简支梁振动系统动态特性综合测试方法分析
简支梁振动测试与分析系统的设计

电压为 ±1 O V。L C 1 3 0 1型力 锤质 量 为0 . 3 5 k g , 灵 敏 度为 l mV/ N, 量程 为 5 0 0 0 N。Y E 5 8 5 2放大 器增 益 为 0 . 0 1 mV / p C  ̄1 0 0 0 m Y/ p C , 精度为±1 , 输 出电压为 ±1 0 V。N I 9 2 3 4采集卡有 4 个输入和 1 个输 出通道 , 精 度均 为 2 4位 , 并且增 益可由软件控制 , 采样 速率最高达 5 1 . 2 k S / s , 输入 电压信号 范围在 ±5 V之间 。
2 振 动测试 分析 系统软件 设计 振 动测 试分 析 系统 采 用 L a b VI E W 语 言编写, 根 据其结 构化 特征 , 整 个系统 程序分 为信 号采集 、 信号 分 析、 界 面管理 3 部分。 前 面板 包括 图形 显 示 、 数据 显 示 和参 数设 置 3部 分 。在前 面板 中可 以通过 点击列 表和旋钮 来设置 系统 的采样 点数 、 频率 、 电压 和数据保存 路径 。点击分 析列 表标签 可 以切换 不同图形 显示控 件 , 包括激 励信号 、 原 始信 号 、 滤 波信 号 、 相关性分析、 功 率谱 分 析 、 F F T 变 换、 频 响分 析等 。 程序 框图是 完成 程序 功 能 的图形 化 原代 码 , 通 过 在程 序框 图 中对 信号数据 输入 、 输 出的指定 , 完成 信号 采集 、 分析处 理功 能 的操 作 与控 制 。程序 框 图 中包 括 前面板 上控 件的 连线端子 以及连线 编写程 序 。
N I 9 2 3 4 数 据 采 集 卡
Y E 5 8 5 2 电荷放 大器
萋 l c t t 型 力 锤速 9 1 0 度 1  ̄ 感 N 母
机械结构的动态特性测试与分析

机械结构的动态特性测试与分析引言:机械结构在现代工业中起着不可或缺的作用,从汽车发动机到航天飞行器,从建筑大厦到微型电子设备,都离不开稳定可靠的机械结构。
然而,由于各种因素的影响,机械结构往往存在动态特性,如共振、频率响应等问题,这些问题可能引发机械结构的破坏和故障。
因此,对机械结构的动态特性进行测试与分析变得至关重要。
一、动态特性测试方法1. 振动测试振动测试是评估机械结构动态特性的重要手段之一。
通过在机械结构上施加外力或激励,测量相应的振动信号,可以获取机械结构的共振频率、振动模态等信息。
常用的振动测试方法有自由振动测试和强制振动测试。
自由振动测试是在机械结构未受到任何外力干扰时的振动行为。
通过激励结构,记录下结构在自由振动过程中的振动信号,再经过数据处理和分析,可以得到机械结构的频率响应曲线和模态参数。
强制振动测试是施加外力或激励至机械结构后的振动行为。
通过在结构上施加单频、多频或随机激励信号,测量在不同激励下结构的振动响应,并进行数据处理和分析,可以研究机械结构的频率响应特性、传递函数等。
2. 声学测试声学测试是利用声波的传播和反射特性,测试和分析机械结构的动态特性。
常用的声学测试方法有声传递函数测试、声发射测试和声发射瞬变测试。
声传递函数测试是通过测量机械结构入射声波信号和反射声波信号之间的幅度和相位差,推断机械结构的振动特性和传递函数。
声发射测试是用于检测机械结构内部缺陷和损伤的方法。
通过在机械结构上施加外力或激励,并用传感器实时测量结构表面的声发射信号,再通过信号处理和分析,可以判断出机械结构的缺陷和故障。
声发射瞬变测试是在机械结构的工作状态下,测量由于结构内部应力变化引起的瞬态声发射信号,从而判断机械结构的动态特性和工作状态。
二、动态特性测试与分析的意义1. 提高机械结构的可靠性与安全性通过对机械结构的动态特性进行测试和分析,可以了解结构共振频率、振动模态等参数,从而避免结构受到共振现象的影响。
单自由度系统自由振动——简支梁

