可编程脉冲信号发生器的设计说明
脉冲信号发生器设计

脉冲信号发生器摘要:本实验是采用fpga方式基于Alter Cyclone2 EP2C5T144C8的简易脉冲信号发生器,可以实现输出一路周期1us到10ms,脉冲宽度:0.1us到周期-0.1us,时间分辨率为0.1us的脉冲信号,并且还能输出一路正弦信号(与脉冲信号同时输出)。
输出模式可分为连续触发和单次手动可预置数(0~9)触发,具有周期、脉宽、触发数等显示功能。
采用fpga计数实现的电路简化了电路结构并提高了射击精度,降低了电路功耗和资源成本。
关键词:FPGA;脉冲信号发生器;矩形脉冲;正弦信号;1 方案设计与比较脉冲信号产生方案:方案一、采用专用DDS芯片的技术方案:目前已有多种专用DDS集成芯片可用,采用专用芯片可大大简化系统硬件制作难度,部数字信号抖动小,输出信号指标高;但专用芯片控制方式比较固定,最大的缺点是进行脉宽控制,测量困难,无法进行外同步,不满足设计要求。
方案二、单片机法。
利用单片机实现矩形脉冲,可以较方案以更简化外围硬件,节约成本,并且也可以实现灵活控制、能产生任意波形的信号发生器。
但是单片机的部时钟一般是小于25Mhz,速度上无法满足设计要求,通过单片机产生脉冲至少需要三条指令,所需时间大于所要求的精度要求,故不可取。
方案二:FPGA法。
利用了可编程逻辑器件的灵活性且资源丰富的特点,通过Quartus 软件的设计编写,实现脉冲信号的产生及数控,并下载到试验箱中,这种方案电路简单、响应速度快、精度高、稳定性好故采用此种方案。
2 理论分析与计算脉冲信号产生原理:输入量周期和脉宽,结合时钟频率,转换成两个计数器的容量,用来对周期和高电平的计时,输出即可产生脉冲信号。
脉冲信号的精度保证:时间分辨率0.1us,周期精度:+0.1%+0.05us,宽度精度:+0.1%+0.05us,为满足精度要求,所以所选时钟频率至少1/0.05us=20MHZ,由于试验箱上大于10MHZ只有50MHZ,故选时钟信号50MHZ,此时精度1/50MHZ=0.02us<0.05us,满足精度要求。
FPGA实现可编程单脉冲发生器设计

可编程单脉冲发生器设计可编程单脉冲发生器是一种脉冲宽度可编程的信号发生器,其输出为TTL 电平。
在输入按键的控制下,产生单次的脉冲,脉冲的宽度由8位的输入数据控制(以下称之为脉宽参数)。
由于是8位的脉宽参数,故可以产生255种宽度的单次脉冲。
在目标板上,I0~I7用作脉宽参数输入,PULSE_OUT用做可编程单脉冲输出,而KEY和/RB作为启动键和复位键。
图3示出了可编程单脉冲发生器的电路图。
图3 可编程单脉冲发生器的电路图8.3.1 由系统功能描述时序关系可编程单脉冲发生器的操作过程是:(1) 预置脉宽参数。
(2) 按下复位键,初始化系统。
(3) 按下启动键,发出单脉冲。
以上三步可用三个按键来完成。
但是,由于目标板已确定,故考虑在复位键按下后,经过延时自动产生预置脉宽参数的动作。
这一过程可用图4的时序来描述。
图4 可编程单脉冲发生器的时序图图中的/RB为系统复位脉冲,在其之后自动产生LOAD脉冲,装载脉宽参数N。
之后,等待按下/KEY键。
/KEY键按下后,单脉冲P_PULSE便输出。
在此,应注意到:/KEY的按下是与系统时钟CLK不同步的,不加处理将会影响单脉冲P_PULSE的精度。
为此,在/KEY按下期间,产生脉冲P1,它的上跳沿与时钟取得同步。
之后,在脉宽参数的控制下,使计数单元开始计数。
当达到预定时间后,再产生一个与时钟同步的脉冲P2。
由P1和P2就可以算出单脉冲的宽度Tw。
8.3.2 流程图的设计根据时序关系,可以做出图5所示的流程图。
在系统复位后,经一定的延时产生一个预置脉冲LOAD,用来预置脉宽参数。
应该注意:复位脉冲不能用来同时预置,要在其之后再次产生一个脉冲来预置脉宽参数。
为了产生单次的脉冲,必须考虑到在按键KEY有效后,可能会保持较长的时间,也可能会产生多个尖脉冲。
因此,需要设计一种功能,使得当检测到KE Y有效后就封锁KEY的再次输入,直到系统复位。
这是本设计的一个关键所在。
脉冲信号发生器的制作课程设计一

