钢吊箱施工

合集下载

钢吊箱围堰施工技术

钢吊箱围堰施工技术

钢吊箱围堰施工的技术与应用一,钢吊箱围堰技术1、结构设计钢吊箱围堰是为承台施工而设计的临时阻水结构,其作用是通过吊箱围堰侧板和底板上的封底混凝土围水,为承台施工提供无水的干燥施工环境。

钢吊箱的结构构造由底板、侧板、内支撑、悬吊及定位系统组成。

底板是竖向主要受力构件。

钢吊箱底板的结构形式主要有型钢网格分配梁底板以及空间桁架式底板。

其中,型钢网格分配梁底板施工加工量小,底板安装快捷、方便、工期短,缺点是分配梁底板刚度较小,如设计不当容易导致底板变形较大,从而导致浇筑的封底混凝土受拉开裂,质量不易保证。

侧板是钢吊箱水平向承受静水压力、水流力和波浪力的受力构件。

侧板构造形式分为单壁围堰和双壁围堰。

单壁围堰的优点是只有一侧壁板,结构简单,加工方便;缺点是必须现场拼装,下沉较为困难,下沉中如发生问题较难控制。

双壁围堰的优点在于下沉过程中可以充分利用水的浮力,通过调节隔舱内的水来调节吊箱的位置,这就使得双壁围堰施工有明显的主动性;缺点是结构复杂,施工难度大。

内支撑由内团梁、水平撑杆及竖向支架三部分组成。

内团梁设在吊箱侧板的内侧,安装在侧板内壁牛腿上。

内团梁的作用主要是承受侧板传递的荷载,并将其传给水平撑杆。

水平撑杆的作用是通过对吊箱侧板的支撑减小侧板位移,竖向支架的作用主要是支撑水平撑杆,同时减小水平撑杆的自由长度。

竖向支架的底端焊接到底板上,上端与水平撑杆焊接。

悬吊系统以钻孔桩钢护筒为依托,由纵、横梁,吊杆及钢护筒组成。

横梁支点设置在护筒内侧牛腿上,横梁的作用是将悬吊荷载通过钢护筒传递给桩基。

纵梁的作用是支撑吊杆,并将吊杆传来的荷载传给横梁。

吊杆上端固定于支架的纵梁上,下端固定于底板的吊杆梁之上。

吊杆的作用是将吊箱自重以及封底板的重量传给纵梁。

由于钢吊箱下沉人水后受流水压力的作用,吊箱围堰会向下游漂移,为便于调整吊箱位置,确保顺利下沉需设置定位系统。

定位系统有多种方式,在水流较小的情况下,可以采用导链牵引、抽注水方式定位,在水流较急的情况下,也可以采用定位船克服水流力来纠偏。

钢吊箱整体安装施工工法

钢吊箱整体安装施工工法
《大型钢吊箱整体安装施工工法》
中交第二航务工程局有限公司
XXXX高速公路工程有限责任公司
20XX年9月
1、前言
2、工法特点
3、适用范围
4、工艺原理
5、施工工艺流程及操作要点
6、材料与设备
7、质量控制
8、安全措施
9、环保措施
10、效益分析
11、应用实例
大型钢吊箱整体安装施工工法
1 前言
随着跨河、跨江、跨海湾特大型桥梁建设的快速发展,深水高桩承台基础已经成为世界桥梁工程基础的主流形式之一,它呈现出规模大、水域深、施工条件复杂、施工周期长等特点。钢吊箱作为桥梁深水基础临时止水结构,其安装成功与否是制约后续承台施工质量、进度、安全等方面的关键因素。目前,钢吊箱施工主要有如下两种总体方法:第一种方法是先将钢吊箱浮运就位再搭设钻孔平台进行钻孔;第二种方法是先搭设钻孔平台进行钻孔,钻孔完成后拆除钻孔平台进行钢吊箱施工。
5 施工工艺流程及操作要点
5.1施工工艺流程
施工工艺流程如图5.1所示。
图5-1 施工工艺流程图
5.2 主要工序及操作要点
5.2.1钢吊箱工厂分片加工、整体拼装主要工序
5.2.1.1 施工工艺流程
单元块划分→壁体单元块加工→底板单元块加工→钢吊箱整体拼装。
5.2.1.2操作要点
5.2.1.2.1单元块划分
九江长江公路大桥南塔位于陆上,北塔位于长江主航道上,工期紧、施工场地受限,鉴于以上情况,中交第二航务工程局有限公司通过对九江长江公路大桥北塔(22#墩)承台钢吊箱关键施工技术进行了研究,总结出了一套先进的《大型钢吊箱整体安装施工工法》,供同类型桥梁基础施工参考与借鉴。该工法在金塘大桥、上海长江隧桥也得到了应用,其技术成熟、先进,具有明显的经济效益和社会效益,具有较高的推广价值。

