二维离散型随机变量及其分布律

合集下载

3.2二维离散型随机变量

3.2二维离散型随机变量
j
ξ
Pi•
证明: 证明
x1 p1•
x2 p2•
… …
xi pi •
… …
pi• = P{ξ = xi } = P{ξ = xi , −∞ < η < +∞} = ∑ P{ξ = xi ,η = y j } = ∑ pij
j j
信息系刘康泽
边缘分布: 2、 (ξ ,η ) 关于 η 的边缘分布:
p• j = ∑ pij
η ( ξ = 0时)
p
另外两个同理可得。 另外两个同理可得。
1 1/2
2 1/2
信息系刘康泽 的两点分布, 例 5、已知 ξ 服从参数 2 / 3 的两点分布,又 、 η (ξ = 0) 1 2 3 1/2 1/4 1/4 P
η (ξ = 1)
的概率分布. 求 (ξ ,η ) 的概率分布.
1 1/3
证明: 证明
pij p• j
,
p• j ≠ 0 , i = 1, 2,⋯ .
pij p• j
P{ξ = xi | η = y j } =
P{ξ = xi ,η = y j } P{η = y j }
=
.
分布: 2、在 ξ = xi 的条件下 η 的分布:
P{η = y j | ξ = xi } =
pij pi •
信息系刘康泽
联合分布律也可用表格的形式来表示。 联合分布律也可用表格的形式来表示。
ξ
η
x1 x2 ⋮ xi ⋮
y1 p11 p 21 ⋮ p i1 ⋮
y2 p12 p 22 ⋮ pi 2 ⋮
… … … …
yj p1 j p2 j ⋮ pij ⋮
… … … …

多维随机变量函数的分布

多维随机变量函数的分布

i ,k : g ( x i , y j ) = z k

p ij
=pk ,
(x1,y1) (x1,y2) … p11 p12
(xi,yj) pij g(xi,yj)

Z=g(X,Y)
g(x1,y1) g(x1,y2)
例1 设(X,Y)的联合分布列如下所列: 试求(1)Z1=X+Y (2)Z2=X-Y (3)Z3=max{X,Y}的分布列
练习:设随机变量X与Y独立,且均服从0-1 分布,其分布律均为
X P 0 q 1 p
(1) 求W=X+Y的分布律; (2) 求V=max(X, Y)的分布律; (3) 求U=min(X, Y)的分布律。 (4)求w与V的联合分布律。
(X,Y) pij
W=X+Y
V=max(X, Y) U=min(X, Y)
−∞ 或 ∞ −∞
−∞
∫f
X
( z − y ) f Y ( y )dy = ∫ f X ( x) f Y ( z − x)dx.
例2 设X和Y相互独立,并且服从[-1,1]上的均匀分 布,求Z=X+Y的密度函数。
解:
1 f Y ( x) = 2 0
+∞
当 −1 ≤ x ≤ 1 其他
其中α>0,β>0,试分别就以上两 种联结方式写出L的寿命Z的概率 密度.
αe − αx , x > 0, f X ( x) = x ≤ 0, 0,
βe − βy , y > 0, fY ( y ) = y ≤ 0, 0,
其中 α > 0, β > 0 且 α ≠ β . 试分别就以上三种联 接方式写出 L 的寿命 Z 的概率密度 .

二维离散型随机变量及其分布

二维离散型随机变量及其分布
P{ X xi } P{ X xi , } P{ X xi , (Y y j )}
j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1



Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球

二维离散随机变量及其分布(3.2)