单自由度系统自由振动(简支梁)一、 实验目的 1、测定简支梁的等效弹簧常数k ; 2、记录简支梁的自由振动曲线,用分析仪测定系统的有阻尼时的固有频率d ω及相对阻尼系数ζ; 3、用附加质量法测定简支梁的等效质量m ; 4、初步了解振动测试的一些仪器设备及测试方法。
二、 实验装置及原理 1、 实验装置 一根均匀的、截面为矩形的简支梁,其简图如图1所示。
这个系统可看作如图2所示的,有阻尼的单自由度弹簧质量系统,有阻尼时的振动微分方程为: 0=++kx x c xm &&& (1) 令m c n =2,mk n =2ω (2) 则(1)式为:022=++x x n x n ω&&& (3) 再令nn ωζ= (4) 则式(3)为:022=++x x x n n ωςω&&& (5) 其中: m :为简支梁系统的等效质量; k :为简支梁系统对于跨度中点的等效弹簧常数; c :为简支梁下的阻尼常数,n 称为衰减系数,ζ称为相对阻尼系数; n ω:为简支梁系统固有频率,n n f πω2=,d ω为系统的有阻尼固有频率,d d f πω2=。
2、 实验原理 (1) 等效弹簧常数的测定 由于梁在弹性范围内的挠度与梁所受载荷成正比,因此只要在简支梁的跨中点加载,同时图2用百分表读出该点的挠度值,即可测出等效弹簧常数。
(2)记录简支梁系统的自由振动曲线 在简支梁跨度中点贴应变片作用是使梁在振动时的应变量变化转化成电阻量的变化,再将应变片按半桥接法接到动态应变仪上,把电阻量的变化信号放大,并转化成电压量的变化信号,输出到示波器或分析仪,这样即可观察和记录波形。
测试系统框图如图3所示。
(3)附加质量法测等效质量 根据式(2),因为()222n n f m k πω==,21ζωω−=n d ,d d f πω2=要测出简支梁的等效质量m ,只要在原来的简支梁上附加一个已知质量∆,再次求得带有附加质量∆时的固有频率2∆n ω,然后通过下式计算得到m : ()()()()22222222∆∆∆==∆+=n n n n n n f f f f m m ππωω (6) ()()1111222222−∆=−−−∆=∆∆∆d d d d f f f f m &ζζ (7) 三、 实验步骤 1、 测定简支梁系统的等效弹簧常数 在简支梁跨中点处用砝码加载(i=1,2, …., 5),同时用百分表读出该点相对应的挠度值,并记录表1中,按公式算出。
钢结构简支梁桥自振与舒适性试验分析研究

钢结构简支梁桥自振与舒适性试验分析研究摘要:结构的动力特性为桥梁结构的基本受力性能,是进行结构动力分析所必需的参数。
钢结构简支梁桥动力荷载试验主要是通过测试桥跨结构的动力特性指标(环境激励下的自振频率),研究桥梁结构在自有频率下的动力反馈作用性能,以检验所检测指标能否满足设计或规范规定,判断桥梁结构的整体刚度以及行人舒适性能。
关键词:钢结构;梁桥;振动;试验分析钢结构简支梁桥自振频率是反映桥梁刚度、整体受力性能以及行人舒适性的重要指标,本文动力试验研究为环境振动试验,测试钢箱梁简支梁桥在自然环境激励下的竖向自振基频。
竖向自振基频是衡量人行天桥刚度性能的重要指标,桥梁刚度越大,其竖向自振基频越大,桥梁整体受力性能越好,桥上行人越不容易感到晃动,同时,自振频率还能反映出桥梁结构的损伤状况以及结构的整体受力状况,也为测试桥梁的行人舒适程度提供重要参考。
根据试验依据及试验内容,按照试验要求及分析研究所需,本文采用相关试验仪器设备,选择15座钢结构简支梁桥进行环境振动试验。
1 试验分析桥跨本次试验选取15座钢结构简支梁桥,所选跨度为城市人行天桥主要代表性跨度,跨度集中为15.00m至47.75m,15座桥梁主要参数见表1。
2 主要方法依据《城市桥梁检测与评定技术规范》(CJJ/T 233-2015)中7.2.2条要求,本文所选仪器进行时域和频域的采集后的后续分析时,对于仪器采样频率的选择,应该为所要测试测信号最高频率分辨率的分量所对应的频率值的5倍至10倍之间。
依据人行天桥结构动力特点,本文采用高灵敏941型拾振器以及DH5920动态信号采集及分析系统,所选分析参数如下:(1)采样频率:100Hz;(2)测量类型:电压测量;(3)测量量:加速度;(4)量程:16.18123m/ s2。
