2023年新高考数学大一轮复习专题三数列第1讲等差数列与等比数列(含答案)
2023高考数学三卷数列题解答

2023高考数学三卷数列题解答一、引言在2023年的高考数学试卷中,数列是一个常见的考点。
数列作为高中数学的重要内容之一,对于学生来说是一个考验,也是一个挑战。
本文将围绕2023年高考数学三卷中的数列题目展开讨论和解答,希望能够帮助广大考生更好地应对这一部分的考试内容。
二、数列基本概念回顾在开始解答具体的数列题目之前,我们首先需要回顾一下数列的基本概念。
在高中数学中,数列是一组有序的数按照某种规律排列而成的序列,通常用a₁, a₂, a₃,…, aₙ表示。
数列中的每一项都有自己的位置和数值,而数列中的规律则是这些数值之间的关系。
在数列中,常见的有等差数列、等比数列等不同类型的数列。
三、2023年高考数学三卷数列题目解答1. 题目一:已知等差数列{aₙ}满足a₁=3,a₄=10。
求a₅。
解答:根据等差数列的性质,我们可以得到a₄=a₁+3d,其中d为公差。
将已知条件代入,得到10=3+3d,解方程得到d=7/3。
再代入a₁=3,得到a₅=a₁+4d=3+4×(7/3)=19。
2. 题目二:已知数列{bₙ}满足b₁=2,b₂=6,b₃=12。
求证{bₙ}为等比数列,并求其公比。
解答:根据题目已知条件可得b₂/b₁=6/2=3,b₃/b₂=12/6=2。
由此可知bₙ是一个等比数列。
而公比q=b₂/b₁=3。
四、总结与展望通过对2023年高考数学三卷数列题目的解答,我们可以看到数列这一部分的考题主要涉及到对数列基本概念的理解和运用。
在解答这些题目时,我们需要熟练掌握等差数列、等比数列等不同类型数列的性质和运算规律,灵活应用数列的基本概念和定理进行推导和计算。
希望通过本文的解答,能够为广大考生对于数列这一部分的学习和备考提供一些帮助。
在今后的学习中,我们需要持续加强对数列这一部分内容的掌握和应用,积极参与课堂讨论和习题练习,加强巩固数列的基础知识,增强数列解题的能力。
只有通过不断的学习和实践,我们才能够更加熟练地掌握数列的解题方法,更好地应对未来的考试和挑战。
2023新教材高考数学二轮专题复习第一部分专题攻略专题三数列第一讲等差数列与等比数列课件

答案:B
解析:∵数列{an},{bn}均为等差数列,设公差分别为d1,d2
(an+1+bn+1)-(an+bn)=(an+1-an)+(bn+1-bn)=d1+d2,
则数列{an+bn}也为等差数列,
a1+b1=100,a2+b2=120,
数列{an+bn}的首项为100,公差为20,
5a1 + 10d = 5
d=
2.[2022·山东淄博一模]已知等比数列{an},其前n项和为Sn.若a2=4,
S3=14,则a3=________.
2或8
解析:设等比数列的公比为q,因为a2=4,S3=14,
a
所以a1+a3=10,即 2+a2q=10,
q
1
所以2q2-5q+2=0,解得q=2或q= ,
+anan+1-2 =0,
[(n+1)an+1-nan](an+1+an)=0,
n
an+1
n
又∵an>0,∴an+1= ·an,即
= ,
n+1
an
n+1
a2 a3
an
1 2
n−1
an 1
∴ · ·…· = ··…· ,即 = ,
a1 a2
an−1 2 3
n
a1 n
1
又∵a1=1,∴an= ,
n
钱数从多到少成等差数列,则这个等差数列的公差d=(
)
1
1
1
1
A.- B.-
C.- D.-
6
5
4
3
答案:A
解析:若分得的钱从多到少分别为a1,a2,a3,a4,a5,
4
2023版高考数学一轮总复习:等比数列及其前n项和课件文

.
• 考向扫描
• 考向1 • 等比数列的判定与证明
• 1. 典例 [2019全国卷Ⅱ]已知数列{an}和{bn}满足
a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
• (1)证明:{an+bn}是等比数列,{an-bn}是等差数列.
• 3.等比数列的通项公式及其变形
n-1
a
=
a
·
q
• 通项公式: n 1
,其中a1是首项,q是公比.
• 通项公式的变形:an=am·qn-m.
• 考点1 • 等比数列
• 4.等比数列与指数函数的关系
•
1 n
当q>0且q≠1时,an= ·q 可以看成函数y=cqx,其表示一个不为0的常数
与指数函数的乘积.因此等比数列{an}各项所对应的点都在函数y=cqx的
• (2)求{an}和{bn}的通项公式.
• 考向1 • 等比数列的判定与证明
• 考向1 • 等比数列的判定与证明
• 方法技巧
等比数列的判定与证明常用的方法
定义法
等比中项法
通项
若数列{an}的通项公式可写成an=c·qn-1(c,q均为非零常数),
公式法
则{an}是等比数列
前n项和
若数列{an}的前n项和Sn=k·qn-k(k为非零常数,q≠0且q≠1),
数列.
