2017-2018武汉四调数学试卷

合集下载

湖北省武汉市四校联合体华科附中,育才高中,武汉吴家山中学,武汉十九中2017-2018学年高一上期末数学试题

湖北省武汉市四校联合体华科附中,育才高中,武汉吴家山中学,武汉十九中2017-2018学年高一上期末数学试题

2017-2018学年度第一学期武汉市四校华科附中,育才高中,武汉吴家山中学,武汉十九中联合体期末考试高一数学试卷命题学校:武汉市吴家山中学 命题教师:余天锡 考试时问:2018年1月30日 试卷满分:150分一、选择题:(共12小题,每题5分,共60分)1.已知集合P={-1,0,2},Q={y|y=sin θ,θ∈R},则P Q=( ) A.φ B.{}0,1- C.{}0 D.{}2,0,1-2.甲、乙两人在一次赛跑中,从同一地点出发.若路程S 与时间t 的函数关系如图所示,则下列说法正确的是( )第2题 第6题A.甲比乙先出发B.甲比乙先到达终点C.甲、乙两人的速度相同D.乙比甲跑的路程多3.设函数f(x)为奇函数,且x ∈R.若f(l)=21,f(x+2)=f(x)+f(2).则f(5)等于( ) A.0 B.1 C.25 D.54.根据表格中的数据,可以判刂定方程e x -x-2=0的一个根所在的区间为( )A.(1,2)B.(-1,0)C.(0,1)D.(2,3)5.已知函数:f(x)=()(),ππβα+++x bcos x asin ,且f(-1)=3,则f(2018)的值为( ) A.-1 B.1 C.3 D.-36.如图,某港口某天6时到18时的水深变化曲线近似满足函数y=k x 6sin 4+⎪⎭⎫ ⎝⎛+φπ,据此图像可知,这段时间水深(单位:m)的最大值为( ) A.10 B.8 C.6 D.57. 设D 、E 分别是△ABC 的边AB 、BC 上的点,AD=21AB,BE=32BC.若向量DE =AB 1λ+()为实数、212λλλ(4为实数),则21λλ+的值为( )A.31B.21C.32D.418.已知416-x cos =⎪⎭⎫ ⎝⎛π,则⎪⎭⎫ ⎝⎛+3-x cos cosx π=( )A.43 B.43- C.41 D.43± 9.函数()()⎪⎭⎫ ⎝⎛∈+=20,x .x s in x π<,>φωφωR f ,的部分图象如图所示,如果x 1、x 2⎪⎭⎫⎝⎛∈36-π,π且f(x 1)=f(x 2),则f(x 1+x 2)等于( )A.21B.32 C.23 D.1 10.某函数同时具有以下性质:①最小正周期是π;②图象关于直线x=3π对称;③在⎥⎦⎤⎢⎣⎡36-π,π上是增函数;④一个对称中心为⎪⎭⎫⎝⎛0,12π.则它可以是( ) A. ⎪⎭⎫ ⎝⎛+=62x sin y π B.⎪⎭⎫ ⎝⎛=6-x 2sin y π C.⎪⎭⎫ ⎝⎛+=3x 2cos y π D.⎪⎭⎫ ⎝⎛=6-x 2cos y π11.幂函数y=x a ,当a 取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB 恰好被其中的两个幂函数y=x a 、y=x b 的图象三等分,即有BM=MN=NA.那么a-b1的值为()A.21 B.1 C.0 D.212.根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为1080;则下列各数中与NM最接近的是( )(参考数据:lg3≈0.48) A.1033 B.1053 C.1093 D.10103 二、填空题(共4小题,每题5分,共20分).13.在平面直角坐标系中,角α与角β均以x 轴非负半轴为始边,它们的终边关于y 轴对称,若sin α=31,则cos(α-β)=_________。