脉冲信号发生器的制作课程设计(一)脉冲信号发生器用220V/50XX的工频交流电供电.(注:直流电源部分仅完成设计即可,不需制作,用实验室稳压电源调试)XX按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim2021或OrCAD/PspiceAD9。
2进行必要的仿真,仿真通过后购买元器件,用万用板焊接电路,然后对制作的电路完成调试,撰写设计报告,通过答辩。
XX课程设计总结报告要求:XX题目任务书XX XX概述(简要说明本设计的基本内容)XX技术性能指标XX分析技术要求,选择技术方案,确定原理方框图,分析工作原理XX单元电路的设计(工作原理、元器件的选择、有关仿真波形和实测波形)XX总电路原理图(图纸大小自定,但要符合标准,可手工绘制,亦可用相关C AD软件如Protel、Multisim、OrCAD/PspiceAD等绘制)XX 附录(元器件明细表、需要专门说明或论述的问题、)XX10、总结及体会11、制作的电路XX三、设计进度:XX1、三周(2021.12。
8-—2021.12.26XX2、进度:(1)第一周熟悉题目,分析要求,查找资料,选择方案,优化方案,确定原理方框图。
(2)第二周单元电路设计,选择元器件,进行必要的仿真,确定电路原理图,画出电路原理图,购买元器件.XX(3)第三周焊接电路,调试,通过测试,技术总结、完成训练报告,答辩.目录一、摘要 (1)二、技术性能指标…………………………………………(2)XX三、方案选择和确定 (3)四、单元电路的设计 (5)五、实验仿真………………………………………………(13)六、电路板安装调试………………………………………(14)XX七、附录 (18)八、总结及体会……………………………………………(20)XX摘要XX信号发生电路是一种不需要外加激励就能将直流能源转化成具有一定频率和一定幅度一定波形的交流能量输出电路,又成为振荡器或波形发生器.通过与波形变换电路相结合,它能产生**种波形,能满足现代通信,自动控制,热加工.音XX系统和数字系统等对**种信号的要求.本次课程设计的任务是设计并制作一个脉冲信号发生器,整体设计通过四个主要模块完成,每一个模块完成一个功能.采用文氏桥式电路产生一个1KXX正弦波信号,通过由555定时器连接成的施密特触发器,变换成同频率的方波,再经一个由同步二进制计数器74LS161接成的十进制计数器将1KXX 脉冲转换成100XX输出,进行第一次频率变换.最后经锁相环,实现100倍频目的.整个系统由220V交流供电,测试结果通示波器观察即可.XX 在此过程中,我们对组合逻辑电路、时序逻辑电路数、数字集成电路、小规模的门电路的功能及其有了进一步的了解和掌握 ,达到了更加熟练的应用这些器件的目的。
最新脉冲发生器课程设计

脉冲发生器一.设计题目脉冲发生器的设计二.主要技术指标脉冲信号发生器:频率2K-20K可调三.方案论证与选择NE555构成的单稳态电路(触发时间为一秒)单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
图2-1 555人工启动单稳第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
图2-2 555脉冲启动单稳第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
图2-3单稳型压控振荡电路四.系统总图图2-4 总体电路图波形发生器一、设计题目波形发生器的设计与制作二.主要技术指标输出频率为160Hz的正弦波、方波、三角波。
正弦波幅度10V;方波幅度6V;三角波幅度为4V。
三.方案论证及选择:正弦波:方案一、由R、C振荡电路产生,其中包括R、C串并联电路和R、C移相电路两种。
方案二、由L、C振荡电路产生。
方案三、由集成运放构成的RC桥式振荡电路产生。
包括放大、反馈、选频和稳幅等基本部分。
输出波形稳定性良好。
方波:方案一、方波可由NE555构成多谐振荡器来产生。
方案二、由运放构成的电压比较器,在运放的输出端引入限流电阻和两个背靠背的稳压管组成双向限幅方波产生电路。
三角波:方案一、由方波来产生:可以由NE555电路产生的方波或是集成运放产生的通过R、C积分来得到。