等比
注意 当q=-1且k为偶数时,Sk,S2k-Sk, S3k-S2k,…不是等比数列
.
•
2 3
(3)若a1·a2·…·an=Tn,则Tn, , ,…成等比数列.
2023年高考一轮复习 习题课——数列的综合问题 课件(共18张PPT)

综合考法二 数列的实际应用问题
[典例] 实施“二孩”政策后,专家估计某地区人口总数将发生如下变化: 从2021年开始到2030年,每年人口总数比上一年增加0.5万人,从2031年开始到 2040年,每年人口总数为上一年的99%.已知该地区2020年人口总数为45万.
(1)求实施“二孩”政策后第n年的人口总数an(单位:万人)的表达式(记2021 年为第一年);
9×2n+8<0,所以 1<2n<8,所以 1<n<3,又 n∈N *,所以 n=1 或 n=2.
故满足题意的正整数 n 的集合为{1,2}.
“课时验收评价”见“课时验收评价(四十一)” (单击进入电子文档)
[解] (1)由an+1=2Sn+1,可得an=2Sn-1+1(n≥2),两式相减得an+1-an =2an,则an+1=3an(n≥2).因为a1=S1=1,a2=2S1+1=3,所以a2=3a1.故{an} 是首项为1,公比为3的等比数列,所以an=3n-1.
(2)设等差数列{bn}的公差为 d.由 T3=15,即 b1+b2+b3=15,可得 b2=5, 故 b1=5-d,b3=5+d.又 a1=1,a2=3,a3=9,且由 a1+b1,a2+b2,a3+b3 成 等比数列可得(1+5-d)(9+5+d)=(3+5)2,解得 d=2 或 d=-10.因为等差数列 {bn}的各项为正,所以 d>0.所以 d=2,b1=3,所以 Tn=3n+nn2-1×2=n2+
解:(1)设等差数列{an}的公差为 d, 由 a1=0,S6=3(a7-1)得6×2 5d=3(6d-1),解得 d=1, 所以 an=n-1. (2)由(1)得 bn=2n-1, 则 b1+b2+…+bn=11--22n=2n-1,b11+b12+…+b1n=11--1212n=2-2n1-1. 不等式b11+b12+b13+…+b1n>14(b1+b2+b3+…+bn)即 2-2n1-1>14(2n-1),即 22n-
2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展19等差数列中Sn 的最值问题(精讲+精练)一、等差数列的通项公式和前n 项和公式1.等差数列的通项公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是1(1)=+-n a a n d .2.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和11()(1)22+-=+=n n n a a n n S na d .注:数列{}n a 是等差数列⇔2=+n S An Bn (、A B 为常数).二、等差数列的前n 项和的最值1.公差0{}>⇔n d a 为递增等差数列,n S 有最小值;公差0{}<⇔n d a 为递减等差数列,n S 有最大值;公差0{}=⇔n d a 为常数列.2.在等差数列{}n a 中(1)若100,><a d ,则满足1+≥0⎧⎨≤0⎩m m a a 的项数m 使得n S 取得最大值m S ;(2)若100,<>a d ,则满足1+≤0⎧⎨≥0⎩m m a a 的项数m 使得n S 取得最小值m S .即若100>⎧⎨<⎩a d ,则n S 有最大值(所有正项或非负项之和);若100<⎧⎨>⎩a d ,则n S 有最小值(所有负项或非正项之和).【典例1】(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.二、题型精讲精练一、知识点梳理又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.【题型训练-刷模拟】一、单选题若5,故②正确;当8n =或9n =时,n S 取得最大值,所以211k a b +-=或12,故选:B【点睛】关键点点睛:本题考查的是等差数列的前n 项和最大值问题,思路是不难,大,即确定数列是递减数列,判断前多少项为非负项即可,但关键点在于如何求得正负项分界的项,即求得90a =,100a <,所以这里的关键是利用()217e 1ln 21a bS a b --≤≤-+,构造函数()e 1x f x x =--,利用导数判断函数单调性,结合最值解决这一问题.二、多选题三、填空题1四、解答题32.(2023·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,且1121526,a S S =-=.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)228n a n =-;(2)227n S n n =-,最小值为182-.【分析】(1)设等差数列{}n a 的公差为d ,根据等差数列前n 项和公式由1215S S =列出方程即可解出d ,从而可得数列{}n a 的通项公式;(2)根据二次函数的性质或者邻项变号法即可判断何时n S 取最小值,并根据等差数列前n 项和公式求出nS。
2023年高考数学----等差、等比数列的基本量问题规律方法与典型例题讲解

2023年高考数学----等差、等比数列的基本量问题规律方法与典型例题讲解 【规律方法】利用等差数列中的基本量(首项,公差,项数),等比数列的基本量(首项,公比,项数)翻译条件,将问题转换成含基本量的方程或不等式问题求解.【典型例题】例1.(2022·全国·模拟预测)已知等差数列{}n a 的前n 项和为n S ,且292521a a +=,1768S =,则3a =( ) A .4 B .3 C .2 D .1【答案】D【解析】设等差数列{}n a 的公差为d , 由已知1112()5(8)21171617682a d a d a d +++=⎧⎪⎨⨯+=⎪⎩, 解得1120d a ⎧=⎪⎨⎪=⎩, 310212a ∴=+⨯=故选:D.例2.(2022·江西·临川一中高三阶段练习(文))已知数列{}n a 满足13a =,11n n a a +=+,则10a =( ) A .80 B .100C .120D .143【答案】C【解析】因为11n n a a +=+,所以2111n a ++=+,即)2111n a ++=,11=,所以数列2,公差为1的等差数列,2(1)11n n+−⨯=+,所以22na n n=+,所以2101020120a=+=.故选:C.例3.(2022·新疆·高三期中(理))已知一个项数为偶数的等比数列{}n a,所有项之和为所有奇数项之和的3倍,前4项之积为64,则1a=()A.1 B.1−C.2 D.1或1−【答案】D【解析】设首项为1a,公比为q,数列共有2n项,则{}21n a−满足首项为1a,公比为2q,项数为n项,设所有奇数项之和为n T,因为所有项之和是奇数项之和的3倍,所以1q≠,所以()()211321211nn na qT a a aq−−=++=−,()21211nna qSq−=−,故满足()()()21221211311nnnna qS qT a qq−−==−−,解得2q=,又461234164a a a a a q⋅⋅⋅=⋅=,所以11a=±.故选:D例4.(2022·全国·高三阶段练习(文))已知公差不为零的等差数列{}n a中,3514a a+=,且1a,2a,5a成等比数列,则数列{}n a的前9项的和为()A.1 B.2 C.81 D.80【答案】C【解析】因为3514a a+=,所以4214a=,解得47a=.