第3讲 实数

第3讲  实数

第3讲实数【板块一】平方根与算术平方根知识导航.1.平方根的概念;2.平方根的性质;3.算术平方根的概念;4.算术平方根的性质;5.开平方,利用平方根的概念解-些特殊的-元二次方程;6.利用算术平方根的非负性解题.方法技巧理解并掌握平方根的概念;理解并掌握算术平方根的概念.◆题型一平方根的概念【例1】求下列各数的平方根:(1)(-3)2;(2)11549;(3)1;(4)0.【分析】根据平方根的概念求解,注意用式子表达.【解答】(1)±3;(2)±87;(3)±1;(4)0.注意:数a(a≥0)【练1】求下列各数的平方根.(1)25;(2)8164:(3)213⎛⎫-⎪⎝⎭;(4)|-9|.【解答】(1)±5;(2)±98;(3)±13;(4)±3.◆题型二算术平方根的概念【例2】(1)(2018年·武汉四调)( )A.2 B.-4 C.4 D.8的算术平方根是.的平方根是.【分析】根据平方根、算术平方根的概念求解即可,注意两者的区别.【解答】 (1)C ; (2) 3; (3)±3题型三平方根的性质【例3】如果a-12与2a-3都是正数m的平方根,(a-12≠2a-3),试求m的值.【分析】根据平方根的性质:一个正数有两个平方根,它们互为相反数,于是由(a-12)+(2a-3)=0,先求出a的值,再求m.【解答】∵a-12与2a-3都是m的平方根,且a-12≠2a-3,∴a-12与2a-3互为相反数,即(a-12)+(2a-3)=0.解得a=5,∴212)a-(=23)a-(2=49=m,即m=49.【练2】 (1)一个非负数的平方根是2a-1和a-5,则这个非负数是多少?(2)2a-1与-a+2是m的平方根,求m的值.【分析】 (1)根据非负数的两个平方根至为相反数,可得2a-1+a-5=0.从而可求出a的值,再求出这个非负数;(2)∵2a -1与-a +2是m 的平方根,则2a -1与一42相等或互为相反数.【解答】 (1)根据题意,有2a -1+a -5=0,解得a =2,所以这个非负载为21)a -(2=21)⨯-(22=9;(2)根据题意,分以下两种情况:①当2a -1=-a +2时,a =1,所以m =21)a -(2=21)⨯-(21=1; ②当(2a -1)+(-a +2)=0时.a ==1,所以m = 21)a -(2=21]⨯-[2(-1)= 23)-(=9.题型四 开平方[例4]计算:(2)【分析】484的算术平方根;(2) 1124的平方根;(3) 8910111⨯⨯⨯+=7921.7921的算术平方根.【解答】 (1)∵222=48422;(2)∵27()2=494=1124,∴72±;(3)∵8910111⨯⨯⨯+=7921, 289=792189.【练3】下列说法是否准确?为什么?(1) 7是49的算术平方根;(2) 56是2536的一个平方根; (3) 2(4)-的平方根是-4; (4) 0的平方根与算术平方根都是0.【解答】(1)正确,∵27=49.且7>0,所以7是49的算术平方根;(2)正确.25()6=2536,所以56是2536的一个平方根, 2536的中方根有两个56±,56是正的那一个,也是算术平方根;(3)借误.∵2(4)-=16>0.它有两个平方根,4和-4,而上述说法中只说出了-4,少了4.(4)正确题型五 用开平方法解方程【例5】求下列各式中x 的值:(1)22x =162;(2)362x -16=0.【分析】将方程转化为了2x =a (a ≥0)的形式,再运用开平方运算,求由非负数的平方根.【解答】(1)∵22x =162. ∴2x =81.∴x =±9;(2)∵362x -16=0,∴362x =16,∴ 2x =1636,∴x =23± 【练4】求下列各式中x 的值:(1) 2(1)x +=289; (2)42(2)x --81=0.【解答】 (1)x =16或-18:(2)x =132或-52.题型六运用算术平方根的双重非负性解题【例6】 (1)已知z,y2(y3)-=0,则xy=()A.4 B.-4 C.94D.-942(y3)-都是非负级,只有当它们都是0时,它们的和才为0.【解答】B(2)b=0,解关于x的方程(a+2)x+2b==a-1【分析】先求出a,b的值,再解关于x的方程.【解答】+b=0,0,b=0.解得a=-3,b.∴原方程可化为-x+2=-4,解得x=6.【点评】①算术平方根的双重非负性:一是被开方数是非负数,二是算术平方根本身为非负数.b,2nc这三类.【练5】 (1)若实数x,y+22(y1)+=0,则x+y=.(2)+1y++2(1)z-==0【解答】 (1) x+y=12-; (2)32.题型七【例7】 (1)已知y10,求2x+y的平方根.x=3,y=10,从而可求,【解答】∵x-3≥0,3-x≥0,∴x=3,代入得y=10,∴(2)已知a满足2019a-a,求a-22019的值.a-2020≥0,所以a≥2020,所以原式可变形为a-2019=aa-2020≥0,∴a≥2020,∴原式可变形为a-2019a即2019,∴两边平方得,a-22019=2020.【方法技巧】当a≥0a≥0这个条件,解题时要注意挖掘.【练6y-4,求ry的算术平方根.【解答】2针对练习11.的平方根是;2(4)-的平方根是.(2)169的算术平方根是;的算术平方根是(3)若a=.答案:(1)23±,±4;(2)13(3)5.2.已知x,y为实数,且yx-y=.答案:-1或-7.3.若2m-3与m+6表示同一个数的平方根,求m的值.【解答】-1或9.4=a=.答案:99.5.(五羊杯试题)设[x]表示最接近x的整数(x≠n+0.5,n为整数),则+++…+=( )A.5151 B.5150 C.5050 D.5049答案:C6.(数学周报杯试题)已知非零实数a,b满足24a-+2b++4=2a,则a+b=( ) A.-1 B.0 C.1 D.2答案:C【解答】由题设知2a≥4.a≥2,所以题设的等式为2b+=0,于是a=3,b=-2,从a+b =1.7.若a,b满足5b=7,则S=3b的取值范围是.【解答】-215≤S≤143.提示:5b=7变形代入S=14193b-.b范围即可8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,=1.现对72进行如下操作:这样对72只需进行3次操作后变为1,类似地,(1)对81只需进行次操作后变为1.(2)只需进行3次操作后变为1的所有正整数中,最大的是.答案:(1)3;(2)255.【板块二】立方根知识导航1.立方根的概念;2.开立方;3.立方根的性质;4.立方根与平方根的区别;[2]=1[8]=2[72]=8第3次725.运用立方根的概念解特殊的方程.方法技巧运用立方根的概念与性质进行解题.题型一 立方根的概念【例1】 (1)(2017年·武汉四调摸拟)( )A .2B .-4C .4D .8答案:C(2)求下列各数的立方根.(1)-1; (2)11000【分析】根据立方根的概念求解即可.【解答】(1)∵3(1)-=-1∴-1的立方根是-11.(2)∵31()10=11000∴11000的立方根是110110. 【练1】求下列各数的立方根:(1)-343;(2)1558【分析】 (1)求一个数的立方根,就是根据立方根的定义,若被开方数为带分数,可以先化为假分数.【解答】](1)-7;(2)52. 题型二 开立方[例2]求下列各式的值:; 【分析】 求一个数的立方根的运算叫开立方根据立方根的性质:一个正数的立方根是正数,负数的立方根是负数,0的立方根是0.【解答】8;(2a ;(343.【练2】求下列各式的值:(123解答:(1)34(2)-a (3)72题型三 立方根的性质【例3互为相反数,试求x +y 的值.互为相反数,∴(3x-7)+(3y+4)=0.∴3(x+y)=3,x+y=l. 【练3】(1)已知x-2的平方根是士2,2x+y+7的立方根是3,求2x+2y的算术平方根;(2)如果b为a-3b的算术平方根,a21a-的立方根,求2a-3b的立方根. 【解答】(1)10;(2)2.题型四利用开立方解方程【例4】求下列各式中x的值:(1)-23x=14;(2)643(1)x+-27=0.【分析】将方程转化为3x=a的形式,再运用开立方运算,求出立方根。