方案二、由同相输入迟滞比较器和积分器产生方案选择:通过对以上方案进行比较,我们选择的方案是:正弦波是由集成运放构成的RC 桥式振荡电路产生。
脉冲信号发生器设计

摘要:本实验是采用fpga方式基于Alter Cyclone2 EP2C5T144C8的简易脉冲信号发生器,可以实现输出一路周期1us到10ms,脉冲宽度:0.1us到周期-0.1us,时间分辨率为0.1us的脉冲信号,并且还能输出一路正弦信号(与脉冲信号同时输出)。
输出模式可分为连续触发和单次手动可预置数(0~9)触发,具有周期、脉宽、触发数等显示功能。
采用fpga计数实现的电路简化了电路结构并提高了射击精度,降低了电路功耗和资源成本。
关键词:FPGA;脉冲信号发生器;矩形脉冲;正弦信号;引言(一)方案设计与比较脉冲信号产生方案:方案一、采用专用DDS芯片的技术方案:目前已有多种专用DDS集成芯片可用,采用专用芯片可大大简化系统硬件制作难度,内部数字信号抖动小,输出信号指标高;但专用芯片控制方式比较固定,最大的缺点是进行脉宽控制,测量困难,无法进行外同步,不满足设计要求。
方案二、单片机法:利用单片机实现矩形脉冲,可以较方案以更简化外围硬件,节约成本,并且也可以实现灵活控制、能产生任意波形的信号发生器。
但是单片机的内部时钟一般是小于25Mhz,速度上无法满足设计要求,通过单片机产生脉冲至少需要三条指令,所需时间大于所要求的精度要求,故不可取。
方案二:FPGA法:利用了可编程逻辑器件的灵活性且资源丰富的特点,通过Quartus软件的设计编写,实现脉冲信号的产生及数控,并下载到试验箱中,这种方案电路简单、响应速度快、精度高、稳定性好故采用此种方案。
(二)理论分析与计算脉冲信号产生原理:输入量周期和脉宽,结合时钟频率,转换成两个计数器的容量,用来对周期和高电平的计时,输出即可产生脉冲信号。
脉冲信号的精度保证:时间分辨率0.1us,周期精度:+0.1%+0.05us,宽度精度:+0.1%+0.05us,为满足精度要求,所以所选时钟频率至少1/0.05us=20MHZ,由于试验箱上大于10MHZ只有50MHZ,故选时钟信号50MHZ,此时精度1/50MHZ=0.02us<0.05us,满足精度要求。
可控脉冲发生器的设计

可控脉冲发生器的设计一、 实验目的1、 了解可控脉冲发生器的实现机理。
2、 学会用示波器观察FPGA 产生的信号。
3、 学习用VHDL 编写复杂功能的代码。
二、 实验原理脉冲发生器就是要产生一个脉冲波形,而可控脉冲发生器则是要产生一个周期和占空比可变的脉冲波形。
可控脉冲发生器的实现原理比较简单,可以简单的理解为一个计数器对输入的时钟信号进行分频的过程。
通过改变计数器的上限值来达到改变周期的目的,通过改变电平翻转的阈值来达到改变占空比的目的。
下面举个简单的例子来说明其工作原理。
假如有一个计数器T 对时钟分频,其计数的范围是从0~N ,另取一个M (0≤M ≤N ),若输出为Q ,那么Q 只要满足条件时,通过改变N 值,即可改变输出的脉冲波的周期;改变M 值,即可改变脉冲波的占空比。
这样输出的脉冲波的周期和占空比分别为:三、 实验内容编写实现可控脉冲发生器程序,通过脉冲周期和占空比改变实现不同脉冲的输出。
用Quartu s 软件对设计进行编译、综合、仿真,给出相应的时序仿真波形和硬件电路图。
四、 实验程序library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity exp10 isport( Clk : in std_logic; --时钟输入Rst : in std_logic; --复位输入⎩⎨⎧≤≤<≤=N T M M T Q 001%1001)1(⨯+=+=N M T N CLOCK占空比周期NU,ND : in std_logic; --输入:控制频率的改变MU,MD : in std_logic; --输入:控制占空比的改变Fout : out std_logic --波形输出);end exp10;architecture behave of exp10 issignal N_Buffer,M_Buffer : std_logic_vector(10 downto 0);signal