根据结构的振动特点,对15座简支梁桥进行动力试验,根据简支梁桥特点,测点布置均在梁桥跨中截面位置。
3 试验结果钢结构简支梁桥的自振频率是反映桥梁刚度、整体受力性能以及行人舒适性的重要指标,依据测试结果,本文对所选15座人行天桥进行了实测统计分析,实测结果如下表所示:表1 人行天桥环境振动试验测试结果序号结构形式桥梁跨径(m)梁高(m)自振基频(Hz)1简支梁47.750 1.400 2.5392简支梁44.100 1.400 2.7563简支梁43.760 1.400 2.5394简支梁42.170 1.400 2.7345简支梁40.860 1.400 2.9306简支梁36.450 1.400 3.1257简支梁35.900 1.400 3.1258简支梁34.513 1.400 3.1259简支梁31.800 1.400 3.3201 0简支梁31.500 1.400 3.7111 1简支梁30.500 1.300 4.1021 2简支梁29.000 1.300 4.4921 3简支梁26.470 1.300 5.0781简26.370 1.300 5.4694支梁1 5简支梁15.000 1.3006.836由上可知,15座人行天桥中,共有5座人行天桥结构竖向最低自振频率小于3Hz,剩余10座人行天桥实测竖向最低自振频率符合要求,其竖向最低自振频率均大于3Hz,自振基频随跨径分布如下图所示。
桥梁结构动态特性检测方案振动测试技术探索

桥梁结构动态特性检测方案振动测试技术探索作为交通运输的重要组成部分,桥梁的安全性和可靠性一直备受关注。
随着时间的推移,桥梁会受到自然力的影响而发生磨损和损坏,甚至可能导致结构的倒塌。
因此,及时检测桥梁的动态特性,特别是振动状态,对于保障桥梁的安全至关重要。
本文将探讨一种桥梁结构动态特性检测方案,即振动测试技术,以揭示其在桥梁工程中的应用前景。
一、引言桥梁结构的振动测试是通过测量桥梁在外部激励下的振动响应,来分析结构的自然频率、模态形态和振动特性的一种方法。
通过振动测试,可以获得桥梁结构的基本动态参数,进而评估桥梁的结构健康状况。
振动测试技术已经在桥梁工程中得到了广泛应用,为桥梁维护保养和结构优化提供了有效手段。
二、桥梁振动测试技术原理1. 加速度传感器振动测试中常用的传感器是加速度传感器,通过测量加速度信号来获取结构的振动状态。
加速度传感器可以将加速度转换为电信号,并通过数据采集系统记录。
这种传感器具有体积小、测量范围广等优点,在桥梁振动测试中应用广泛。
2. 数据采集系统数据采集系统是振动测试中的关键部分,负责采集传感器的信号并将其转换为数字信号进行处理和分析。
数据采集系统应具备高采样率、大存储容量和数据传输功能,以满足测试的需求。
同时,系统的稳定性和准确性也是评价其性能的重要指标。
三、桥梁振动测试方案1. 测试计划设计在进行桥梁振动测试前,应制定详细的测试计划。
测试计划需要包括测试的时间、地点、测试参数等内容,并根据桥梁的特点和要求确定测试方案。
同时,还需要合理安排测试设备和人员,确保测试工作的顺利进行。
2. 测试前准备工作在进行振动测试前,需要进行充分的准备工作。
首先,对桥梁的结构进行全面检查,以保证测试过程的安全。
然后,根据测试计划设置好传感器和数据采集系统,并进行校准和调试。
此外,还需要保证测试现场的环境条件适宜,以减少外界干扰对测试结果的影响。
3. 振动测试实施振动测试的实施需要按照测试计划进行。
简支梁自振频率测量(正弦扫频法)实验报告

实验2简支梁自振频率测量(正弦扫频法)一、实验目的以简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法以如何由幅频特性曲线得到系统的固有频率,了解常用简单振动测试仪器的使用方法。
二、实验内容及原理简支梁系统在周期干扰力作用下,以干扰力的频率作受迫振动。
振幅随着振动频率的改变而变化。
由此,通过改变干扰力(激振力)的频率,以其为横坐标,以振幅B为纵坐标,得到的曲线即为幅频特性曲线。
依据共振法测试简支梁的一阶、二阶固有频率,原理同实验三。
用跳沙法观察简支梁一阶、二阶振型。