又1a ,2a ,5a 成等比数列,所以2215a a a =.设数列{}n a 的公差为d ,则()()()244423a d a d a d −=−+,即()()()272737d d d −=−+,整理得220d d −=.因为0d ≠,所以2d =. 所以()()199991178122a a S ⨯+⨯+===. 故选:C.例5.(2022·重庆八中高三阶段练习)已知数列{}n a 满足21121411,,32n n n na a a a a a +++===,则5a =( ) A .122− B .102−C .92−D .82−【答案】D【解析】∵11a =,2132a =,2114n n n n a a a a +++=, ∴数列1n n a a +⎧⎫⎨⎬⎩⎭是首项为21132=a a ,公比为4的等比数列,∴311144322n n n n a a −−+=⨯=, 当2n ≥时,111(1)(6)4521221121114441422−−−−−−−−−−⎛⎫⎛⎫=⋅⋅⋅⋅=⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭n n n n n n n n n n n a a a a a a a a2872−+=nn ,∵n =1时,187121−+==a ,∴2872−+=nn n a ,254078522−+−==a ,故选:D.例6.(2022·湖北·高三阶段练习)在公差不为零的等差数列{}n a 中,11a =,且1a ,3a ,13a 成等比数列,设数列{}12nn a +⋅的前n 项和为n T ,则7T =( )A .9322⨯+B .71128⨯+C .81322⨯+D .71324⨯+【答案】C【解析】设等差数列{}n a 的公差为()0d d ≠,由1a ,3a ,13a 成等比数列,得23113a a a =⋅,即()212112d d +=+,解得2d =或0d =(舍去),所以21n a n =−.从而()12212n nn a n +⋅=+⋅,故()123325272212n n T n =⨯+⨯+⨯+++⋅,()()23123252212212n n n T n n +=⨯+⨯++−⋅++⋅,两式相减,得()()211231122322222222126221212n nn n n T n n +++−−=⨯+⨯+⨯++⨯−+⋅=+⨯−+⋅−()12122n n +=−−⋅−,所以()12122n n T n +=−⋅+.所以871322T =⨯+.故选:C.例7.(2022·江苏无锡·高三期中)已知两个等差数列2,6,10,…,198及2,8,14,…,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为( ) A .1460 B .1472 C .1666 D .1678【答案】C【解析】有两个等差数列2,6,10,...,198及2,8,14, (200)由这两个等差数列的公共项按从小到大的顺序组成一个新数列,2,14,26,38,50,…,182,194是两个数列的相同项. 共有194211712−+=个,也是等差数列, 它们的和为21941716662+⨯=, 这个新数列的各项之和为1666. 故选:C.。
2022高考数学满分讲义:第三章 数列 第1讲 等差数列与等比数列

2022高考数学满分讲义:第三章 数列第1讲 等差数列与等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列的综合问题是高考考查的重点. 考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *) (1)等差数列的通项公式:a n =a 1+(n -1)d ; (2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)《周髀算经》中有一个问题:从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,若冬至、立春、春分的日影长的和为37.5尺,芒种的日影长为4.5尺,则冬至的日影长为( ) A .15.5尺 B .12.5尺 C .10.5尺 D .9.5尺 答案 A解析 从冬至起,十二个节气的日影长依次记为a 1,a 2,a 3,…,a 12,由题意,有a 1+a 4+a 7=37.5,根据等差数列的性质,得a 4=12.5,而a 12=4.5,设公差为d ,则⎩⎪⎨⎪⎧a 1+3d =12.5,a 1+11d =4.5,解得⎩⎪⎨⎪⎧a 1=15.5,d =-1,所以冬至的日影长为15.5尺.(2)已知点(n ,a n )在函数f (x )=2x-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =2164n s +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30解析 ∵点(n ,a n )在函数f (x )=2x -1的图象上,∴a n =2n -1(n ∈N *),∴{a n }是首项为a 1=1,公比q =2的等比数列,∴S n =1×(1-2n )1-2=2n-1,则b n =264n=2n -12(n ∈N *), ∴{b n }是首项为-10,公差为2的等差数列, ∴T n =-10n +n (n -1)2×2=n 2-11n =⎝⎛⎭⎫n -1122-1214. 又n ∈N *,∴T n 的最小值为T 5=T 6=⎝⎛⎭⎫122-1214=-30. 规律方法 等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列.(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( ) A .2 B .3 C .4 D .5 答案 C解析 ∵a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,2为公比的等比数列, ∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +1(1-210)1-2=215-25,即2k +1(210-1)=25(210-1), ∴2k +1=25,∴k +1=5,∴k =4.(2)(多选)(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0 C .S n ≤S 15D .当且仅当n ≥32时,S n <0 答案 ABC解析 设等差数列{a n }的公差为d ,由S 10=S 20,得10a 1+10×92d =20a 1+20×192d ,化简得a 1=-292d .因为a 1>0,所以d <0,故A 正确;因为a 16=a 1+15d =-292d +15d =12d ,又d <0,所以a 16<0,故B 正确;因为a 15=a 1+14d =-292d +14d =-12d >0,a 16<0,所以S 15最大,即S n ≤S 15,故C 正确;S n =na 1+n (n -1)2d =n (n -30)2d ,若S n <0,又d <0,则n >30,故当且仅当n ≥31时,S n <0,故D 错误.考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k . 2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外). (2)对于等差数列,有S 2n -1=(2n -1)a n .