钢吊箱施工

钢吊箱施工

钢吊箱施工1.钢吊箱加工在纲结构工厂分块加工,在钻孔桩施工平台拼装下沉钢吊箱. 2.吊箱拼装及下沉吊箱拼装及下沉分两步。

第一步,拼装底板及第一节围堰侧板。

然后拼装下层侧板、上下吊点、吊带,第一节围堰入水。

第二步,拼装上层侧板、竖向支架及内支撑。

围堰下沉至设计标高,安装吊杆进行体系转换,围堰全部由吊杆吊挂,将吊带拆除。

每块侧板焊缝均进行煤油渗透试验。

围堰下放主要设施包括四个主吊具及其升降系统和八个辅助吊具。

主吊具由主吊点和吊带组成,吊具升降系统由锚箱、油压千斤顶、升降梁和稳定架组成。

辅助吊具采用精轧螺纹钢吊杆。

当提升围堰时先提升主吊点,后提升辅助吊点;当下放围堰时先松放辅助吊点,后松放主吊点。

主辅吊点交替进行,每次升降高度严格控制在50mm以内,主辅吊点升降幅度应一致,避免围堰扭曲变形。

3.吊箱定位与堵漏吊箱沉至设计高程后,复核其平面位置,如不满足要求,可将千斤顶安放在四个角的4个护筒外壁与吊箱侧板之间调整吊箱位置,待其满足要求后,在四个角的4个护筒与吊箱侧板之间用定位器(短型钢)焊接定位。

然后潜水员下水,将底板堵漏封板紧固到护筒上。

每个护筒孔洞堵漏封板由4块弧形钢板用螺栓拼成一个环形板,下沉吊箱前,将封板初步安设在底板护筒洞口周围,此时封板的内径应大于底板洞口直径以利于吊箱下沉。

4.灌注封底混凝土①吊箱下沉前,用自行研制的大型圆筒形钢丝刷清除封底混凝土高度范围护筒表面氧化层及附着物,确保封底混凝土与钢护筒间粘结力;②提高封底混凝土坍落度及强度级别,将混凝土坍落度控制在18~20cm;并将原设计C30混凝土按C50配制,另外掺加粉煤灰和高效缓凝型减水剂,提高混凝土的流动性和延长混凝土的初凝时间;③封底采用泵送混凝土法多点快速灌注,整个封底利用3排(每排4根)12根导管,根据计算首盘混凝土方量,加工大型储料斗,按水下混凝土灌注方法进行封底施工;根据现场实际情况,为方便施工,混凝土灌注采用从下游端开始依次倒移向上游前进施工;④为了防止封底时吊箱内水位高于箱外水位,可预先在吊箱上节侧板(箱外水位处)开孔,封底时排出箱内封底混凝土置换出的水量。