测试简支梁的振型,根据简支梁的长度,划分若干个单元格,依次标号。
将信号发生器的频率调整到一阶固有频率处,观察简支梁的振动情况,在该频率下,分别测试每个单元的振幅。
依据测得的振幅,通过归一化,绘出简支梁的一阶振型。
三、实验仪器及设备机械振动综合实验装置(安装简支梁)1套激振器及功率放大器1套加速度传感器1只电荷放大器1台信号发生器1台数据采集仪1台信号分析软件1套计算机1台四、实验方法及步骤1.将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心线在一直线上),激振点位于简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端连接到功率放大器的输入端,并将功率放大器与激振器相连接。
2.用双面胶纸(或传感器磁座)将加速度传感器粘贴在简支梁上(中心偏左50mm)并与电荷放大器连接,将电荷放大器输出端分别与数据采集仪输入端连接。
3.将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。
设置信号发生器输出频率为10Hz,调节信号发生器的幅值旋钮使其输出电压为2V。
调节功率放大器的幅值旋钮,逐渐增大其输出功率直至简支梁有明显的振动(用眼观察或用手触摸)。
4.将信号发生器输出频率由低向高逐步调节,观察简支梁的振动情况,若振动过大则减小功率放大器的输出功率。
5.保持功率放大器的输出功率恒定,将信号发生器的频率重新由抵向高逐步调节,记录调整频率的变化情况,采集各个调整频率下响应信号振动幅值对应的电压数据。
简支梁实验

简支梁模态参数测定之一—测定固有频率与振型一、实验目的1、加深对系统固有频率和主振型的理解;2、掌握振动系统固有频率及主振型的一种测量方法(共振法);3.了解压电式传感器及与它相配的测量系统的工作原理,掌握正确使用的方法;4、了解激振系统的工作原理。
二、实验装置框图图1 表示实验装置系统框图图1 实验装置系统框图三、实验原理试验模态分析法是确定结构固有频率的有效方法,在结构分析中应用广泛,而简支梁也是桥梁结构中一种常见的模型,现代桥梁中依然存在不少采用简支梁模型的桥梁结构。
所以本事通过试验模态法得到简支梁的固有频率和振型,也是桥梁结构分析中一种常用的方法很有实际意义,实验所用的均质等截面简支梁模型,属于小阻尼和连续的无限自由度的振动系统。
本实验模型是一矩形截面简支梁,它是一无限自由度系统。
理论上说,它应有无限个固有频率和主振型,在一般情况下,梁的振动是无穷多个主振型的迭加。
如果给梁施加一个合适大小的激振力,且该力的频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率而确定的振动形态叫做这一阶主振型,这时其它各阶振型的影响小得可以忽略不计。
用共振法确定梁的各阶固有频率及振型,具体步骤是首先得找到梁的各阶固有频率,并让激扰力频率等于某阶固有频率,使梁产生共振,然后,测定共振状态下梁上各测点的振动加速度值,从而确定前三阶主振型。
振型:即振动形态,即梁上各个测量点和振幅的关系图。
如图所示为一阶,二阶和三阶的振型图。
在正弦激励下振幅的比值等于加速度的比值。
所以本次试验测量加速度与位置之间的关系就能正确画出振型,大致如图2所示。
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 1图2 前三阶振型图根据材料力学理论下简支梁固有频率的计算:2012f l ππ⎛⎫= ⎪⎝⎭E 为材料的弹性模量,查表取E=210Gpa 测量得简支梁b=0.05m h=0.15m l=1m312bh I =s 为梁的横截面积37850kgm ρ=2201135.1622f Hzl l ππππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭10f f =214140.6f f Hz == 319316.4f f Hz==四、实验方法1、 激振器安装把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专用连接线连接激振器和DH1301输出接口。