例2 (1)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),若a 5+a 7-a 26=0,则S 11的值为( ) A .11 B .12 C .20 D .22 答案 D解析 结合等差数列的性质,可得a 5+a 7=2a 6=a 26, 又该数列为正项数列,可得a 6=2, 所以由S 2n +1=(2n +1)a n +1, 可得S 11=S 2×5+1=11a 6=22.(2)已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于( )A .2 020B .1 010C .2 D.12答案 A解析 ∵a 1a 2 020=1, ∴f (a 1)+f (a 2 020)=21+a 21+21+a 22 020=21+a 21+21+1a 21=21+a 21+2a 211+a 21=2, ∵{a n }为等比数列,则a 1a 2 020=a 2a 2 019=…=a 1 010a 1 011=1, ∴f (a 2)+f (a 2 019)=2,…,f (a 1 010)+f (a 1 011)=2, 即f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)=2×1 010=2 020. 规律方法 等差、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)(2020·全国Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8等于( )A .12B .24C .30D .32 答案 D解析 设等比数列{a n }的公比为q , 则q =a 2+a 3+a 4a 1+a 2+a 3=21=2,所以a 6+a 7+a 8=(a 1+a 2+a 3)·q 5=1×25=32.(2)已知正项等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=130,则S 40等于( ) A .-510 B .400 C .400或-510 D .30或40答案 B解析 ∵正项等比数列{a n }的前n 项和为S n , ∴S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等比数列, ∴10×(130-S 20)=(S 20-10)2, 解得S 20=40或S 20=-30(舍), 故S 40-S 30=270,∴S 40=400.考点三 等差数列、等比数列的探索与证明 核心提炼等差数列 等比数列 定义法 a n +1-a n =d a n +1a n=q (q ≠0) 通项法 a n =a 1+(n -1)d a n =a 1·q n -1 中项法2a n =a n -1+a n +1a 2n =a n -1a n +1证明数列为等差(比)数列一般使用定义法.例3 (2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12(n ∈N *),b n =12[(a n +b n )-(a n -b n )]=12n -n +12(n ∈N *).易错提醒 a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.跟踪演练3 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是等比数列,并说明理由; (3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1(n ∈N *).专题强化练一、单项选择题1.在等比数列{a n }中,若a 3=2,a 7=8,则a 5等于( ) A .4 B .-4 C .±4 D .5 答案 A解析 ∵数列{a n }为等比数列,且a 3=2,a 7=8, ∴a 25=a 3·a 7=2×8=16,则a 5=±4, ∵等比数列奇数项的符号相同,∴a 5=4.2.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n 等于( )A .2n -1B .2-21-n C .2-2n -1 D .21-n -1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2.由a 5-a 3=a 1q 4-a 1q 2=12a 1=12得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 1(1-q n )1-q=2n-1,所以S n a n =2n -12n -1=2-21-n .方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12, ①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.3.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( ) A .a 6≤b 6 B .a 6≥b 6 C .a 12≤b 12 D .a 12≥b 12 答案 B解析 因为等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11,所以a 1+a 11=b 1+b 11=2a 6,所以a 6=a 1+a 112=b 1+b 112≥b 1b 11=b 6.当且仅当b 1=b 11时,取等号,此时数列{b n }的公比为1. 4.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+n ln n B .2n +(n -1)ln n C .2n +n ln n D .1+n +n ln n答案 C解析 由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,n -1(n ≥2)取代, 累加得a n n -a 11=ln n -ln 1,即a nn =2+ln n ,即a n =2n +n ln n (n ≥2),又a 1=2符合上式,故a n =2n +n ln n .5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=19C .S 9=81D .S 10=91 答案 D解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n >1,n ∈N *时是等差数列,公差为2, 又a 1=1,a 2=2,a n =2+(n -2)×2=2n -2(n >1,n ∈N *),∴a 9=2×9-2=16,a 10=2×10-2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选D.6.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m ,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为S n ,则( )A .S n 无限大B .S n <3(3+5)mC .S n =3(3+5)mD .S n 可以取100m答案 B解析 由题意可得,外围第2个正方形的边长为⎝⎛⎭⎫13m 2+⎝⎛⎭⎫23m 2=53m ; 外围第3个正方形的边长为⎝⎛⎭⎫13×53m 2+⎝⎛⎭⎫23×53m 2=59m ; ……外围第n 个正方形的边长为⎝⎛⎭⎫53n -1m .