湖北省武汉市2017-2018学年高三四月调考数学试卷(文科) Word版含解析

湖北省武汉市2017-2018学年高三四月调考数学试卷(文科) Word版含解析

湖北省武汉市2017-2018学年高三四月调考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合题目要求的)1.(5分)复数z=的实部与虚部之和为()A.0B.C.1D.22.(5分)设全集U=R,集合M={x|y=lg(x2﹣1)|,N={x|0<x<2},则(∁R M)∩N=()A.{x|﹣2≤x≤1} B.{x|0<x≤1} C.{x|﹣1≤x≤1} D.{x|x<1}3.(5分)函数f(x)=|sin cos|的最小正周期是()A.B.C.πD.2π4.(5分)已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是()A.62 B.63 C.64 D.655.(5分)若P:∃x0∈R,x02+2x0+3≤0,则P的否定¬P是()A.∀x∈R,x2+2x+3>0 B.∀x∈R,x2+2x+3≥0C.∀x∈R,x2+2x+3<0 D.∀x∈R,x2+2x+3≤06.(5分)△ABC外接圆的半径为1,圆心为O,且的值是()A.3B.C.D.17.(5分)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为()A.B.C.D.8.(5分)已知某产品连续4个月的广告费x i(千元)与销售额y i(万元)(i=1,2,3,4)满足,,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为=0.8x+a,那么广告费用为6千元时,可预测的销售额为()A.3.5万元B.4.7万元C.4.9万元D.6.5万元9.(5分)已知直线kx﹣y=k﹣1与ky﹣x=2k的交点在第二象限,则实数k的取值范围是()A.(0,)B.(,1)C.(0,1)D.[1}10.(5分)过点A(﹣2,3)作抛物线:y2=4x的两条切线l1,l2,设l1,l2与y轴分别交于点B,C,则△ABC的外接圆方程为()A.x2+y2﹣3x﹣2y+1=0 B.x2+y2﹣2x﹣3y+1=0C.x2+y2﹣3x﹣4=0 D.x2+y2+x﹣3y﹣2=0二、填空题(共7小题,每小题5分,满分35分)11.(5分)不等式|x|+|x﹣1|>3的解集为.12.(5分)若x、y满足,则z=x﹣y的最大值为.13.(5分)执行如图所示的程序框图,若输入p=5,则输出的S等于14.(5分)一个几何体的三视图如图所示,则该几何体的表面积为15.(5分)如图,正四棱锥O﹣ABCD的棱长均为1,点A、B、C、D在求O的表面上,延长CO交球面于点S,则四面体A﹣SOB的体积为.16.(5分)在各项均为正项的等比数列{a n}中,已知a1+a2+a3+a4+a5=31,=,则a3=.17.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若y=f2(x)﹣af(x)+a﹣1的零点个数是7个,则实数a的取值范围为.三、解答题(共5小题,满分65分)解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{a n}的前n项和为S n,a3=5,S8=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:>(n≥2,n∈N)19.(12分)已知△ABC的内角A、B、C的对边a,b,c,且满足bcos2A=a(2﹣sinAsinB),a+b=6.(Ⅰ)求a、b的值(Ⅱ)若cosB=,求△ABC的面积.20.(13分)如图,在四面体P﹣ABC中,底面ABC是边长为1的正三角形,PB=PC=,AB⊥BP.(Ⅰ)求证:PA⊥BC(Ⅱ)求点P到底面ABC的距离.21.(14分)已知函数f(x)=x3﹣3x2+ax(a∈R)(1)求函数y=f(x)的单调区间;(2)当a≥2时,求函数y=|f(x)|在0≤x≤1上的最大值.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.湖北省武汉市2015届高三四月调考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项符合题目要求的)1.(5分)复数z=的实部与虚部之和为()A.0B.C.1D.2考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:利用复数的运算法则、实部与虚部的定义即可得出.解答:解:复数z====,∴实部与虚部之和==1,故选:C.点评:本题考查了复数的运算法则、实部与虚部的定义,属于基础题.2.(5分)设全集U=R,集合M={x|y=lg(x2﹣1)|,N={x|0<x<2},则(∁R M)∩N=()A.{x|﹣2≤x≤1} B.{x|0<x≤1} C.{x|﹣1≤x≤1} D.{x|x<1}考点:交、并、补集的混合运算.专题:集合.分析:本题主要考查了集合间的运算,根据运算原则求解即可.解答:解:M={x|y=lg(x2﹣1)}={x|x<﹣1或x>1},∴∁R M={x|﹣1≤x≤1},∴(∁R M)∩N={x|0<x≤1},故选:B.点评:本题主要考查集合间的运算,属于基础题.3.(5分)函数f(x)=|sin cos|的最小正周期是()A.B.C.πD.2π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由条件利用二倍角的正弦公式可得函数的解析式为f(x)=|sinx|,再根据y=|Asin(ωx+φ)|的周期等于•,可得结论.解答:解:函数f(x)=|sin cos|=|sinx|的最小正周期是•=π,故选:C.点评:本题主要考查三角函数的周期性及其求法,二倍角的正弦公式,利用了y=Asin(ωx+φ)的周期等于T=,y=|Asin(ωx+φ)|的周期等于•,属于基础题.4.(5分)已知某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如图所示,则甲、乙两人得分的中位数之和是()A.62 B.63 C.64 D.65考点:众数、中位数、平均数;茎叶图.专题:计算题;图表型.分析:由茎叶图知甲的数据有12个,中位数是中间两个数字的平均数,乙的数据有13个,中位数是中间一个数字36,做出两个数字之和.解答:解:由茎叶图知甲的数据有12个,中位数是中间两个数字的平均数=27乙的数据有13个,中位数是中间一个数字36∴甲和乙两个人的中位数之和是27+36=63故选B.点评:本题考查茎叶图和中位数,本题解题的关键是先看出这组数据的个数,若个数是一个偶数,中位数是中间两个数字的平均数,若数字是奇数个,中位数是中间一个数字.5.(5分)若P:∃x0∈R,x02+2x0+3≤0,则P的否定¬P是()A.∀x∈R,x2+2x+3>0 B.∀x∈R,x2+2x+3≥0C.∀x∈R,x2+2x+3<0 D.∀x∈R,x2+2x+3≤0考点:的否定.专题:简易逻辑.分析:直接利用特称的否定是全称写出结果即可.解答:解:因为特称的否定是全称,所以,若P:∃x0∈R,x02+2x0+3≤0,则P的否定¬P是:∀x∈R,x2+2x+3>0.故选:A.点评:本题考查的否定,特称与全称的否定关系,基本知识的考查.6.(5分)△ABC外接圆的半径为1,圆心为O,且的值是()A.3B.C.D.1考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;平面向量及应用.分析:根据题中的向量等式可知AO是△ABC的边BC上的中线,可得△ABC是以A为直角顶点的直角三角形.然后在等腰△ABO中利用余弦定理,算出∠AOB=120°,进而得到∠C=60°.最后结合向量数量积公式和△ABC的边长,即可得出•的值.解答:解:∵,∴AO是△ABC的边BC上的中线,∵O是△ABC外接圆的圆心∴△ABC是以A为直角顶点的直角三角形∵等腰△ABO中,||=||=1,=∴cos∠AOB==﹣,可得∠AOB=120°由此可得,∠B=30°,∠C=90°﹣30°=60°,且△ACO是边长为1的等边三角形∵Rt△ABC中,||=1,||=2∴•=||•||cos60°=1故选:D点评:本题给出三角形ABC外接圆心O,在已知AO是BC边的中线情况下求•的值.着重考查了直角三角形的性质、余弦之理和向量数量积运算公式等知识,属于中档题.7.