钢吊箱施工方案

钢吊箱施工方案

目录1.工程概况 (1)2.钢吊箱围堰设计 (1)2.1设计依据 (1)2.2总体结构 (2)2.3受力计算 (3)3.钢吊箱模板加工 (5)4.钢吊箱围堰拼装 (5)5.钢吊箱围堰就位 (6)6.封底砼施工 (6)6.1 混凝土生产与运输 (6)6.2 砼配合比 (6)6.3 封底厚度 (6)6.4 封底砼导管布置 (8)6.5 灌注顺序 (8)6.6 水下砼浇注 (9)6.7 水下砼灌注过程中注意事项 (9)7.施工安全防护方案 (9)7.1 组织机构和保证体系 (9)7.2 安全管理制度 (10)7.3 施工安全防护措施 (12)8.安全应急预案 (13)8.1 应急准备 (13)8.2 应急相应预案 (14)附:黄河大桥钢吊箱设计图纸五〇四厂黄河大桥钢吊箱围堰施工方案1.工程概况五○四厂黄河大桥工程南起兰州市西新线,北至五○四厂区,主要包括跨越黄河的五○四厂黄河大桥,以及东西引道、停车场及大门、照明及景观和其它工程等,线路总长761.54m,其中西引道全长405m,主桥全长262.6m,东引道全长93.94m,线路宽度18m(2+14+2 m)。

新建黄河大桥桥址位于既有铁路桥北32m处,主桥上部结构采用68.8m+125m+68.8m变高度预应力混凝土连续箱梁,横断面为单箱单室直腹板结构。

主桥下部结构采用矩形实心墩,肋式台,基础采用桩基础。

其中2#墩位于黄河水中,水深15m,桩基桩径2.0m,桩长45m,采用高桩承台。

桥址处河道无洪水期,每天水位变化不大。

承台施工采用有底单壁吊箱围堰,围堰内灌1.5m厚的封底砼。

钢吊箱除承台施工起时防水作用外,同时作为承台模板用,故围堰内空尺寸与承台相同,围堰长20.5m,宽10.5m,高7.2m。

吊箱围堰结构详见附图。

2.钢吊箱围堰设计2.1设计依据2.1.1 施工水位:设计提供的设计水位1551.26m,通航水位1553.13,洪水位1554.5m(百年一遇),6月份—7月份水位为1552.5,施工时吊箱顶标高定为1553.014。