N_Count :std_logic_vector(10 downto 0);signal clkin : std_logic;signal Clk_Count : std_logic_vector(12 downto 0); --产生一个低速时钟,用于按键判断beginprocess(Clk) --计数器累加beginif(Clk'event and Clk='1') thenif(N_Count=N_Buffer) thenN_Count<="00000000000";elseN_Count<=N_Count+1;end if;end if;end process;process(Clk) --波形判断beginif(Clk'event and Clk='1') thenif(N_Count<M_Buffer) thenFout<='1';elsif(N_Count>M_Buffer and N_Count<N_Buffer) thenFout<='0';end if;end if;end process;process(Clk)beginif(Clk'event and Clk='1') thenClk_Count<=Clk_Count+1;end if;clkin<=Clk_Count(12);end process;process(clkin) --频率及占空比的改变1beginif(clkin'event and clkin='0') thenif(Rst='0') thenM_Buffer<="010********";N_Buffer<="10000000000";elsif(NU='0') thenN_Buffer<=N_Buffer+1;elsif(ND='0') thenN_Buffer<=N_Buffer-1;elsif(MU='0') thenM_Buffer<=M_Buffer+1;elsif(MD='0') thenM_Buffer<=M_Buffer-1;end if;end if;end process;end behave;五、时序仿真图。
脉冲信号发生器课程设计

目录一、设计任务及要求1.1设计任务 (2)1.2设计要求 (2)二、摘要 (3)三、系统设计2.1系统要求 (4)2.2方案设计 (4)2.3系统工作原理 (5)四、单元电路设计3.1 555定时器组成的多谐振荡器 (6)3.1.1 电路结构及工作原理 (6)3.1.2电路仿真 (7)3.2 74LS161 计数器降频电路 (8)3.2.1 电路结构及工作原理 (8)3.2.2 电路仿真 (9)3.2.3 元器件的选择及参数确定 (9)五、实验仿真 (10)六、参考文献 (11)七、心得体会 (12)一、设计任务及要求1.1 设计任务:输入1kHZ正弦波,输出100HZ和10kHZ脉冲信号。
1.2 设计基本要求:1)输入正弦波,设计脉冲信号;2)拟定设计步骤和仿真方案;3)根据设计要求和技术指标设计好电路,选好元器件和参数;4)要求画出原理图,并用仿真元件仿真。
5)撰写设计报告。
二、摘要信号发生电路是一种不需要外加激励就能将直流能源转化成具有一定频率和一定幅度一定波形的交流能量输出电路,又成为振荡器或波形发生器.通过与波形变换电路相结合,它能产生各种波形,能满足现代通信,自动控制,热加工.音视频系统和数字系统等对各种信号的要求.本次课程设计的任务是设计一个脉冲信号发生器,输入一个1KHZ正弦波信号,通过由555定时器连接成的施密特触发器,变换成同频率的方波,再经一个由同步二进制计数器74LS161接成的十进制计数器将1KHZ脉冲转换成100HZ输出,进行第一次频率变换.在此过程中,我们对组合逻辑电路、时序逻辑电路数、数字集成电路、小规模的门电路的功能及其使用方法有了进一步的了解和掌握 ,达到了更加熟练的应用这些器件的目的。
通过本次训练基本掌握数字电路的设计的基本方法,学会器件的选择和应用.并且通过对电路的设计、仿真,提高自己的发现问题、分析问题、解决问题的能力。
三、系统设计2.1 系统要求运用所学到的数电模电知识查找到的资料结合实际,设计原理图,焊接元器件,要求满足课设课题要求。
单片机PWM信号发生器的原理与设计