(5分)先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意得出基本事件为(x,y),总共有6×6=36,列举两次朝上的点数之积为奇数事件求解个数,运用古典概率公式求解即可.解答:解:骰子的点数为:1,2,3,4,5,6,先后抛掷两颗质地均匀的骰子,基本事件为(x,y),总共有6×6=36,两次朝上的点数之积为奇数事件为:A有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共有9个结果,∴两次朝上的点数之积为奇数的概率为P(A)==故选:C点评:本题考查了古典概率的求解,关键是求解基本事件的个数,运用列举的方法求解符合题意的事件的个数,属于中档题.8.(5分)已知某产品连续4个月的广告费x i(千元)与销售额y i(万元)(i=1,2,3,4)满足,,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为=0.8x+a,那么广告费用为6千元时,可预测的销售额为()A.3.5万元B.4.7万元C.4.9万元D.6.5万元考点:线性回归方程.专题:计算题;概率与统计.分析:求出样本中心点代入回归直线方程,可得a,再将x=6代入,即可得出结论.解答:解:由题意,=4.5,=3.5,代入=0.8x+a,可得3.5=0.8×4.5+a,所以a=﹣0.1,所以=0.8x﹣0.1,所以x=6时,=0.8×6﹣0.1=4.7,故选:B.点评:本题考查线性回归方程,考查学生的计算能力,利用回归方程恒过样本中心点是关键.9.(5分)已知直线kx﹣y=k﹣1与ky﹣x=2k的交点在第二象限,则实数k的取值范围是()A.(0,)B.(,1)C.(0,1)D.[1}考点:两条直线的交点坐标.专题:直线与圆.分析:联立,解得,解出即可.解答:解:联立,解得,解得.∴实数k的取值范围是.故选:A.点评:本题考查了直线的交点、不等式的解法,考查了计算能力,属于基础题.10.(5分)过点A(﹣2,3)作抛物线:y2=4x的两条切线l1,l2,设l1,l2与y轴分别交于点B,C,则△ABC的外接圆方程为()A.x2+y2﹣3x﹣2y+1=0 B.x2+y2﹣2x﹣3y+1=0C.x2+y2﹣3x﹣4=0 D.x2+y2+x﹣3y﹣2=0考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接利用A的坐标满足圆的方程,判断求解即可.解答:解:由题意可知,△ABC的外接圆方程,A的坐标满足圆的方程,点A(﹣2,3)代入x2+y2﹣3x﹣2y+1=0,左侧=4+9+6﹣9+1=11≠0,不成立.所以A不正确;点A(﹣2,3)代入x2+y2﹣2x﹣3y+1=0,左侧=4+9+4﹣9+1=9≠0,不成立.所以B不正确;点A(﹣2,3)代入x2+y2﹣3x﹣4=0,左侧=4+9+6﹣4=15≠0,不成立.所以C不正确;点A(﹣2,3)代入x2+y2+x﹣3y﹣2=0,左侧=4+9﹣2﹣9﹣2=0,成立.所以D正确;故选:D.点评:本题考查直线与圆锥曲线的应用,圆的方程的求法,本题是选择题,方法独特,希望同学们掌握;如果直接求解方法是设出切线的斜率,利用直线与抛物线相切,求出k,然后求出三角形的顶点坐标,利用圆的一般方程求解.二、填空题(共7小题,每小题5分,满分35分)11.(5分)不等式|x|+|x﹣1|>3的解集为(﹣∞,﹣1)∪(2,+∞).考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:由于|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,而﹣1和2对应点到0、1对应点的距离之和等于3,由此求得不等式的解集.解答:解:由于|x|+|x﹣1|表示数轴上的x对应点到0、1对应点的距离之和,而﹣1和2对应点到0、1对应点的距离之和等于3,故当x<﹣1,或x>2时,不等式|x|+|x﹣1|>3成立.故不等式|x|+|x﹣1|>3的解集为(﹣∞,﹣1)∪(2,+∞),故答案为:(﹣∞,﹣1)∪(2,+∞).点评:本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.12.(5分)若x、y满足,则z=x﹣y的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解联立方程组求得最优解的坐标,代入目标函数得答案.解答:解:由约束条件作出可行域如图,联立,解得,即C(1,0),化目标函数z=x﹣y为直线方程斜截式:,由图可知,当直线过点C时,直线在y轴上的截距最小,z有最大值等于.故答案为:.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.13.(5分)执行如图所示的程序框图,若输入p=5,则输出的S等于考点:程序框图.专题:图表型;三角函数的图像与性质.分析:模拟执行程序框图,依次写出每次循环得到的n,s的值,当n=5时,不满足条件n <p,退出循环,输出S的值为.解答:解:模拟执行程序框图,可得p=5,n=0,S=0满足条件n<p,n=1,S=满足条件n<p,n=2,S=满足条件n<p,n=3,S=满足条件n<p,n=4,S=满足条件n<p,n=5,S=不满足条件n<p,退出循环,输出S的值为.故答案为:.点评:本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的n,s的值是解题的关键,属于基本知识的考查.14.(5分)一个几何体的三视图如图所示,则该几何体的表面积为2π+2π+4考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是一底面为半圆,高为2的半圆锥,结合图中数据,求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是一底面为半圆,高为2的半圆锥,且底面半圆的半径为2;∴该半圆锥的表面积为S表面积=S半圆+S△+S侧面展开图=π•22+×4×2+××2π•2×=2π+4+2π.故答案为:2π+2π+4.点评:本题考查了空间几何体的三视图的应用问题,解题时应根据三视图得出几何体的结构特征,是基础题目.15.(5分)如图,正四棱锥O﹣ABCD的棱长均为1,点A、B、C、D在求O的表面上,延长CO交球面于点S,则四面体A﹣SOB的体积为.考点:棱柱、棱锥、棱台的体积;球内接多面体.专题:空间位置关系与距离.分析:假设AC与BD相交于点E,则BE⊥平面SAC,BE=.利用正方体的性质与勾股定理的逆定理可得OA⊥OC,利用四面体A﹣SOB的体积V=V B﹣SAO=BE•S△SAO.即可得出.解答:解:假设AC与BD相交于点E,则BE⊥平面SAC,BE=.连接SA,∵SC是直径,∴SA⊥AC,∵OA2+OC2=AC2=2,∴OA⊥OC,∴又S△SAO=S△OAC==.四面体A﹣SOB的体积V=V B﹣SAO=BE•S△SAO=×=.故答案为:.点评:本题考查了线面面面垂直的判定性质定理、正方形的性质、正四面体的性质、球的性质、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.16.(5分)在各项均为正项的等比数列{a n}中,已知a1+a2+a3+a4+a5=31,=,则a3=4.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:设出等比数列的首项和公比,由题意列式,整体运算得到,则a3可求.解答:解:设等比数列a n的公比为q,则{}也是等比数列,且公比为,依题意得:,两式作比得:,即,∵a n>0,∴a3=4.故答案为:4.点评:本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.17.(5分)已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若y=f2(x)﹣af(x)+a﹣1的零点个数是7个,则实数a的取值范围为(,2).考点:根的存在性及根的个数判断;函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:化简f2(x)﹣af(x)+a﹣1=0得f(x)=1或f(x)=a﹣1,作f(x)与y=1及y=a ﹣1的图象,由数形结合求解.