简支梁振动特性的理论分析及实验研究

研 究 振 动工 程 是发 展工 业 生产 和 国 民经济 的 需要 , 这一 学 科 以力 学 和 数 学 为 基 础 , 以现 代 测 试技 术 、 算 机技 术 为手 段 , 面 向工 程 实 际 , 计 它 以
振 动学 科 的理 论 、 识 和 方 法 来 解 决 工 程 中 日趋 知
1 简 支 梁 的理 论 分 析 法
对 简支 梁进 行 如下 简 化 , 图 1 把 整 段 梁 均 见 : 分 成 9段 , 每 段 中心 作 为 质心 , 梁 简化 成 9个 取 把 独 立质 点 和一个 无 重 弹性 梁 构成 的多 自由度 系 统 模 型 。通 过 建立 9个二 阶互 相耦合 的常微分 方程 , 采 用模 态坐 标解 耦 的 思想 求 解 方程 的特征 值 和 特
Absr c :Th sp p rsu e n nay e hev b a o ft e smp e s p re e m n k si e ta t i a e tdisa d a lz st i r t n o i l up o td b a a d ma e tt i h h d s r td MDOF mo e .F u t o s a e s d,s c s marx o c s e ae l Ra li h En r y ic ee d 1 o r me d r u e h u h a ti c ur rpe td y, yeg — e g
征 向量 。
复 杂 的各 种 动力 学 问题 。 当前 , 机 械 工 业 和 其 在 它 工业 部 门存 在 着 大 量 的 有 害 振 动 问题 , 些 问 这 题 正在 招 致 巨 大 的 损 失 或 隐 藏 着 可 怕 的 祸 根 。
因此 , 习 和掌握 振 动工 程 的理 论 和 技 术 来 解 决 学 这些 问题 , 成 为 当 务之 急 。简 支 梁 是 工 程 中常 就
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、设计题目 (1)二、设计任务 (1)三、所需器材 (1)四、动态特性测量 (1)1.振动系统固有频率的测量 (1)2.测量并验证位移、速度、加速度之间的关系 (3)3.系统强迫振动固有频率和阻尼的测量 (6)4.系统自由衰减振动及固有频率和阻尼比的测量 (6)5.主动隔振的测量 (9)6.被动隔振的测量 (13)7.复式动力吸振器吸振实验 (18)五、心得体会 (21)六、参考文献 (21)一、设计题目简支梁振动系统动态特性综合测试方法。
二、设计任务1.振动系统固有频率的测量。
2.测量并验证位移、速度、加速度之间的关系。
3.系统强迫振动固有频率和阻尼的测量。
4.系统自由衰减振动及固有频率和阻尼比的测量。
5.主动隔振的测量。
6.被动隔振的测量。
7.复式动力吸振器吸振实验。
三、所需器材振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。
四、动态特性测量1.振动系统固有频率的测量(1)实验装置框图:见(图1-1)(2)实验原理:对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。
在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。
(图1-1实验装置图)(3)实验方法:①安装仪器把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。
把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。
②开机打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。
清零后开始采集数据。