钢吊箱施工方案

钢吊箱施工方案

钢吊箱施工方案1. 引言钢吊箱是一种用于工程施工中运输和存储材料的设备,具有结构坚固、容量大、便于安装和拆卸等优点。

本文档将介绍钢吊箱的施工方案,包括施工前的准备工作、施工过程中的注意事项以及施工完成后的验收。

2. 施工前准备在进行钢吊箱的施工之前,需要进行一系列的准备工作,确保施工可以顺利进行。

2.1 施工前评估在施工前应对现场进行评估,包括吊装空间、施工环境、地基承载力等。

评估的目的是确定合适的施工方案,并确保施工过程的安全性。

2.2 准备施工材料和设备根据评估结果,准备所需的钢吊箱数量、规格和材质。

同时,还需要准备吊装设备、吊车等相关设备,以及施工过程中所需的工具和安全防护设备。

2.3 制定施工计划根据评估结果和相关要求,制定详细的施工计划,包括施工的时间安排、吊装顺序、施工人员的分工等。

施工计划应与相关部门和人员进行沟通,并确保他们能理解和遵守施工计划。

3. 施工过程3.1 吊装准备在进行吊装前,需要对吊装点进行检查,确保其坚固和安全。

此外,还要确认吊装设备和吊装工人的资质和状态。

3.2 吊装操作根据施工计划,确定好吊装顺序和吊装点,并进行标记。

在吊装时,吊装设备的操作人员必须遵守相关的安全操作规程,保证吊装过程的安全性。

3.3 定位和固定在吊装完成后,将钢吊箱定位到指定位置,并进行固定。

固定的方式应符合设计要求,并确保吊箱的稳定性和安全性。

3.4 清理和交接在施工完成后,对施工现场进行清理,包括清理吊装设备和施工材料的残留物,恢复现场的整洁。

同时,进行必要的施工记录和验收,并与相关部门和人员进行交接。

4. 施工验收进行钢吊箱施工验收时,需要根据设计要求和施工合同进行检查。

验收的内容包括吊装安全、施工质量和环境卫生等方面。

如存在问题,及时进行整改和处理,并重新进行验收。

5. 结论钢吊箱的施工方案需要充分的前期准备和严格的施工操作,以确保施工过程的安全性和质量。

同时,施工完成后需要进行验收,以确保施工的符合设计要求和合同要求。

钢吊箱施工安全红线管理规定

钢吊箱施工安全红线管理规定

钢吊箱施工安全红线管理规定1、必须先方案后施工。

专项施工方案必须经专家评审后按程序上报审批,现场严格执行方案。

2、必须经各方验收合格后下放。

验收内容:实物与图纸相符性、材料进场合格证、过程检验批、记录表、重点部位探伤报告。

3、必须先教育、交底后施工。

严禁作业人员不经教育、交底上岗作业。

4、必须提前完成对钢护筒的平面位置和倾斜度测量,并根据偏位情况对钢吊箱底板进行开孔,底板主、次梁布置应避开护筒预留孔,不允许割断。

提前在钢吊箱上标明安装的方位,并对安装人员进行测量交底。

5、必须对钢吊箱支撑梁位置对应的钢护筒牛腿进行加固,检查焊接质量,确保结构稳定。

护筒顶面找平,确保挑梁、十字吊梁受力均匀。

6、必须有专人对近7天的海上天气预报进行收集,遇7级强风时必须推迟吊装作业,连续几天内超过6级大风禁止吊装作业。

7、必须先检查钢丝绳、吊钩及其他机具满足要求方可起吊。

钢吊箱先自检并经监理单位验收合格,即可开始试吊,试吊成功后方可用浮吊吊至施工现场。

必须在下放前再次检查钢丝绳及卸扣的受力情况,确定无误后继续起升钩头。

钢吊箱吊离地面或驳船10cm后检查吊箱受力情况,发现钩头受力不均或吊箱倾斜时,立即进行调整。

8、必须观察吊箱吊起后起重船平稳度及船舶吃水情况,确定水深在规定范围值内方可移动船舶。

必须保证施工区域无影响起重船和运输驳船抛锚定位的船只,确保船舶通航安全以及施工安全。

9、钢吊箱下放后必须按方案及时对拉压杆进行焊接,检查焊接质量,确保结构稳定。

10、根据钢吊箱每块壁板重量选定起重设备及吊具,制定吊装方案并进行交底,拆除前对起重设备及吊具进行检查,确保安全。

某大桥钢吊箱设计及施工技术方案

某大桥钢吊箱设计及施工技术方案

XX大桥钢吊箱设计及施工技术方案1 概况1.1桥梁工程简介XX大桥桥长1543.04m,上部布置为:10×30 + 8×40 +(68+120+68)+ 6×40+ 14×30m,主桥上部为68+120+68m变截面预应力混凝土连续箱梁,下部为矩形实心墩,高桩承台、桩基础;主墩单个承台尺寸10.6×9.6×5m,承台顶标高+5.5m,下接4根Φ2.5m桩基,边墩单个承台尺寸7.7×6.2×2.5m,承台顶标高+5.5m,下接4根Φ1.5m桩基;引桥上部为30m、40m先简支后变连续预应力砼T梁,下部为排架式墩,桩基础。

桥位处水域宽约810m。

1.2地形经我部现场实测,主桥河床标高约为-12.7m。

1.3水文条件XX大桥主桥墩位处平均水深17m,常水位为4.3m。

按工期计划,主桥承台施工时间为20XX年2月底至20XX年5月底,根据提供的水文资料情况,确定在此施工期,XX水位标高约为+4.3m。

2 钢吊箱设计方案根据施工现场河床标高和承台设计基本情况,主桥承台属高桩承台,采用有底钢吊箱施工方案。

钢吊箱构造概述(1)、主桥主墩钢吊箱平面内净尺寸:10.7m×9.7m,四边形,(考虑10mm的偏差,吊箱侧板兼做承台模板);侧板顶面设计标高:+6.0m;底板顶面设计标高:-1.0m;内支承标高:+4.5m;封底C25混凝土厚1.5m。