二维离散随机变量及其分布(3.2)

yj p1 j p2 j pij
x2
… … …

pi
p1 p2
pi
xi
p j pi1源自p1 pi 2
p2





p j

第三章 二维随机变量及其分布
§2 二维离散随机变量
例 3 从 1 ,2 ,3 ,4 这4个数中随机取出一个,记为 X,
再从 1 到 X 中随机地取出一个数,记为 Y, 试求 X , Y 的联合分布律与X 及 Y 各自的边缘 分布律.
PX 1, Y 1
1 PX 2, Y 0 9
PX 2, Y 1 P 0
2 9
PX 2, Y 2 P 0
第三章
二维随机变量及其分布
§2 二维离散随机变量
由此得 X, Y 的联合分布律为
Y X
0 1 2
0
1
2
1 9 2 9 1 9
j 1,2,
X, Y 的联合分布律也可以由 下表表示
Y X x1
y1
y2
… … …
yj p1 j p2 j
pij
… … … …
p11 p21
pi1
p12 p22
x2

xi

第三章 二维随机变量及其分布
§2 二维离散随机变量
3)二维离散型随机变量联合分布律的性质
性质 1 :非负性
i, j , i,j 1, 2, 对任意的
解:
0, 1, 2. X 的可能取值为 0, 1, 2;Y 的可能取值为
1 1 PX 0, Y 0 2 9 3
第三章
二维随机变量及其分布

第三节二维随机变量的独立性

第三节二维随机变量的独立性
或随机变量X与Y的联合分布律. 注: 二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.

二维离散型随机变量的边缘分布律

二维离散型随机变量的边缘分布律

y
1•
27
1 9

1 9

1• 2 • 1•
9
9
9
1
27•
1 9

1 9

1
27 •
x
F(x,y) =
0, 1/27, 4/27, 7/27, 8/27, 4/27, 13/27, 19/27, 20/27,
x < 0 或 y < 0, 0 x <1, 0 y < 1, 0 x <1, 1 y < 2, 0 x <1, 2 y < 3, 0 x <1, y 3, 1 x <2, 0 y < 1, 1 x <2, 1 y < 2, 1 x <2, 2 y < 3, 1 x <2, y 3,
3
C30
1 2
0
1
1 2
3
一般的,
P( X i,Y j) P( X i)P(Y j X i)
C3i
1
i
3
2 3
3i
Cj 3i
1 2
j
1
1 2
3i
j
j 0,,3 i; i 0,1,2,3;
其联合分布与边缘分布如下表所示
pij X 0 1 2 3
p• j
(1) ( X , Y ) 的联合分布律与边缘分布律; (2) P (X = Y ), P (Y > X ); (3) F (x, y)
解: (1) X的可能取值为0、1、2、3
Y的可能取值为0、1、2、3
P(X 0,Y 0) P(X 0)P(Y 0 X 0)
C30
1 3
0

二维离散型随机变量

二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得

pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.

二维离散型随机变量及其分布律

二维离散型随机变量及其分布律

则(ξ ,η )的可能取值为(0,0),(0,1),(1,0),(1,1), 故 (ξ ,η )为二维离散型随机变量。
1
2. 联合分布律
定义: 设二维随机变量(ξ ,η )的所有可能取的值是 (xi ,yj ),i,j=1,2, ,若{ξ = xi ,η = yj }的概率 L pij = p{ξ = xi ,η = yj} (1) (2) pij ≥ 0 i,j=1,2, L i,j=1,2, L
第2-3节 二维离散型随机变量及其分布律
1.二维离散型随机变量的定义
定义: 若二维随机变量(ξ ,η )的所有可能取的值是 有限对或可列多对, (ξ ,η )=(xi ,yj ),i,j=1,2, L 则称(ξ ,η )为二维离散型随机变量。
例:抛掷两枚硬币一次,观察出现正反的情况,令
⎧0 ξ=⎨ ⎩1 ⎧0 ,η= ⎨ A币出现正面 ⎩1 A币出现反面 B币出现反面 B币出现正面
称之为随机变量η 在ξ = xi条件下的条件分布律。
4
5. 随机变量的独立性
定义: 设二维随机变量(ξ ,η )联合分布律为 pij = p{ξ = xi ,η = yj} i,j=1,2, L 若对于任意的i, j,恒有pij ≡ pi. p. j,即 p{ξ = xi ,η = yj} = p{ξ = xi} p{η = yj} 则称为随机变量ξ 与η 独立。
ij
∑∑ p
i =1 j =1