所以蜘蛛网的长度 S n =4m ⎣⎡⎦⎤1+53+59+…+⎝⎛⎭⎫53n -1 =4m ×1-⎝⎛⎭⎫53n1-53<4m ×11-53=3(3+5)m .故选B. 二、多项选择题7.(2020·厦门模拟)记S n 为等差数列{a n }的前n 项和,若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0 B .S n 的最大值为S 3 C .S 1=S 6 D .|a 3|<|a 5|答案 AC解析 设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,则a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的取值情况不清楚,故S 3可能为最大值也可能为最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 错误.8.已知等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,记{a n }的前n 项积为T n ,则下列选项中正确的是( )A .0<q <1B .a 6>1C .T 12>1D .T 13>1答案 ABC解析 由于等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,所以(a 6-1)(a 7-1)<0,由题意得a 6>1,a 7<1,所以0<q <1,A ,B 正确;因为a 6a 7+1>2,所以a 6a 7>1,T 12=a 1·a 2·…·a 11·a 12=(a 6a 7)6>1,T 13=a 137<1,所以满足T n >1的最大正整数n 的值为12,C 正确,D 错误. 三、填空题9.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________. 答案 4解析 由题意知q ≠1,所以S n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =na 1+n (n -1)2d +b 1(1-q n )1-q=d 2n 2+⎝⎛⎭⎫a 1-d 2n +b 11-q -b 1q n1-q =n 2-n +2n -1,所以⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,b11-q =-1,-b11-q q n=2n,解得d =2,q =2,所以d +q =4.10.(2020·北京市顺义区质检)设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =________,S 4S 2=________.答案 3 10解析 设等比数列的通项公式a n =a 1q n -1,又因为3a 1,2a 2,a 3成等差数列,所以2×2a 2=3a 1+a 3,即4a 1q =3a 1+a 1q 2,解得q =3或q =1(舍),S 4S 2=a 1(1-34)1-3a 1(1-32)1-3=1-341-32=10.11.(2020·潍坊模拟)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用a n表示解下n (n ≤9,n ∈N *)个圆环所需移动的最少次数,{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1(n 为偶数),2a n -1+2(n 为奇数),则解下5个圆环需最少移动________次. 答案 16解析 因为a 5=2a 4+2=2(2a 3-1)+2=4a 3,所以a 5=4a 3=4(2a 2+2)=8a 2+8=8(2a 1-1)+8=16a 1=16, 所以解下5个圆环需最少移动的次数为16.12.已知等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,且对任意的n ∈N *,都有A ≤2S n-1S n ≤B 恒成立,则B -A 的最小值为________. 答案136解析 ∵等比数列{a n }的首项为32,公比为-12,∴S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1+12=1-⎝⎛⎭⎫-12n , 令t =⎝⎛⎭⎫-12n ,则-12≤t ≤14,S n =1-t , ∴34≤S n ≤32, ∴2S n -1S n 的最小值为16,最大值为73,又A ≤2S n -1S n ≤B 对任意n ∈N *恒成立,∴B -A 的最小值为73-16=136.四、解答题13.(2020·聊城模拟)在①a 5=b 3+b 5,②S 3=87,③a 9-a 10=b 1+b 2这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,________,a 1=b 6,若对于任意n ∈N *都有T n =2b n -1,且S n ≤S k (k 为常数),求正整数k 的值. 解 由T n =2b n -1,n ∈N *得, 当n =1时,b 1=1;当n ≥2时,T n -1=2b n -1-1, 从而b n =2b n -2b n -1,即b n =2b n -1,由此可知,数列{b n }是首项为1,公比为2的等比数列,故b n =2n -1.①当a 5=b 3+b 5时,a 1=32,a 5=20,设数列{a n }的公差为d ,则a 5=a 1+4d ,即20=32+4d ,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值.因此,正整数k 的值为11.②当S 3=87时,a 1=32,3a 2=87,设数列{a n }的公差为d ,则3(32+d )=87,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.③当a 9-a 10=b 1+b 2时,a 1=32,a 9-a 10=3,设数列{a n }的公差为d ,则-d =3,解得d =-3,所以a n =32-3(n -1)=35-3n ,因为当n ≤11时,a n >0,当n >11时,a n <0,所以当n =11时,S n 取得最大值,因此,正整数k 的值为11.14.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0,所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2), 当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式), 所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列, 所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为任意n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。
新高考数学通用版总复习一轮课件专题三数列

因为
cn
+
1
-
cn
=
(n
+
2)
1 2
n
-
(n
+
1)
ห้องสมุดไป่ตู้
1 2
n
-
1
=
1 2
n
-
1×
n+2 2-n-1=-n212n-1<0,
所以当 n=1 时,cn 取得最大值 c1=2. 因为 cn≤x2-2x-1 对于一切的正整数 n 恒成立, 所以 2≤x2-2x-1.