钢吊箱底板采用4根2I40a工字钢作为承重梁,上铺设I12.6工字钢,间距30cm,I12.6工字钢上铺设面板,面板采用6mm厚钢板,底板重量为17.65t。

钢吊箱侧板采用桁架结构,面板采用6mm厚钢板,竖向、横向肋采用L75×6等边角钢,间距30cm,桁架竖杆、长平联采用L100×8等边角钢,桁架斜杆、短平联采用L75×6等边角钢。

主墩钢吊箱侧板竖向分2层,上层为50cm高防浪板,水平分4块进行加工,下层水平分8块段,块段与块段之间采用φ20×60mm连接,接缝间加设1cm厚泡沫垫。

钢吊箱施工作业指导书

钢吊箱施工作业指导书

钢吊箱施工作业指导书广州沙湾特大桥是广州南部地区未来道路网络的一个重要枢纽工程,其中45#~47#墩横跨广州地区重要水上要道——沙湾水道,经设计院研究决定实行高桩悬承台双臂墩现浇T构施工,其承台实行水中吊箱施工。

1、施工水位:设计提供的设计水位8.09m,通航水位7.69m。

依据三沙口水文站1952年至2002年实测的历年最高水位资料,推算沙湾特大桥处的最高潮水位为7.71m。

拟采用施工水位7.69m,钢吊箱顶面标高7.89m。

2、承台顶面标高7.19m,承台高3.65m,承台底面标高3.54m,承台平面尺寸为11.20(线路方向)×12.80(水流方向)。

3、钻孔桩直径2.0m,钢护筒直径2.3m,护筒壁厚12mm。

4、钢吊箱尺度:钢吊箱壁板作承台模板,吊箱肋骨设在壁板外面。

据此钢吊箱平面尺寸(壁板向)为11.20m×12.80m,高5.38m。

钢吊箱材质为A3。

5、封底混凝土厚度1.0m,混凝土标号C20。

6、由于施工场地狭小,钢吊箱拼装平台搭在一艘300T运输船上。

7、现场吊装设备:50T浮吊船一艘。

8、现场施工人员:拼装模板15人;下沉钢吊箱:25人。

一、钢吊箱制作钢吊箱外型尺寸为:长×宽×高=12.8m×11.2m×5.38m考虑到水的压力及浇注混凝土的压力,侧模板和底模板均采用大块定型钢模,并在底模板辅以T240×180×10mm的肋骨,侧模板辅以Ⅰ240×374×300的竖肋及Ⅱ28的横向肋。

考虑到运输条件:汽车运输,每块底模板分成4块,运到施工现场后进行组拼;每块侧模板分成两块运输:1.28m+3.1m。

根据现场吊装能力:50T浮吊。

底模板及1.28m侧模板预先拼装好现场直接吊装到位后再逐块拼装3.12m侧板,其中底模板与侧模板之间及侧模板相互之间均采用φ22×65mmC`型普通螺栓连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作要点及注意事项(1) 钢吊箱施工钻孔灌注桩浇注完成以后,在钻孔桩上设置钢管定位桩。

铺设钢吊箱工作平台,完成体系转换。

钢吊箱施工采用岸上构件场分块加工,运输至墩位后组拼,分节下沉。

其施工步骤见图5.3-4。

a钢吊箱制作钢吊箱围堰按施工设计图进行加工制造,作为承台模板,必须保证加工制作精度。

执行公路桥涵施工技术规范对钢模板的相关规定。

钢吊箱制造分块进行。

长边侧模分成6块、短边分成4块。

底模根据桩基布置特点,沿桥向每2根分成一块,共分3块,组拼前进行预拼编号。

在钢吊箱的组成部分中,侧模分块的重量最大,为了保证其加工制作的方便以及满足工地已有的起重和运输能力的要求,在不破坏其主体结构完整性的前提下,将钢吊箱壁体沿竖直方向分块进行加工。

