重要的部分之一,但这部分电路分析相对来说比较复杂,我们做这个最基础的分立元件三极管多谐振荡电路就是为了锻炼一下,有以下几点可以分享一下。
1、改变电容的容量控制发光二极管的闪烁频率即改变发光时间长短,同时增大两个电容,发光二极管闪烁频率降低。
2、改变电阻的阻值,同样可以改变发光二极管的闪亮频率,同时增大电阻,发光二极管闪亮频率降低。
3、当连接好电路时,两个发光二极管同时亮并不闪烁,用一根导线将一个三极管的基极和电源正极碰触一下就可以使二级管开始闪烁。
4、当把两个三极管的集电极和发射极都接反后,二极管闪烁频率变快,原因:是当三极管集电极和发射极接反后,会使三极管进入倒置状态,在这个状态时,三级管几乎没有放大状态,使饱和和截止状态距离较近,相互装换时间减短,所以使二极管闪烁频率变快。
5、短路C1,两个二极管都亮不闪烁;短路C2,两个只有绿色二极管亮不闪烁。
原因:短路任何电路都改变电路的结构,此时两个三极管的状态不再是交替变化的,可以达到稳定状态,所以发光二极管开始亮但不闪烁。
至于短路的电容不同,灯亮的个数不同就要考虑到红色和绿色发光二极管的压降不同,使短接电容时三极管的状态不同。