专题三 数列
高考在本章一般命制 2 道小题或者 1 道解答题,分值占 10~ 12 分.高考对小题的考查一般以等差、等比数列的基本量运算, 等差、等比数列的性质,数列的递推式等为主.解答题一般考查 求数列的通项公式,等差、等比数列的证明,错位相减法、裂
项相消法、公式法求和等.其中裂项相消法常与不等式相结合. 数列是历年高考的热点,对近几年高考试题统计看,全国
[例 3]若数列{an}是公差为 2 的等差数列,数列{bn}满足 b1=1,b2=2,且 anbn+bn=nbn+1.
(1)求数列{an},{bn}的通项公式; (2)设数列{cn}满足 cn=abn+n+11,数列{cn}的前 n 项和为 Tn, 若不等式(-1)nλ<Tn+2nn-1对一切 n∈N*恒成立,求实数 λ 的取 值范围.
【规律方法】探索性问题的类型及解法 (1)条件探索性问题:一般采用分析法,从结论或部分条件 入手,执果索因,导出所需条件,注意这类问题往往要求的是 问题的充分条件,不一定是充要条件. (2)存在性探索问题:一般假定存在,在这个前提下推理, 若由此推出矛盾,则否定假设,否则给出肯定结论. (3)结论探索性问题,由给定的已知条件进行猜想透彻分 析,发现规律,获取结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高考数学大一轮复习专题:第1讲 等差数列与等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列的综合问题是高考考查的重点. 考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *) (1)等差数列的通项公式:a n =a 1+(n -1)d ; (2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n a 1+a n2=na 1+n n -12d ;(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 11-q n1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)《周髀算经》中有一个问题:从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,若冬至、立春、春分的日影长的和为37.5尺,芒种的日影长为4.5尺,则冬至的日影长为( ) A .15.5尺B .12.5尺C .10.5尺D .9.5尺 答案 A解析 从冬至起,十二个节气的日影长依次记为a 1,a 2,a 3,…,a 12,由题意,有a 1+a 4+a 7=37.5,根据等差数列的性质,得a 4=12.5,而a 12=4.5,设公差为d ,则⎩⎪⎨⎪⎧a 1+3d =12.5,a 1+11d =4.5,解得⎩⎪⎨⎪⎧a 1=15.5,d =-1,所以冬至的日影长为15.5尺.(2)已知点(n ,a n )在函数f (x )=2x -1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =2164n s +,数列{b n }的前n 项和为T n .则T n 的最小值为________. 答案 -30解析 ∵点(n ,a n )在函数f (x )=2x -1的图象上,∴a n =2n -1(n ∈N *),∴{a n }是首项为a 1=1,公比q =2的等比数列,∴S n =1×1-2n1-2=2n-1,则b n =22log64n =2n -12(n ∈N *), ∴{b n }是首项为-10,公差为2的等差数列, ∴T n =-10n +n n -12×2=n 2-11n =⎝⎛⎭⎪⎫n -1122-1214.又n ∈N *,∴T n 的最小值为T 5=T 6=⎝ ⎛⎭⎪⎫122-1214=-30.规律方法 等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·qn -1(p ,q ≠0)的形式的数列为等比数列.(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( ) A .2B .3C .4D .5 答案 C解析 ∵a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,2为公比的等比数列, ∴a n =2×2n -1=2n.又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +11-2101-2=215-25,即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(多选)(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0 C .S n ≤S 15D .当且仅当n ≥32时,S n <0 答案 ABC解析 设等差数列{a n }的公差为d ,由S 10=S 20,得10a 1+10×92d =20a 1+20×192d ,化简得a 1=-292d .因为a 1>0,所以d <0,故A 正确;因为a 16=a 1+15d =-292d +15d =12d ,又d <0,所以a 16<0,故B 正确;因为a 15=a 1+14d =-292d +14d =-12d >0,a 16<0,所以S 15最大,即S n ≤S 15,故C 正确;S n =na 1+n n -12d =n n -302d ,若S n <0,又d <0,则n >30,故当且仅当n ≥31时,S n <0,故D 错误.考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k .2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外). (2)对于等差数列,有S 2n -1=(2n -1)a n .例2 (1)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),若a 5+a 7-a 26=0,则S 11的值为( ) A .11B .12C .20D .22 答案 D解析 结合等差数列的性质,可得a 5+a 7=2a 6=a 26, 又该数列为正项数列,可得a 6=2, 所以由S 2n +1=(2n +1)a n +1, 可得S 11=S 2×5+1=11a 6=22. (2)已知函数f (x )=21+x2(x ∈R ),若等比数列{a n }满足a 1a 2020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2020)等于( ) A .2020B .1010C .2D.12答案 A解析 ∵a 1a 2020=1,∴f (a 1)+f (a 2020)=21+a 21+21+a 22020=21+a 21+21+1a 21=21+a 21+2a 211+a 21=2,∵{a n }为等比数列,则a 1a 2020=a 2a 2019=…=a 1010a 1011=1,∴f (a 2)+f (a 2019)=2,…,f (a 1010)+f (a 1011)=2, 即f (a 1)+f (a 2)+f (a 3)+…+f (a 2020)=2×1010=2020. 