单片机PWM信号发生器的原理与设计引言在现代电子技术中,脉冲宽度调制(PWM)信号发生器被广泛应用于各种电路和系统中。
单片机作为常见的嵌入式系统解决方案,具备了成本低、功耗低、可编程性强等优势,因此被广泛用于PWM信号发生器设计中。
本文将介绍单片机PWM 信号发生器的原理与设计。
一、PWM信号发生器的原理1.1 脉冲宽度调制(PWM)概述脉冲宽度调制(PWM)是一种将模拟信号转换为数字信号的技术。
PWM信号由连续的短脉冲组成,其脉冲的宽度可以根据需要进行调整。
通过改变脉冲信号的宽度与周期之比,可以模拟出不同的模拟信号输出。
1.2 PWM信号发生器的基本原理PWM信号发生器的基本原理是通过控制脉冲的宽度和周期,实现对输出波形的精确控制。
单片机通常具有定时器模块,通过定时器模块的特定设置,可以生成精确的脉冲信号。
单片机还需要连接输出引脚,将生成的PWM信号输出给外部电路。
二、单片机PWM信号发生器的设计2.1 硬件设计单片机PWM信号发生器的硬件设计包括选择合适的单片机、外部电路连接和输出端口设计。
首先,选择适合的单片机。
考虑到PWM信号发生器需要高精度、可编程性强的特点,可以选择带有定时器模块的单片机。
常见的单片机型号有ATmega系列、PIC系列等。
根据实际需求选择合适的型号。
其次,进行外部电路连接。
通常需要连接电源、晶体振荡器以及输出端口。
电源提供电压稳定源,晶体振荡器提供时钟信号。
输出端口需要连接到PWM信号的目标设备上。
最后,进行输出端口设计。
根据实际需求确定输出端口的数量和类型。
常用的输出接口有GPIO、PWM输出等。
根据单片机型号和外部电路要求进行设计。
2.2 软件设计单片机PWM信号发生器的软件设计包括定时器设置和PWM生成代码编写。
首先,进行定时器设置。
根据单片机型号和需求,设置定时器的时钟源、分频系数、计数模式等参数。
通过合理的定时器设置,可以实现精确的脉冲宽度和周期控制。
其次,编写PWM生成代码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编程脉冲信号发生器的设计摘要基于单片机的可编程脉冲信号发生器,通过4x4的非编码矩阵键盘键入脉冲信号的指标参数频率、占空比和脉冲个数,在单片机的控制处理下发出满足信号指标的脉冲信号,并在液晶显示屏的制定位置显示出相关参数。
复位电路采用上电复位和手动复位的复合复位方式,保证单片机在上电和程序运行进入死循环时,单片机均能正常复位。
利用在工作方式1下的定时器和计数输出低频脉冲信号,以及在工作方式2下能够自动重复赋初值的定时器输出高频脉冲信号,从而使频率和占空比满足指标要求。
通过程序设计,使单片机每次发出信号后等到重置信号进行下一次脉冲信号的输出,有效的提高了单片机的使用效率。
本课题设计利用单片机技术,通过相应的软件编程和较简易的外围硬件电路来实现,其产生的脉冲信号干扰小,输出稳定,可靠性高,人机界面友好,操作简单方便,成本低,携带方便,扩展性强。
关键的是,脉冲信号频率、脉冲个数和脉冲占空比可调节,可通过键盘输入并由显示器显示出来。
本课题设计所要达到的指标要求:(1)脉冲信号频率0.1HZ到50KHZ可调并在液晶显示屏指定位置显示。
(2)脉冲信号个数0到9999可调并在液晶显示屏指定位置显示。
(3)脉冲信号占空比任意可调并在液晶屏显屏指定位置示出来。
关键词:单片机,脉冲信号,频率,脉冲个数,占空比Programmable pulse signal generator designABSTRACTThe programmable pulse signal generator based on single chip, through the 4x4 non-coding matrix keyboard inputing pulse signal parameters of frequency, duty cycle and pulse number, pulse signal is sent to meet the targets of signal processing chip.The related parameters are displayed on the setting position on