解答:解:令f2(x)﹣af(x)+a﹣1=0得,f(x)=1或f(x)=a﹣1,作f(x)与y=1及y=a﹣1的图象如下,由图象知,y=1与f(x)的图象有三个交点,故y=a﹣1与f(x)有四个交点,f(2)=,则结合图象可得,<a﹣1<1,即<a<2;故答案为:(,2).点评:本题考查了函数的零点与函数的交点的关系应用及数形结合的思想应用,属于中档题.三、解答题(共5小题,满分65分)解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{a n}的前n项和为S n,a3=5,S8=64.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:>(n≥2,n∈N)考点:数列与不等式的综合;等差数列的前n项和.专题:等差数列与等比数列;不等式的解法及应用.分析:(1)设等差数列{a n}的首项为a1,公差为d,通过a3=5,S8=64可得首项和公差,计算即可;(2)通过(1)可知S n=n2,利用不等式的性质化简可得原成立,只需3n2>1在n≥1时恒成立.解答:(1)解:设等差数列{a n}的首项为a1,公差为d,根据题意,可得,解得a1=1,d=2,∴数列{a n}的通项公式为:a n=2n﹣1;(2)证明:由(1)可知:S n=n2,要证:>(n≥2,n∈N)恒成立,只需证:+>,只需证:[(n+1)2+(n﹣1)2]n2>2(n2﹣1)2,只需证:(n2+1)n2>(n2﹣1)2,只需证:3n2>1,而3n2>1在n≥1时恒成立,且以上每步均可逆,从而:>(n≥2,n∈N)恒成立.点评:本题考查等差数列的简单性质,利用不等式的性质进行化简是解决本题的关键,属于中档题.19.(12分)已知△ABC的内角A、B、C的对边a,b,c,且满足bcos2A=a(2﹣sinAsinB),a+b=6.(Ⅰ)求a、b的值(Ⅱ)若cosB=,求△ABC的面积.考点:正弦定理.分析:(I)由bcos2A=a(2﹣sinAsinB),可得sinBcos2A=sinA(2﹣sinAsinB),化为sinB=2sinA,由正弦定理可得:b=2a,与a+b=6联立解得a,b.(II)由cosB=,可得sinB=,可得sinA=,cosA=;sinC=sin (A+B)=sinAcosB+cosAsinB,利用S△ABC=即可得出.解答:解:(I)∵bcos2A=a(2﹣sinAsinB),∴sinBcos2A=sinA(2﹣sinAsinB),∴sinBcos2A+sin2AsinB=2sinA,∴sinB=2sinA,由正弦定理可得:b=2a,与a+b=6联立解得a=2,b=4.(II)∵cosB=,∴sinB==,∴sinA==cosA==;∴sinC=sin(A+B)=sinAcosB+cosAsinB=+=,∴S△ABC===2.(II)由余弦定理可得:b2=a2+c2﹣2accosB,b=2a,c=,∴4a2=a2+7﹣=a2+7﹣2×,化为3a2+4a﹣7=0,解得a=1.∴b=2.∴a=1,b=2.点评:本题考查了正弦定理余弦定理、同角三角函数基本关系式、两角和差的正弦公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.20.(13分)如图,在四面体P﹣ABC中,底面ABC是边长为1的正三角形,PB=PC=,AB⊥BP.(Ⅰ)求证:PA⊥BC(Ⅱ)求点P到底面ABC的距离.考点:点、线、面间的距离计算;直线与平面垂直的性质.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取BC中点M,连结AM,PM,依题意可知AM⊥BC,PM⊥BC,从而BC⊥平面PAM,由此能证明PA⊥BC;(Ⅱ)过P作PH⊥AM,连接BH,证明PH⊥平面ABC,求出BH,即可求点P到底面ABC 的距离.解答:(Ⅰ)证明:取BC中点M,连结AM,PM,依题意底面ABC是边长为1的正三角形,PB=PC=,所以AM⊥BC,PM⊥BC,又AM∩PM=M,所以BC⊥平面PAM,又PA⊂平面PAM,所以PA⊥BC;(Ⅱ)解:因为BC⊥平面PAM,BC⊂平面ABC所以平面ABC⊥平面PAM,过P作PH⊥AM,连接BH,所以PH⊥平面ABC,所以PH⊥AB,因为AB⊥PB,PH∩PB=P,所以AB⊥平面PBH,所以AB⊥BH.在Rt△ABH中,∠BAH=30°,所以BH=,在Rt△PBH中,PB=,所以PH==,所以点P到底面ABC的距离为.点评:本题考查异面直线垂直的证明,考查点到平面的距离的求法,正确作出点P到底面ABC的距离是解题的关键.21.(14分)已知函数f(x)=x3﹣3x2+ax(a∈R)(1)求函数y=f(x)的单调区间;(2)当a≥2时,求函数y=|f(x)|在0≤x≤1上的最大值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:函数的性质及应用;导数的综合应用.分析:(1)求出函数的导数,讨论判别式小于或等于0,和大于0,令导数大于0,得增区间;令导数小于0,得减区间;(2)由(1)讨论当a≥3时,当2≤a<3时,求得函数的单调区间,通过函数值的符号,去绝对值符号,即可得到最大值.解答:解:(1)函数f(x)=x3﹣3x2+ax的导数为f′(x)=3x2﹣6x+a,判别式△=36﹣12a,当△≤0时,即a≥3,f′(x)≥0恒成立,f(x)为增函数;当a<3时,即△>0,3x2﹣6x+a=0有两个实根,x1=1﹣,x2=1+,f′(x)>0,可得x>x2或x<x1;f′(x)<0,可得x1<x<x2.综上可得,a≥3时,f(x)的增区间为R;a<3时,f(x)的增区间为(﹣∞,1﹣),(1+,+∞),减区间为(1﹣,1+).(2)由于y=|f(x)|的图象经过原点,当a≥3时,由(1)可得y=|f(x)|=f(x)在[0,1]递增,即有x=1处取得最大值,且为a﹣2;当2≤a<3时,由(1)可得f(x)在[0,1﹣)递增,在(1﹣,1]递减,则f(x)在x=1﹣处取得最大值,且大于0,又f(0)=0,f(1)=a﹣2≥0,则y=|f(x)|=f(x)(0≤x≤1)的最大值即为f(1﹣).综上可得,当a≥3时,函数y的最大值为a﹣2;当2≤a<3时,函数y的最大值为f(1﹣).点评:本题考查导数的运用:求单调区间和极值、最值,主要考查分类讨论的思想方法和函数的单调性的运用,考查运算能力,属于中档题和易错题.22.(14分)已知椭圆C:=1(a>b>0)的离心率为,短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)若A、B是椭圆C上的两动点,O为坐标原点,OA、OB的斜率分别为k1,k2,问是否存在非零常数λ,使k1•k2=λ时,△AOB的面积S为定值,若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过=、2b=2、a2=b2+c2,计算即得结论;(Ⅱ)设直线AB的方程并与椭圆方程联立,利用韦达定理、三角形面积计算公式、k1•k2=λ可得S△AOB的表达式,分析表达式、计算即可.解答:解:(Ⅰ)∵e==,2b=2,a2=b2+c2,∴a=2,b=1,∴椭圆C的方程为:+y2=1;(Ⅱ)结论:存在非零常数λ=﹣,使k1•k2=﹣时,△AOB的面积S为定值1.理由如下:设存在这样的常数λ,使k1•k2=λ时,S△AOB为定值.设直线AB的方程为:y=kx+m,且AB与+y2=1的交点坐标为A(x1,y1),B(x2,y2),∵k1•k2=λ,∴λx1x2﹣y1y2=0,∴﹣λx1x2+(kx1+m)(kx2+m)=0,∴(k2﹣λ)x1x2+km(x1+x2)+m2=0.将y=kx+m代入+y2=1,消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,由韦达定理可得:x1+x2=,x1x2=,∴(k2﹣λ)x1x2+km(x1+x2)+m2=0可化为:m2=,∵点O到直线AB的距离为d=,∴S△AOB=•d•|AB|=•|x1﹣x2|•|m|=,∴==•,要使上式为定值,只需==,即只需(1+4λ)2=0,∴λ=﹣,此时=,即S△AOB=1,故存在非零常数λ=﹣,此时S△AOB=1.点评:本题考查椭圆的定义及其标准方程、直线与椭圆的位置关系等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,注意解题方法的积累,属于中档题.。