规律方法 等差、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)(2020·全国Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8等于( ) A .12B .24C .30D .32 答案 D解析 设等比数列{a n }的公比为q , 则q =a 2+a 3+a 4a 1+a 2+a 3=21=2,所以a 6+a 7+a 8=(a 1+a 2+a 3)·q 5=1×25=32.(2)已知正项等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=130,则S 40等于( ) A .-510 B .400 C .400或-510 D .30或40答案 B解析 ∵正项等比数列{a n }的前n 项和为S n , ∴S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等比数列, ∴10×(130-S 20)=(S 20-10)2, 解得S 20=40或S 20=-30(舍), 故S 40-S 30=270,∴S 40=400.考点三 等差数列、等比数列的探索与证明 核心提炼等差数列等比数列定义法 a n +1-a n =d a n +1a n=q (q ≠0) 通项法a n =a 1+(n -1)da n =a 1·q n -1中项法2a n =a n -1+a n + 1(n ≥2)a 2n =a n -1a n +1(n ≥2,a n ≠0)前n 项和法S n =an 2+bn(a ,b 为常数)S n =kq n -k(k ≠0,q ≠0,1)证明数列为等差(比)数列一般使用定义法.例3 (2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.(1)证明 由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12(n ∈N *),b n =12[(a n +b n )-(a n -b n )]=12n -n +12(n ∈N *).易错提醒 a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.跟踪演练3 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是不是等比数列,并说明理由; (3)求{a n }的通项公式. 解 (1)由条件可得a n +1=2n +1na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1(n ∈N *).专题强化练一、单项选择题1.在等比数列{a n }中,若a 3=2,a 7=8,则a 5等于( ) A .4B .-4C .±4D.5 答案 A解析 ∵数列{a n }为等比数列,且a 3=2,a 7=8, ∴a 25=a 3·a 7=2×8=16,则a 5=±4, ∵等比数列奇数项的符号相同,∴a 5=4.2.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n等于( ) A .2n -1 B .2-21-nC .2-2n -1D .21-n-1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12得a 1=1.所以a n =a 1q n -1=2n -1,S n =a 11-q n 1-q=2n-1,所以S n a n =2n -12n -1=2-21-n.方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12, ①a 4q 2-a 4=24,②②①得a 4a 3=q =2.将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.3.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( ) A .a 6≤b 6B .a 6≥b 6C .a 12≤b 12D .a 12≥b 12 答案 B解析 因为等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11,所以a 1+a 11=b 1+b 11=2a 6, 所以a 6=a 1+a 112=b 1+b 112≥b 1b 11=b 6.当且仅当b 1=b 11时,取等号,此时数列{b n }的公比为1. 4.在数列{a n }中,a 1=2,a n +1n +1=a n n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( ) A .2+n ln n B .2n +(n -1)ln n C .2n +n ln n D .1+n +n ln n答案 C 解析 由题意得a n +1n +1-a nn=ln(n +1)-ln n , n 分别用1,2,3,…,n -1(n ≥2)取代,累加得a n n -a 11=ln n -ln1,即a nn =2+ln n ,即a n =2n +n ln n (n ≥2),又a 1=2符合上式,故a n =2n +n ln n .5.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则( )A .a 9=17B .a 10=19C .S 9=81D .S 10=91 答案 D解析 ∵对于任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n >1,n ∈N *时是等差数列,公差为2, 又a 1=1,a 2=2,a n =2+(n -2)×2=2n -2(n >1,n ∈N *),∴a 9=2×9-2=16,a 10=2×10-2=18,S 9=1+8×2+8×72×2=73,S 10=1+9×2+9×82×2=91.故选D.6.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m ,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为S n ,则( )A .S n 无限大B .S n <3(3+5)mC .S n =3(3+5)mD .S n 可以取100m答案 B解析 由题意可得,外围第2个正方形的边长为⎝ ⎛⎭⎪⎫13m 2+⎝ ⎛⎭⎪⎫23m 2=53m ; 外围第3个正方形的边长为⎝ ⎛⎭⎪⎫13×53m 2+⎝ ⎛⎭⎪⎫23×53m 2=59m ; ……外围第n 个正方形的边长为⎝ ⎛⎭⎪⎫53n -1m . 所以蜘蛛网的长度S n =4m ⎣⎢⎡⎦⎥⎤1+53+59+…+⎝ ⎛⎭⎪⎫53n -1 =4m ×1-⎝ ⎛⎭⎪⎫53n1-53<4m ×11-53=3(3+5)m .故选B. 二、多项选择题7.(2020·厦门模拟)记S n 为等差数列{a n }的前n 项和,若a 1+3a 5=S 7,则以下结论一定正确的是( ) A .a 4=0 B .S n 的最大值为S 3 C .S 1=S 6 D .