考虑到焊接收缩及装配误差,每块壁体单元都预留一定的余量,其中壁体的第一块为定位块,其余量在块体装配焊接完毕并经测量校核后割除,其余各块体的余量则留待整体拼装时割除。

底模在桩基位置处要开洞设导向喇叭口,开洞位置按照施工现场准确测设的直径为2.4m的钢护筒的实际位置及倾斜数据,并预留12cm的富余量,以利套箱整体顺利下放。

所有模板均做好编号,并注明上、下游及方向,以便套箱精确组拼及准确吊装。

吊挂系统的预埋立柱部分先行制作,在桩基施工平台拆除前预埋完成。

要求6根预埋立柱顶面处于同一标高,顶面标高误差允许值为:+0,-20mm;平面位置误差允许值为±10mm。

内支撑与侧模配套加工,以确保结构尺寸及必要的加工拼装精度。

吊挂系统挑梁上的4个内支撑吊耳在工厂制作,运到工地在组拼好的挑梁上就地精确放线焊接安装。

b钢吊箱的拼装在工厂加工预拼好的钢围堰,按标识编号分块运至水中工作平台上组拼。

在工作平台上先组拼底板,在组拼侧模及内支撑,最后组拼吊挂系统。

底板分块焊接在现场完成,焊缝检查合格后,用加热后的沥青油膏覆盖焊缝。

施工过程图示施工过程说明序号1、平台上制作钢套箱节。

1、施工放样。

2、首节钢套箱起吊、抽除套箱下分配梁,钢套箱定位下沉至适当位置并用导链临时稳固。

3、制作第二节钢套箱,重复上述制安步骤(在水位以上位置进行套箱节间焊接)完成钢套箱安装。

4、拆除导链装置。

1、钢套箱位置整正,水位以上与平台联焊。

2、套箱壁内根据计算浇注适当高度的水下砼。

1、套箱内水下砼浇注。

2、下道工序施工。

第一节钢套箱基桩平台桩4、1、2、3、+72.5m 图5.3-4 钢套箱下沉施工步骤图侧模与底板的接缝用长圆形螺栓栓接时,加垫垫板覆盖螺栓孔,同时浇注沥青防渗水。