③测量打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。
继续增大频率可得到高阶振动频率。
④所得图形及数据分析:(图1-2:幅频特性曲线)由幅频特性曲线可得到的数据:表1-1:实验所得数据 阶数 一阶 二阶 三阶 固有频率(Hz ) 58.5938 183.5938 386.7188 幅值(mv ) 2.8724 5.6004 6.52252.测量并验证位移、速度、加速度之间的关系 (1)实验装置与仪器框图:见(图2-1) (2)实验原理:在振动测量中,有时往往不需要测量振动信号的时间历程曲线,而只需要测量振动信号的幅值。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器来测量。
设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A : x = Bsin (ωt-ψ) (式2-1)v = dtdx=ωBcos (ωt-ψ) (式2-2))sin(222ψ--==wt B w dt xd a (式2-3)式中:B一一位移振幅ω——振动角频率ψ——初相位X=BA=ω2B=(2πf)2B 式(2-4)(图2-1:实验装置图)振动信号的幅值可根据式(2-4)中位移、速度、加速度的关系,分别用位移传感器、速度传感器或加速度传感器来测量。
也可利用动态分析仪中的微分、积分功能来测量。
(3)实验方法:①安装激振器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。
②连接仪器和传感器把加速度传感器安装在简支梁的中部,输出信号接到数采分析仪的振动测试通道;把位移传感器安装在简支梁的中部,输出信号接到数采分析仪的振动测试通道;把速度传感器安装在简支梁的中部,输出信号接到数采分析仪的振动测试通道。
③仪器参数设置打开数采仪器的电源开关,开机进入DHDAS数采分析软件的主界面,设置采样频率、量程范围,输入加速度传感器、速度传感器和位移传感器的灵敏度。
输入方式:压电传感器选AC,速度传感器选AC,位移传感器选SIN_DC;打开三个窗口,分别显示三个通道的时间信号。
④采集并显示数据调节扫频信号源的输出频率和信号幅值,使梁产生明显振动。
在三个窗口中读取当前振动的最大值(位移、速度、加速度)。
(4)实验数据:(图2-2:位移、速度、加速度时间曲线)(5)实验结果与分析:表2-1:实验数据结果位移X 速度V 加速度 A0.048 82.1416 3.9908 1.2670综上所述,实验结果与计算结果大致相等。
3.系统强迫振动固有频率和阻尼的测量(1)实验步骤:①分析软件进入到频响函数分析模块。
②设置信号源频率,起始频率:0Hz,结束频率:100Hz,线性扫频间隔:1Hz/s。
③设置分析软件,平均方式:峰值保持;信号显示窗口内,选择显示频响函数1-3/1-2曲线;④开始采集数据,输出扫频信号给激振器。
直到扫频信号达到结束频率,手动停止扫频。
(2)数据处理:频响函数曲线类似下图:(图3-1:频响函数曲线)由频响函数图像可知,系统固有频率f0=51.8HZ,f1=50.9HZ, f2=55.4HZ阻尼比4.系统自由衰减振动及固有频率和阻尼比的测量(1)实验装置框图:(图4-1:实验装置框图)(2)实验方法:①将测试系统连接好将加速度传感器布置在集中质量附近,加速度传感器信号接到数采仪的振动测试通道。
②仪器设置打开仪器电源,进入控制分析软件,新建一个项目(文件名自定),设置采样频率、量程范围、工程单位和灵敏度等参数,在数据显示窗口内点击鼠标右键,选择信号,选择时间波形,开始采集数据,数据同步采集显示在图形窗口内。
③测试和处理用锤敲击质量块使其产生自由衰减振动。
记录单自由度系统自由衰减振动波形,然后设定i,利用双光标读出i个波经历的时间△t,T1=△t/;读出相距i个周期的两振幅的双振幅2A1、2 Ai+1之值,计算出阻尼比 ,固有频率f。