|a 3|<|a 5|答案 AC解析 设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,则a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的取值情况不清楚,故S 3可能为最大值也可能为最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 错误.8.已知等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,记{a n }的前n 项积为T n ,则下列选项中正确的是( ) A .0<q <1 B .a 6>1 C .T 12>1 D .T 13>1答案 ABC解析 由于等比数列{a n }的各项均为正数,公比为q ,且a 1>1,a 6+a 7>a 6a 7+1>2,所以(a 6-1)(a 7-1)<0,由题意得a 6>1,a 7<1,所以0<q <1,A ,B 正确;因为a 6a 7+1>2,所以a 6a 7>1,T 12=a 1·a 2·…·a 11·a 12=(a 6a 7)6>1,T 13=a 137<1,所以满足T n >1的最大正整数n 的值为12,C 正确,D 错误. 三、填空题9.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________. 答案 4解析 由题意知q ≠1,所以S n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =na 1+n n -12d +b 11-q n1-q=d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n +b 11-q -b 1q n1-q=n 2-n +2n-1, 所以⎩⎪⎪⎨⎪⎪⎧d2=1,a 1-d2=-1,b11-q =-1,-b 11-q q n =2n,解得d =2,q =2,所以d +q =4.10.(2020·北京市顺义区质检)设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =________,S 4S 2=________.答案 3 10解析 设等比数列的通项公式a n =a 1qn -1,又因为3a 1,2a 2,a 3成等差数列,所以2×2a 2=3a 1+a 3,即4a 1q =3a 1+a 1q 2,解得q =3或q =1(舍),S 4S 2=a 11-341-3a 11-321-3=1-341-32=10.11.(2020·潍坊模拟)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需移动的最少次数,{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1n 为偶数,2a n -1+2n 为奇数,则解下5个圆环需最少移动________次.答案 16解析 因为a 5=2a 4+2=2(2a 3-1)+2=4a 3,所以a 5=4a 3=4(2a 2+2)=8a 2+8=8(2a 1-1)+8=16a 1=16, 所以解下5个圆环需最少移动的次数为16.12.已知等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,且对任意的n ∈N *,都有A ≤2S n-1S n≤B 恒成立,则B -A 的最小值为________.答案136解析 ∵等比数列{a n }的首项为32,公比为-12,∴S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1+12=1-⎝ ⎛⎭⎪⎫-12n,令t =⎝ ⎛⎭⎪⎫-12n,则-12≤t ≤14,S n =1-t ,∴34≤S n ≤32, ∴2S n -1S n 的最小值为16,最大值为73,又A ≤2S n -1S n≤B 对任意n ∈N *恒成立,∴B -A 的最小值为73-16=136.四、解答题13.(2020·聊城模拟)在①a 5=b 3+b 5,②S 3=87,③a 9-a 10=b 1+b 2这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,________,a 1=b 6,若对于任意n ∈N *都有T n =2b n -1,且S n ≤S k (k 为常数),求正整数k 的值. 解 由T n =2b n -1,n ∈N *得,当n =1时,b 1=1;当n ≥2时,T n -1=2b n -1-1,从而b n =2b n -2b n -1,即b n =2b n -1, 由此可知,数列{b n }是首项为1,公比为2的等比数列, 故b n =2n -1.①当a 5=b 3+b 5时,a 1=32,a 5=20, 设数列{a n }的公差为d ,则a 5=a 1+4d , 即20=32+4d ,解得d =-3,所以a n =32-3(n -1)=35-3n , 因为当n ≤11时,a n >0,当n >11时,a n <0, 所以当n =11时,S n 取得最大值. 因此,正整数k 的值为11.②当S 3=87时,a 1=32,3a 2=87, 设数列{a n }的公差为d ,则3(32+d )=87, 解得d =-3,所以a n =32-3(n -1)=35-3n , 因为当n ≤11时,a n >0,当n >11时,a n <0, 所以当n =11时,S n 取得最大值, 因此,正整数k 的值为11.③当a 9-a 10=b 1+b 2时,a 1=32,a 9-a 10=3, 设数列{a n }的公差为d ,则-d =3,解得d =-3, 所以a n =32-3(n -1)=35-3n , 因为当n ≤11时,a n >0,当n >11时,a n <0, 所以当n =11时,S n 取得最大值, 因此,正整数k 的值为11.14.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n 项和为2n -1·3n+12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,任意n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =2n -1·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=2n -3·3n -1+12(n ≥2), 两式相减,得a n b n =2n ·3n -1(n ≥2), 因为a n =2·3n -1,所以b n =n (n ≥2), 当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式), 所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列, 所以S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n <34. 因为任意n ∈N *,S n ≤m 恒成立,。