侧模与底板接缝间加垫泡沫橡胶皮,胶皮上下表面热敷沥青,并从6mm 厚压缩至2mm ,同时对接缝内外侧浇注沥青油膏后,用塑料薄膜覆盖,再用纤维胶带包裹完成。

侧模与侧模之间的接缝处理方法同上,但必须保证大面平整度。

在拼装好的底板上放出侧模安装位置,为了减少焊接收缩的影响,在长度和宽度方向均加放1‰的焊接收缩余量。

壁板块体的吊装对称进行,先吊装中间的第一块(定位块),然后依次在第一块的两侧进行其他块体的吊装。

定位块吊装时依靠靠模缓缓就位,并使其壁板与底板垂直,当满足要求后加设内斜撑临时固定,并检测两定位块内壁板上、下端之间的距离。

定位块就位后,即可吊装第二块。

吊装第二块时,先将其摆放在距离定位块50mm的位置,然后测量其壁板上定位线与底板上安装线的距离,以确定切割余量,当割除余量后将其向定位块拉拢对接。

第二块安装完成后,按此方法依次吊装其他块体。

钢吊箱拼装焊接完毕后,对每条拼缝进行水密性检验,以确保钢吊箱的水密性。

水密性采用煤油渗透检验。

进行全面检查,检查结构尺寸、偏扭情况、倾斜度及接缝严密情况等,并填写检查表,签认合格后方准进行下沉工作。

制作安装精度要求:结构尺寸±20mm;中线偏差为10mm;倾斜度偏差为0.1%。

c钢套箱的下沉钢套箱的下沉采用设置在四周定位桩上的起吊架与500t吊船,吊装期间需严格做好航道上船只的安全防护。

下沉定位时要求反复测量反复调整,直至精度满足规范要求为止。

钢吊箱就位精度要求为:平面尺寸±30mm,轴线偏位15mm。

钢套箱下沉就位的测量控制方法,是根据钻孔桩的实际位置,将钢套箱放置到接近设计高称后调整平面位置,再固定套箱。

平面位置测量控制方法是利用全站仪置镜测量控制点测角测距,将所测出的套箱沿桥轴线方向A、B点及法线方向上下游C、D点的角度(θ)和距离(L),用极坐标法计算出X i、Y i(X i=cosθ×L;Y i=sinθ×L);在根据中心坐标X、Y和实测4个点坐标计算L1=[(X i-X)2+(Y i-Y)2]1/2的尺寸,用钢卷尺检测各细部尺寸。

如果计算出的L1和丈量各细部尺寸超出施工规范规定时,重新调整套箱平面尺寸;调整位置后,用同样的方法检测各项尺寸,直至符合规范要求。

检测点位见图5.3-5。

桥横轴线桥纵轴线A BCD E FG H图5.3-5 钢套箱检测点位图d 水下封堵钢吊箱调整到位并固定后,由潜水员水下合拢哈佛,封堵钢护筒、钢管桩与吊箱底板间的间隙,并在哈佛上堆码一层袋装水泥、沙子的混合料,由于水下的操作不方便,极易造成空隙封堵不严、不实,因此在封底混凝土灌注期间,还注意测量孔口附近混凝土面上升情况,若异常,则由潜水员水下检查,及时处理发现的问题。

平台、导管、灌注小料斗及测点是所有封底施工中必不可少的,根据具体的工艺要求进行布置。

封底平台主要由2[40槽钢横梁及支架、平台木板及栏杆等组成。

安装好的横梁上铺设5cm 厚木板,木板间用马钉连接形成整体,平台四周设栏杆并挂上安全网。

封底混凝土导管采用内径Φ300mm 、壁厚δ=8mm 的无缝钢管制作,管节长度为6m 、3m 、2m 和1m 等四种,管节之间采用快速螺纹接头连接,导管使用前做水压、水密试验,合格后使用。

试验的水压按导管超压力的1.3倍取值。

根据导管超压力值及吊箱内钢护筒和钢管桩的分布情况,浇筑导管按混凝土流动半径4.5m 进行布置,并充分考虑中心集料斗的布料要求以及混凝土在钢吊箱边角处的流动,上下游承台区各布置6根浇筑导管。

灌注小料斗分为两种,一种为1.0m 3,通过快速螺纹接头与导管顶部连接,用于导管首批封口混凝土浇筑;另一种为0.5m 3,直接套在导管顶口,用于导管正常混凝土灌注。

混凝土面标高测量点按10~15m2左右布置一个,并兼顾每根导管附近、吊箱边角及相邻导管流动半径的交会处,承台区共布置12个测点(其中导管测点6个)。

混凝土配合比的合理设计,是封底成功的重要因素之一,除采用双掺技术提高混凝土的和易性、流动性及稳定性外,该对封底混凝土其他性能指标进行了规定,即:初凝时间≥10h;初始坍落度20~22cm,2h后坍落度≥15cm。

在封底混凝土浇筑过程中,根据具体情况,对混凝土配合比不断地进行调整,严格控制混凝土的性能,使得混凝土的各项指标均满足要求。

混凝土布料采用中心集料斗,其设计储料容量为20m3,按导管封口阶段进行容量控制,即中心集料斗的储料既要满足每根导管首封混凝土量要求,还留有一定富余,以便对已封口的导管进行及时补料。

中心集料斗布置于每区的中部,通过溜槽与导管相接。

为了安全、方便地安装中心集料斗,在中心集料斗的搁置处,于顺桥向的挑梁上加设横向的支架梁。

首批混凝土灌注时,先由中心集料斗贮料,然后依次打开通向灌注导管的分料槽的出料门、中心集料斗的出料口,让混凝土经溜槽进入浇筑小料斗,到小料斗内充满混凝土时,拔塞,同时集料斗连续不断放料,完成导管封口。