二项式定理(1)

二项式定理(1)

x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。

湖北省武汉市2017-2018学年度部分学校新高三数学起点调研考试试卷文及答案【word版】.doc

湖北省武汉市2017-2018学年度部分学校新高三数学起点调研考试试卷文及答案【word版】.doc

2017-2018学年度武汉市部分学校新高三起点调研测试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】本题选择C选项.2. 设,其中是实数,则在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】由,其中是实数,得:,所以在复平面内所对应的点位于第四象限.本题选择D选项.3. 函数的最小正周期为()A. B. C. D.【答案】C【解析】∴最小正周期.本题选择C选项.4. 设非零向量满足,则()A. B. C. D.【答案】A【解析】∵非零向量满足,本题选择A选项.5. 已知双曲线()的离心率与椭圆的离心率互为倒数,则双曲线的渐近线方程为()A. B.C. 或D. 或【答案】A【解析】由题意,双曲线离心率∴双曲线的渐近线方程为,即.本题选择A选项.点睛:双曲线的渐近线方程为,而双曲线的渐近线方程为(即),应注意其区别与联系.6. 一个几何体的三视图如图,则它的表面积为()A. 28B.C.D.【答案】D【解析】如图所示,三视图所对应的几何体是长宽高分别为2,2,3的长方体去掉一个三棱柱后的棱柱:ABIE-DCJH,该几何体的表面积为:.本题选择D选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7. 设满足约束条件,则的最大值是()A. -15B. -9C. 1D. 9【答案】D【解析】x、y满足约束条件的可行域如图:z=2x+y经过可行域的A时,目标函数取得最小值,由解得A(−6,−3),则z=2x+y的最小值是:−15.故选:A.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8. 函数的单调递增区间是()A. B. C. D.【答案】D【解析】由得:x∈(−∞,−1)∪(5,+∞),令,则y=t,∵x∈(−∞,−1)时,为减函数;x∈(5,+∞)时, 为增函数;y=t为增函数,故函数的单调递增区间是(5,+∞),本题选择D选项.点睛:复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t =g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.9. 给出下列四个结论:①命题“,”的否定是“,”;②“若,则”的否命题是“若,则”;③是真命题,则命题一真一假;④“函数有零点”是“函数在上为减函数”的充要条件.其中正确结论的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】由题意得,根据全程命题与存在性命题的否定关系,可知①是正确的;②中,命题的否命题为“若,则”,所以是错误的;③中,若“”或“”是真命题,则命题都是假命题;④中,由函数有零点,则,而函数为减函数,则,所以是错误的,故选A。

(完整word版)2018年武汉元月调考数学试卷

(完整word版)2018年武汉元月调考数学试卷

2017〜2018学年度武汉市部分学校九年级调研测试数学试卷2.3. 考试时间:2018年1月25日、选择题(共10小题,每小题3分,共30分) 方程x(x —5) = 0化成一般形式后,它的常数项是(A . —5B . 5二次函数y= 2(x —3)2— 6 ( )A .最小值为—6C.最小值为3下列交通标志中,是中心对称图形的是( 14:00〜16:004.5.6.7.8.9.C.B .最大值为3)最大值为—6C.B.D.A .事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则A .事件①是必然事件,事件②是随机事件B. 事件①是随机事件,事件②是必然事件C. 事件①和②都是随机事件D. 事件①和②都是必然事件抛掷一枚质地均匀的硬币,正面朝上的概率为A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次岀现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的0.5,下列说法正确的是( 元二次方程x2 2、3x m 0有两个不相等的实数根,则(A . m> 3B . m= 3C .圆的直径是13 cm,如果圆心与直线上某一点的距离是( )A •相离B •相切C . m v 36.5 cm,那么该直线和圆的位置关系是D. m< 3相交如图,等边△ ABC的边长为4,D、E、F分别为边AB、BC、AC的中点, 点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是(D•相交或相切分别以A、B、C三)D . 6 n/ EDF =Z B;② 2A . nB . 2 n C. 4 n如图,△ ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①/ EDF =Z A + / C:③ 2/A =Z FED +/ EDF :④ / AED + / BFE + / CDF = 180°,其中成立的个数是(A . 1个B . 2个C. 3个DB二次函数y = - x 2— 2x + c 在一3< x < 2的范围内有最小值一 5,贝U c 的值是()A . — 6B . — 2C . 2D . 3 填空题(本大题共 6个小题,每小题 3分,共18分) 一元二次方程 x 2— a = 0的一个根是2,则a 的值是 _________________ 把抛物线y = 2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 _ 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1、2、3、4•随机摸取一个 小球然后放回,再随机摸岀一个小球,两次取岀的小球标号的和等于 5的概率是 _________ 设计人体雕像时, 使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感•按此比例,如果雕像的高为 2m ,那么上部应设计为多高?设雕像的上部高 xm ,列方程,并化成一般形式是 ________________APAP ,则-在O O 中,弧AB 所对的圆心角/ AOB = 108 °点C 为O O 上的动点,以□ AODC •当/ A = _______ :时,线段BD 最长 解答题(共 8题,共72 分)(本题8分)解方程:X 2 + x — 3= 0(本题8分)如图,在 O O 中,半径 OA 与弦BD 垂直,点 C 在O O 上,/ AOB = 80(1)若点C 在优弧BD 上,求/ ACD 的大小10. _ 、11.12. 13. 14. 15. 16. 三、17.18. 19.AO 、AC 为边构造如图,正六边形 ABCDEF 中,P 是边ED 的中点,连接(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球; 乙盒中装有三个球, 分别为两个绿球和一个红球;丙盒中装有 两个球,分别为一个红球和一个绿球,从三个盒子中各随机取岀一个小球(1) 请画树状图,列举所有可能岀现的结果(2) 请直接写出事件“取出至少一个红球”的概率上,直接写出/ (2)若点C 在劣弧BD ACD 的大小20.(本题8分)如图,在平面直角坐标系中有点A(— 4 , 0)、B(0 , 3)、P(a, —a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1) 当a=—4 时①在图中画岀线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形(2) 当a = ____________ 时,四边形ABCD为正方形1 /BA o21 .(本题8分)如图,点D在O O的直径AB的延长线上,CD切O O于点C,AE丄CD于点E(1) 求证:AC平分/ DAE(2) 若AB = 6,BD = 2,求CE 的长22. (本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造•墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为ym,直接写岀y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积樂园23. (本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120。