the liquid crystal. The reset circuit by power-on reset and manual reset, ensure the SCM in power and run into dead circulation can be reset. Use in work mode 1 timer and counter output low frequency pulse signal, and in work mode 2 to timer output high frequency pulse signal ,automaticly repeat initialization, so as to make the frequency and duty ratio meet the requirements. Through the program design, the microcontroller each signal and then wait for the reset signal, the signal at the output of the pulse next time, effectively improve the efficiency in the use of single-chip microcomputer.The subject of the use of single-chip technology, which achieved through the corresponding software and the simple peripheral hardware circuit. The advantages of which are the small interference of the pulse signal, output stability, high reliability, friendly man-machine interface, easy operation, low cost, portability, scalability strong. The keys, pulse frequency, pulse number and pulse duty ratio are adjustable, which can be inputed through the keyboard and displayed through LCD.The requirements of this topic design:(1) The pulse signal frequency of 0.1HZ to 50KHZ is adjustable and can be displaied on the specify location in the LCD screen.(2) Pulse signal number of 0 to 9999 is adjusted and can be displaied on the specify location in the LCD screen.(3)Pulse duty ratio is adjustable and can be displaied on the specifylocation in the LCD screen.KEY WORDS:single chip computer,pulse,hardware circuit,pulse number,duty ratio目录前言 (1)第1章可编程脉冲发生器的相关模块 (4)1.1 AT89C51单片机 (4)1.1.1 AT89C51单片机的结构 (4)1.1.2 AT89C51单片机的引脚功能 (5)1.1.3 AT89C51单片机的中断系统 (9)1.1.4 AT89C51单片机的定时/计数器 (11)1.2 SMC 1602A LCD液晶显示屏 (12)第2章可编程脉冲信号发生器的硬件设计 (14)2.1 硬件系统的总体设计 (14)2.1.1 系统的总体框图 (14)2.1.2 原理阐述 (14)2.2 硬件系统各部分构成 (14)2.2.1电源电路 (14)2.2.2矩阵键盘 (15)2.2.3脉冲信号输出电路 (16)2.3系统电路原理图 (19)第3章可编程脉冲信号发生器的软件设计 (20)3.1矩阵键盘的程序设计 (20)3.2液晶屏显示的程序设计 (21)3.3脉冲生成的程序设计 (23)3.3程序流程图 (24)3.3.1主程序流程图 (24)3.3.2键盘分析子程序流程图 (25)3.3.3显示子程序流程图 (26)3.3.3数值处理子程序流程图 (27)3.3.3脉冲信号生成子程序流程图 (28)3.3.4源程序 (28)第4章可编程脉冲信号发生器的程序编译、调试及仿真 (29)4.1系统程序的编译 (29)4.2系统调试 (30)4.2.1硬件调试 (30)4.2.2软件调试 (30)4.3系统仿真 (32)4.3.1系统仿真图 (32)4.3.2系统的改善 (35)结论 (36)辞 (37)参考文献 (38)附录 (39)外文资料翻译 (57)前言信号发生器是一种能产生标准信号的电子仪器,是工业生产和电工、电子实验中经常使用的电子仪器之一。
信号发生器的种类比较多,性能也千差万别,但它们都可以产生不同频率的调频波信号、调幅波、正弦波,以及各种锯齿波、三角波、方波和正负脉冲波等信号。
脉冲信号发生器作为一种常见的应用电子仪器设备,一般可以完全由硬件电路搭建而成,如采用555振荡电路发生方波的电路即是可行的方法之一,而不依靠单片机来实现。
但是这种电路存在波形质量差,控制难度大,调整围小,电路结构复杂以及体积大等缺点。
在科学研究和生产实践中,如工业生产过程控制、生物医学、地震模拟、机械振动等领域,也常常需要用到低频信号源。
而由硬件电路构成的低频信号发生器性能难以令人满意,而且由于低频信号源所需的RC要很大,体积大,漏电,大电阻、大电容在制作上亦有很大的难度,损耗显著更是其致命的弱点。
一旦工作需求功能有增加,则电路复杂程度也会大大增加。
在现代测试与控制中常常需要频率可调的脉冲发生器,利用单片机可编程定时/计数器即可实现。
脉冲信号发生器是电子测量中的一种重要仪器,随着微电子技术的高速发展,脉冲信号发生器向着集成化、数字化、智能化的方向发展。
利用单片机采用程序设计方法来产生信号,其频率底线很低,具有线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强,用途广泛等优点,并且能够对波形进行细微调整。
改良波形,使其满足系统的要求。
只要对电路稍加修改,调整程序,即可完成功能的升级。
在数字电路或系统中常常需要各种脉冲波形,例如时钟脉冲、控制过程中的定时信号等。
单片机是实现各种控制策略和算法的载体。
在现代测试与控制中常常需要频率可调的脉冲信号发生器,利用单片机可编程定时/计数器可以实现。
本课题设计运用单片机技术,通过相应的软件编程和较简易的外围硬件电路设计来实现,和用分立式元件设计的脉冲发生器相比而言,其产生的脉冲信号干扰小,输出稳定,可靠性高,人机界面友好,操作简单方便,成本低,携带方便,扩展性强。
关键的是,脉冲信号频率、占空比和脉冲个数可以调节,可通过键盘输入并由显示器显示出来。
本课题运用单片机技术解决以下问题:1.清楚单片机的中断、定时/计数等常用功能,产生频率、个数、占空比可调整的脉冲信号。
2.画出以单片机为核心,以矩阵键盘为输入设备,以液晶显示屏为显示设备产生脉冲信号的硬件原理电路图。
3.画出相应的软件流程图,并写出键盘驱动、液晶显示屏驱动以及产生频率、个数、占空比可以调整的C语言源程序。
4.指标要求:(1)脉冲信号频率参数由键盘输入频率围0.1HZ到50KHZ可调并由液晶显示屏在指定位置显示。
(2) 脉冲信号个数参数由键盘输入脉冲个数0到9999可调并由液晶显示屏指定位置显示。
(3) 脉冲信号占空比参数由键盘输入任意占空比的脉冲信号,并由液晶屏指定位置显示。
5.用PROTEUS软件做出硬件电路仿真调试结果,并加以说明。
针对不同的问题,有针对性的采用不同的方法解决。
1.查阅形成脉冲信号的相关资料,结合所学51系列单片机的基础知识,用工作方式1下的定时加计数的方法实现对低频信号指标的控制,用自动重复赋初值的工作方式2下的定时器实现对高频信号指标的控制,用计数的方法实现对生发信号个数的控制。