=1 L i,j=1,2, 为二维离散
则称为pij = p{ξ = xi ,η = yj}
型随机变量(ξ ,η )的联合分布律。
2
3. 边缘ห้องสมุดไป่ตู้布律
定义: 设二维随机变量(ξ ,η )的联合分布律为:pij = p{ξ = xi ,η = yj} i,j=1,2, 则称为pξ(xi ) = p{ξ = xi ,η < +∞} = pi. L 为(ξ ,η )关于分量ξ的边缘分布律。 类似,(ξ ,η )关于分量η的边缘分布律为: pη(η = yj ) = p{ξ < +∞,η = yj} = p.j j=1,2, L i,=1,2, L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.由例2.10求条件分布律
补例
三.随机变量的独立性 1.定义 随机变量的独立性
P{X xi ,Y y j} P( X xi )P{Y y j} i, j 1,2,3,...
若随机变量独立,则
P{X xi | Y y j} P(xi , y j ) / P{Y y j} P{X xi} P{Y y j | X xi} P{Y y j} 与条件无关
边缘分布律是分布律.
由联合分布 律得到边缘 分布律
相同的边缘 分布律,不同 的联合分布 律
表2.7-2.8
联合分布律<=|=边缘分布律
补例
二 条件分布律 1.定义
P{X xi | Y y j} P(xi , y j ) / P{Y y j} pij , j 1, 2,3,...
p·j 2.条件分布律是分布律(满足分布律的特征)
第三节 二维离散型随机变量及其分布律
一、联合分布律与边缘分布律 1.定义.设X,Y为定义在同一样本空间Ω上的随机 变量,则称向量(X,Y )为Ω上的一个二维随机变 量。 二维随机变量(X,Y )的取值可看作平面上的点
A (x,y)
二维离散型随机变量:若二维随机变量(X,Y )的所 有可能取值只有限对或可列对,则称(X,Y )为二 维离散型随机变量。
独立的二维随机变量,边缘分布律=>联合分布律
2.补例1
练习题
pi 2
。。。... ... 。。。
yj p1 j
p2 j
。。。
...
pij
... 。。。
... 。。。 。。。... 。。。...
...
... 。。。 ... 。。。 ... 。。。 ... 。。。 ... 。。。
。。。
...
2).特征: 0 pij 1 pij 1 i1 j1
3). P{( X ,Y ) G}
P{X=1,Y=2}=(1/3) × (2/2)=1/3, P{X=2,Y ×(1/2)=1/3,
Y X 1




1/3
1/3
1/3
2.边缘分布律
1). 通过联合分布律,求各个分量的分布律.
定义2.5 (X ,Y ) 关于分量X的边缘分布律 pi·=P{X xi} = pij (i 1, 2, ); j1 (X ,Y ) 关于分量Y的边缘分布律 p·j =P{Y y j} = pij ( j 1,2, ). i1
pij
( xi , y j )G
例2.10 看书
例 一个口袋中有三个球, 依次标有数字1, 2, 2, 从中任
取一个, 不放回袋中, 再任取一个, 设每次取球时, 各球被 取到的可能性相等.以X、Y分别记第一次和第二次取到的球
上标有的数字, 求(X ,Y ) 的联合分布列.
解 ( X ,Y ) 的可能取值为(1, 2), (2, 1), (2, 2).
2.联合分布律 1).定义2.4 pij P{xi , y j} P{X xi ,Y y j}
(i 1,2, ; j 1,2, )
表格形式(常见形式)
XY
x1
x2
... 。。。
xi
y y 1
2 。。。
p p 11
12 。。。...
p p 21
22 。。。...
。。。...
pi1
... 。。。
相关文档
最新文档