武汉市2016-2017学年度年四月调考数学参考答案及评分标准(word版)

武汉市2016-2017学年度年四月调考数学参考答案及评分标准(word版)

2016-2017学年度武汉市部分学校九年级调研测试数学参考答案及评分标准武汉市教育科学研究院命制一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分) 11. 3 12. 1 13.5914. 40 15. 16. 三、解答题(每小题3分,共18分)17.解: 6x+1=3x+7 …………………………………………………2分 6x-3x=7-1 …………………………………………………4分 3x=6 …………………………………………………6分∴ x=2 …………………………………………………8分18.证明:在△ACB 与△DFE 中,AC DF C F CB FE =⎧⎪∠=∠⎨⎪=⎩…………………………………………………3分 ∴△ACB ≌△DFE …………………………………………………5分 ∴ AB=DE∴ AD=BE …………………………………………………8分19.(1)200 …………………………………………………3分 (2)作出正确的条形给2分 …………………………………………………5分 (3)解:5000×78200=1950 …………………………………………………7分 答:估计该地区体育成绩为B 级的学生人数为1950人. ………………………8分20.解:(1)设每辆大货车一次可以运货xt,每辆小货车一次可以运货yt,依题意,……1分 得:2315.55635x y x y +=⎧⎨+=⎩………………………………………2分解这个方程组,得42.5x y =⎧⎨=⎩ ………………………………………3分答:每辆大货车一次可以运货4t,每辆小货车一次可以运货2.5t, …………………4分 (2)设租用大货车m 辆,依题意,得: ………………………………………5分 4m+2.5(10-m)≥30 ………………………………………6分解这个不等式,得m≥103…………………………………………7分∴m至少为4答:大货车至少租用4辆. …………………………………………8分21.(1)证明:连接OA交BC于点F∵四边形ABCD是平行四边形∴AD∥BC.∴∠DAF=∠CFO∵AD与O⊙相切∴∠OAD=90º…………………………………………2分∴∠OFC=90º∴OA平分弧BC即弧BA=弧CA …………………………………………3分(2)分别过AB两点作DE的垂线,垂足分别为N,M,连接AC.∵四边形ABCD是平行四边形∴∠D=∠ABC=∠BCE,∴弧EB=弧CA.∵弧BA=弧CA,∴弧EB=弧CA =弧BA,∴BE=AB=AC,弧EA=弧CB ,∴∠E=∠ACE.在Rt△BEM中,sin∠E=BMBE=1213,设BE=13m,则BM=12m,EM=5m.……………5分在Rt△ANC中,sin∠ANC=ANAC=sin∠E=1213,AC=BE=13m,则AN=12m,CN=5m.∵BM∥AN且BM=AN∴四边形BMNA是平行四边形∴MN=AB=13m,∴CM=18m∴tan∠BCE=122183BM mCM m==,∴tan∠D=23………………………………8分22. 解:(1)∵点A在直线32y x=上,且A点的横坐标为2,∴3232y=⨯=,即点A的坐标为A(2,3)∵A(2,3)在双曲线kyx=上∴k=6 ………………………………………3分F(2)①12或0 (12与0各1分) ………………………………………5分 ②∵PM 垂直于x 轴,点P 的坐标为(m ,3) ∴N 3(,)2m m ,M 6(,)m m∴PN=332m -,PM=63m-. ………………………………………6分 当m=2时,P 、M 、N 三点重合,PM=PN=0; …………………………………7分 当0<m <2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2mm ---=6362m m -+=2>0. ∴PM >PN ; ………………………………………9分 当m >2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2m m---=6362m m -+-=2--<0. ∴PM <PN.综上,当m=2时,PM=PN ;当0<m <2时,PM >PN ;当m >2时,PM <PN. ………………………………………10分23. (1)证明:在正六边形ABCDEF 中, AB=BC ,∠ABC=∠BCD=120°,∵BN=CM ,∴△ABN ≌△BCM ………………………………………2分 ∴∠ANB=∠BCM ∵∠PBN=∠CBM ∴△BPN ∽△BCM∴BP BNBC BM= ∴BP BM BN BC ⋅=⋅ ………………………………………4分(2)延长BC ,ED 交于点H ,延长BN 交DH 于G ,取BG 得中点K ,连接KC. 在正六边形ABCDEF 中,∠BCD=∠CDE=120°,∴∠HCD=∠CDH=60°,∴∠H=60°,∴DC=DH=CH.∵DC=BC ,∴CH=BC.∵BK=GK ,∴2KC=GH ,KC ∥DH. ∴∠GDN=∠KCN.∵CN=DN ,∠DNG=∠CNK ,∴△DNG ≌△CNK. ∴KC=DG ,∴DG=13DH=13DE ∵MG ∥AB ,AM ∥BG ,∴四边形MABG 是平行四边形 ∴MG=AB=DE. ∴ME=DG=13DE. 即13ME DE =………………………………………8分 (3)5………………………………………10分 24. 解:(1)∵1x ,2x 是方程2280x x --=的两根,且1x <2x , ∴1x = -2,2x =4,∴A (-2,2)C (4,8) ………………………………………3分 (2)①若直线y 轴,则直线l 的解析式为x=-2; ………………………………4分 ②若直线l 不平行于y 轴,设其解析式为y=kx+b. ∵直线l 经过点A (-2,2),∴-2k+b=2,∴直线l 解析式为y=kx+2k+2.∵直线l 与抛物线只有一个公共点,解析式为y=kx+2k+2. ∴方程21(22)02x kx k -++=有两个相等的实数根. ∴2420k k ++=,k= -2.∴直线l 的解析式为y= -2x-2.综上,直线l 的解析式为x= -2或y= -2x-2. ………………………………………7分 (3)直线AC 的解析式为y= x+4. 设点B(t ,t+4),则D(t ,212t ),E(t ,-2t-2), ∴DB=2142t t +-=1(4)(2)2t t -+, EB=t+4-(-2t-2)=3t+6 ………………………9分过点C作直线CH ∥y 轴,过点B 作直线BH ∥x 轴, 两平行线相交于H(4,t+4) ∴BH=CH=4-t ∴∵EF ∥DC,∴BD BC BE BF =.∴1(4)6BC t BF =-. ∴BF = ………………………………………12分。