(3)实验所得图形如下:(图4-2:时间曲线图形)表4-1:加速度传感器时间波形曲线上峰值数据时间(s)9.3281 9.3516 9.3848 9.4121 9.4160 幅值(mv)109.1394 51.3051 33.3225 28.5703 26.1390表4-2:加速度传感器时间波形曲线上峰值数据时间(s)9.4453 9.4727 9.5059 9.5352 9.5664 幅值(mv)23.1771 17.7364 17.0072 14.5400 11.3836(4)计算结果如下:表4-3:数据处理结果i 时间t 周期T1 A1Ai+1阻尼比固有频率f9 0.2383 0.0265 109.1394 11.3836 0.0400 37.74i=9△t=t10-t1=9.5664-9.3281=0.2383(s)A1=109.1394A10=11.38365.主动隔振的测量 (1)实验装置:(图5-1:实验装置图)(2)实验原理:隔振设计中,常常用振动传递比T 和隔振效率η来评价隔振效果。
主动隔振传递比等于物体传递到底座的振动与物体的振动比,被动隔振传递比等于底座传递到物体的振动与底座的振动之比,两个方向的传递比相等。
一般,由物体传递到底座时常用力表示,由底座传递到物体时则用位移、振动速度或振动加速度表示,这样便于应用。
隔振效率:()%1001⨯-=T η传动比T : 式中D 为阻尼比, 激振 频率和共振频率的比。
只有传递比小于1才有隔振效果。
因此T<1的区域称为隔振区。
①当时,T>1。
系统有放大作用;()22222211u D u u D T +-+=②当时,系统发生共振,传递比极大; ③当0032f f f <<时,作用有限;④0063f f f <<时,隔振能力低(20—30dB ); ⑤00106f f f <<时,隔振能力中等(30—40dB ); ⑥010f f >时,隔振能力强(>40dB ); (3)实验步骤:①仪器安装把空气阻尼器和质量块组成的弹簧质量系统固定在底座中部,加速度传感器放上面,接入数采仪的电荷通道,速度传感器放在底座上,接入采集仪的应变通道将调速电机安装到隔振器上,电机连线接到调压器上。
②开机进入控制分析软件,设置采样频率等参数,正确输入传感器灵敏度,设置双通道时间和频谱示波,并将加速度通道信号积分处理,变为速度显示。
③改变激振频率(电机转速),分别测量20Hz,40Hz,60Hz 时,两传感器的振动幅度。
④根据所测幅值计算传动比和隔振效果隔振传动比:隔振效率:()%1001⨯-=T η(4)实验图形:(图5-2:激振频率20H Z下幅频特性曲线)(图5-3:激振频率40H Z下幅频特性曲线)(图5-4:激振频率60H Z下幅频特性曲线)(5)数据处理:表5-1:实验所得数据激振器频率(H z)加速度传感器振幅A1 速度传感器振幅A2传动比隔振效率20 0.0422 0.1391 0.3034 69.66% 40 0.4951 6.6757 0.0742 92.58% 60 1.4256 66.9644 0.0213 97.87%6.被动隔振的测量(1)实验装置:(图6-1:实验装置)(2)实验原理:防止地基的振动通过支座传至需保护的精密仪器或仪器仪表,以减少运动的传递,称为被动隔振。
被动隔振传递比等于底座传递到物体的振动与底座的振动之比,由底座传递到物体时则用位移、振动速度或振动加速度表示。
隔振效率:()%1001⨯-=Tη传动比T:()22222211uDuuDT+-+=式中D为阻尼比,为激振频率和共振频率的比。
(3)实验步骤:①隔振器安装把小的空气阻尼器和质量块组成的弹簧质量系统固定在梁中部,速度传感器放上面,压电加速度传感器放在梁的下面。
②安装激振器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专用连接线连接激振器和DH1301扫频信号源输出接口。
③连接仪器和传感器把加速度传感器输出信号接到数采分析仪的振动测试通道1-2; 把速度传感器输出信号接到数采分析仪的应变测试通道1-3。
④仪器参数设置打开数采仪器的电源开关,开机进入DHDAS2003数采分析软件的主界面,设置采样频率、分析点数,量程范围,输入加速度传感器、速度传感器的灵敏度。