混凝土导管封口从下游侧向上游侧推进,当某一根导管封口完成后在进行其相邻导管封口时,先测量待封导管底口处的混凝土顶标高,根据测量结果重新调整导管底口的高度。

导管封口完成后,按规定的时间进行及时补料,同一导管两次灌入混凝土的时间间隔控制在45min以内。

因封底混凝土厚为 3.0m,为保证导管有一定埋深,混凝土灌注顺利时,一般不随便提升导管,即使需要提管,每次提升的高度都严格控制在20~30cm。

提升导管采用浮吊,由起重工统一指挥,用慢钩完成。

灌注过程中,根据灌注量,每隔一定时间测一次标高,用以指导导管下料,使混凝土均匀上升。

混凝土浇筑临近结束时,全面测出混凝土面标高,根据测量结果,对混凝土面标高偏低的测点附近的导管增加灌注量,直至所测结果满足要求。

当所有测点的标高满足控制要求后,结束封底混凝土灌注。

(2) 钢套箱内抽水、清淤及钢护筒割除当封底混凝土强度达到设计强度后开始从钢套箱内抽水,抽水采用吸泥管和水泵进行,为防止抽水过程中发生意外事故,保证套箱安全,应配备从堰外向堰内灌水水泵,随时观察钢套箱的结构变形情况,一但发生意外,立即向堰内灌水,恢复内外平衡。

为了获得足够的施工空间,要对多余的钢护筒进行割除。

(3) 桩头处理及桩头钢筋笼绑扎桩头处理包括桩顶沉淀物清除及桩头混凝土凿除。

由于多种原因,桩顶混凝土中存有不同程度的浮筑、钻渣与混凝土的混合物,桩头处理采用人工配合风镐作业,并配以高压水冲洗。

根据承台施工安排,桩头凿除采取平行流水作业,即先凿除上游承台区桩头,使上游承台区进入后续施工,与此同时进行下游承台区桩头凿除,凿除的方法选用常规的人工风镐凿除。

这种方法组织实施容易,操作可靠。

桩头处理完以后,对桩头钢筋进行清理、调整,并要对桩基进行检测。

随后,桩头钢筋笼安装严格按照技术规范进行交底、绑扎。

(4) 封底混凝土面清理和基底处理承台钢筋绑扎前,清理封底混凝土表面,对局部高点进行凿除,对低处进行回填,力争使钢筋绑扎场地平整。

岸上明挖法施工的承台,对开挖后的基底进行硬化处理。

(5) 模板安装承台以钢套箱内壁作为模板,钢套箱内壁进行除锈打磨并涂刷脱模剂。

岸上承台模板采用建筑钢模。

模板安装时,在基坑内设置钢管支撑。

(6) 钢筋绑扎、冷却水管安装承台钢筋在岸上钢筋加工场地加工成半成品,由船运至现场绑扎。

由于钢筋用量较大,钢筋网格、层次较多,为保证设计钢筋能正确放置和混凝土浇筑质量,采用劲性骨架架立各层钢筋网片,做到上下层网格对齐,层间距正确,并确保钢筋保护层厚度。

冷却水管采用有一定强度、导热性能好的薄壁电焊铝管制作,散热管分别在距承台底1m、2m、3m的高度,在混凝土浇筑后7天内管内水流流速不得小于1.8L/min,管间连接采用黑橡胶管。

冷却水管的进、出水口采取集中布置、统一管理,并标识清楚。

水管由潜水泵管供水。

(7) 承台混凝土施工承台混凝土施工属大体积混凝土施工,在砼硬化期间水泥水化过程中所释放的水化热所产生的温度变化和砼收缩,以及外界约束条件的共同作用,表面产生的温度应力和收缩应力,是导致大体积砼结构出现裂缝的主要因素。

大体积砼之所以会出现温度应力裂缝,是因为砼内部温度和砼表面温度之差大于25℃。

相关文档
最新文档