2018年武汉市九年级四调数学(含答案)

2018年武汉市九年级四调数学(含答案)

2017~2018学年武汉市九年级四月调考数学试卷考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( )A .22℃B .15℃C .8℃D .7℃2.若代数式41x 在实数范围内有意义,则实数x 得取值范围就是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2得结果就是( )A .1B .x 2C .x 4D .5x 24.下表记录了一名球员在罚球线上投篮得结果,这名球员投篮一次,投中得概率约就是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4356078104123152251投中频率0、40 0、70 0、60 0、52 0、52 0、49 0、51 0、50A .0、7B .0、6C .0、5D .0、4 5.计算(a +2)(a -3)得结果就是( )A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称得点得坐标就是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体得三视图如左图所示,则该几何体就是( )8.某公司有10名工作人员,她们得月工资情况如下表(其中x 为未知数).她们得月平均工资就是2、22万元.根据表中信息,计算该公司工作人员得月工资得中位数与众数分别就是( )A .2,4B .1、8,1、6C .2,1、6D .1、6,1、89.某居民小区得俯视图如图所示,点A 处为小区得大门,小方块处就是建筑物,圆饼处就是花坛,扇形处就是休闲广场,空白处就是道路.从小区大门口向东或向南走到休闲广场, 走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB ,CD 就是互相垂直得两条直径,点E 在弧BC 上,CF ⊥AE 于点F .若点F职务 经理 副经理 A 类职员B 类职员C 类职员人数1 2 2 4 1 月工资/(万元/人) 532x0、8三等分弦AE ,⊙O 得直径为12,则CF 得长就是( )A .552 B .5102 C .556 D .5106 二、填空题(共6个小题,每小题3分,共18分)11.计算:2)32(-+得结果就是__________. 12.计算1112+--x x x得结果就是__________. 13.两个人玩“石头、剪子、布”得游戏,随机出手一次,其中一人获胜得概率就是________.14.一副三角板如图所示摆放,含45°得三角板得斜边与含30°得三角板得较长直角边重合.AE ⊥CD 于点E ,则∠ABE 得度数就是__________°.第14题图 第15题图15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为 1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB .16.已知二次函数y =x 2-2hx +h ,当自变量x 得取值在-1≤x ≤1得范围中时,函数有最小值n .则n 得最大值就是__________. 三、解答题(共8小题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE .求证:AB ∥DE .19.(本题8分)学校食堂提供A ,B ,C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐得人数,得到如下统计图.订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图(1) 一共抽查了_________人;(2) 购买A 套餐人数对应得扇形得圆心角得度数就是_________;(3) 如果A ,B ,C 套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐得总销售额大约就是多少元.20.(本题8分)下表中有两种移动电话计费方式.月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0、20 方式二884000、25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费. (1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB ,AD ,DC相切,切点分别为E ,G ,F ,其中E 为边AB 得中点. (1) 求证:BC 与⊙O 相切;(2) 如图2,若AD =3,BC =6,求EF 得长.22.(本题10分)如图,点A ,B 分别就是x 轴,y 轴上得动点,A ( p ,0)、B (0,q ).以AB 为边,画正方形ABCD .(1) 在图1中得第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C ,D 得坐标;(2) 如图2,若点C ,D 在双曲线xky(x >0)上,且点D 得横坐标就是3,求k 得值; (3) 如图3,若点C ,D 在直线y =2x +4上,直接写出正方形ABCD 得边长.23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点P ,CD 2=DP ·DB .(1) 求证:∠BAC =∠CBD ;(2) 如图2,E ,F 分别为边AD ,BC 上得点,PE ∥DC ,EF ⊥BC .① 求证:∠PFC =∠CPD ;② 若BP =2,PD =1,锐角∠BCD 得正弦值为33,直接写出BF 得长.24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0), B (3,0)两点,与y 轴交于点C .P 为抛物线得对称轴上得动点,且在x 轴得上方,直线AP 与抛物线交于另一点D .(1) 求抛物线得解析式;(2) 如图1,连接AC ,DC ,若∠ACD =60°,求点D 得横坐标;(3) 如图2,过点D 作直线3-=y 得垂线,垂足为点E ,若PD PE 2=,求点P 得坐标.2018年武汉市九年级四调数学(含答案)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷
考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)
1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃
D .7℃
2.若代数式
4
1
+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果( )
A .1
B .x 2
C .x 4
D .5x 2 4 )
投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率
0.40
0.70
0.60
0.52
0.52
0.49
0.51 0.50
A .0.7
B .0.6
C .0.5
D .0.4 5.计算(a +2)(a -3)的结果是( ) A .a 2-6
B .a 2+6
C .a 2-a -6
D .a 2+a -6 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5)
C .(2,-5)
D .(5,-2)
7.一个几何体的三视图如左图所示,则该几何体是( )
8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) A .2、4
B .1.8、1.6
C .2、1.6
D .1.6、1.8
9.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )
A .7种
B .8种
C .9种
D .10种
10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( )
A .
552 B .5102 C .556 D .510
6 二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:2)32(-+的结果是__________ 12.计算
1
1
1
2+-
-x x x
的结果是__________ 13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________
14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°
15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB
16.已知二次函数y =x 2+2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________ 三、解答题(共8题,共72分)
17.(本题8分)解方程组⎩
⎨⎧=-=+6342y x y x
18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE
19.(本题8分)学校食堂提供A 、B 、C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图
订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图 (1) 一共抽查了_________人
(2) 购买A 套餐人数对应的圆心角的度数是_________
(3) 如果A 、B 、C 套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元
20.(本题8分)下表中有两种移动电话计费方式
月使用费/元
主叫限定时间/min
主叫超时费/(元/min )
方式一 58 200 0.20 方式二
88
400
0.25
其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费 (1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?
21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB 、AD 、DC 相切,切点分别为E 、G 、F ,其中E 为边AB 的中点 (1) 求证:BC 与⊙O 相切
(2) 如图2,若AD =3,BC =6,求EF 的长
22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD
(1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标 (2) 如图2,若点C 、D 在双曲线x
k
y
(x >0)上,且点D 的横坐标是3,求k 的值 (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长
23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB
(1) 求证:∠BAC =∠CBD
(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD
② 若BP =2,PD =1,锐角∠BCD 的正弦值为
3
3
,直接写出BF 的长
24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式
(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标
(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标。

相关文档
最新文档