中科大信号与系统课件第一章
合集下载
信号与系统第一章课件

2. Discrete-Time Signals
—— The independent variable is discrete
11 xn
10 8
5
4
1
1
01 2 34 5 6 7
n is integer number
n
Continuous-time signals
Discrete-time signals
R
R i(t)
+ v(t) -
① t1 t t2
E t2 pt dt 1 t2 v2 t dt
t1
R t1
n1 n n2
n2
E x2 n
nn1
② t
E
ptdt 1
R
v2 t dt
§ 1.1.2 Signal Energy and Power v( t) —— voltage i( t) —— current
7
Chapter 1
Signals and Systems
1. Instantaneous power
瞬时功率 2. Total energy
pt vtit 1 v2t
Chapter 1
Signals and Systems
Chapter 1 Signals and Systems
• The mathematical description and representations of signals and systems.
• Signals and Systems arise in a broad array of application.
《信号与系统》上课PPT1-1

f (t )
t t
T
t
第一章第1讲
7
信号分类 能量信号与功率信号
能量信号和功率信号的定义
信号可看作是随时间变化的电压或电流,信号 f (t) 在1欧姆的电阻上的瞬时功率为| f (t)|²,在时间区 间所消耗的总能量和平均功率分别定义为:
总能量 E lim
T
T T
f (t ) dt
2
b
第一章第1讲
11
例1.3 求下列周期信号的功率。
周期锯齿波的功率:T= b + b =10s,一个周期的能量为:
E 1 3 A b
2
1 3
1 3
( A) b
2
1 3
AT
2
信号的功率为
P
E T
A
2
1 3
W
12
第一章第1讲
例1.3 求下列周期信号的功率。
全波整流波形的功率:T=b=5s,一个周期的能量为:
1
(t t0 )
0
t0
t
用阶跃函数可以表示方波或分段常量波形:
u
K
u
K 这就是一个门函数 (方波)的表达式。 t1 用这种门函数可表示 t0 0 其它一些函数 K
第一章第1讲 20
0
t0
t1
t
t
u K (t t0 ) K (t t1 ) K [ (t t0 ) (t t1 )]
f (t )
无限信号或 无时限信号
t
f (t )
f (t )
右边信号或 因果信号
t
f (t )
t t
信号与系统课件--第1章 信号与系统的基本概念

例 1.1-1 试判断下列信号是否为周期信号。若是,确定其 周期。
(1) f1(t)=sin 2t+cos 3t
(2) f2(t)=cos 2t+sinπt
解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公
倍数,则它们的和信号
f(t)=x(t)+y(t)
仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
可以直接列出序列值或者写成序列值的集合。例如,图1.1-3(a)
所示的正弦序列可表示为
2013-8-7
f1 (k ) A sin k 4 信号与系统
第 1 章 信号与系统的基本概念
f1 (k ) A „ -8 -6 -4 -2 01 2 3 4 -A (a) f2 (k) 2 1 -3 -1 01 -1 (b) 23 4 k -3 -1 01 2 3 4 5 6 k A f3 (k) 5 6 7 8 „ k
这样,图1.1-2中的信号f2(t)和f3(t)也可表示为
2013-8-7
信号与系统
第 1 章 信号与系统的基本概念
仅在离散时刻点上有定义的信号称为离散时间信号,简 称离散信号。这里“离散”一词表示自变量只取离散的数值, 相邻离散时刻点的间隔可以是相等的,也可以是不相等的。 在这些离散时刻点以外,信号无定义。信号的值域可以是连 续的, 也可以是不连续的。 定义在等间隔离散时刻点上的离散信号也称为序列, 通 常记为f(k),其中k称为序号。与序号m相应的序列值f(m)称为 信号的第m个样值。序列f(k)的数学表示式可以写成闭式,也
2
T1 s
2013-8-7 信号与系统
T2 2 s
第 1 章 信号与系统的基本概念 4. 能量信号与功率信号
(1) f1(t)=sin 2t+cos 3t
(2) f2(t)=cos 2t+sinπt
解 我们知道,如果两个周期信号x(t)和y(t)的周期具有公
倍数,则它们的和信号
f(t)=x(t)+y(t)
仍然是一个周期信号, 其周期是x(t)和y(t)周期的最小公倍数。
可以直接列出序列值或者写成序列值的集合。例如,图1.1-3(a)
所示的正弦序列可表示为
2013-8-7
f1 (k ) A sin k 4 信号与系统
第 1 章 信号与系统的基本概念
f1 (k ) A „ -8 -6 -4 -2 01 2 3 4 -A (a) f2 (k) 2 1 -3 -1 01 -1 (b) 23 4 k -3 -1 01 2 3 4 5 6 k A f3 (k) 5 6 7 8 „ k
这样,图1.1-2中的信号f2(t)和f3(t)也可表示为
2013-8-7
信号与系统
第 1 章 信号与系统的基本概念
仅在离散时刻点上有定义的信号称为离散时间信号,简 称离散信号。这里“离散”一词表示自变量只取离散的数值, 相邻离散时刻点的间隔可以是相等的,也可以是不相等的。 在这些离散时刻点以外,信号无定义。信号的值域可以是连 续的, 也可以是不连续的。 定义在等间隔离散时刻点上的离散信号也称为序列, 通 常记为f(k),其中k称为序号。与序号m相应的序列值f(m)称为 信号的第m个样值。序列f(k)的数学表示式可以写成闭式,也
2
T1 s
2013-8-7 信号与系统
T2 2 s
第 1 章 信号与系统的基本概念 4. 能量信号与功率信号
精品课件-信号与系统-第1章

“系统”是由若干相互作用和相互依赖的事物组合而成 的具有特定功能的整体。 在信息科学与技术领域中, 常常利 用通信系统、 控制系统和计算机系统进行信号的传输、 交换 与处理。 实际上, 往往需要将多种系统共同组成一个综合性 的复杂整体, 例如宇宙航行系统。
第 章 信号与系统的基本概念
信号与系统之间有着十分密切的联系。 离开了信号, 系统 将失去意义。 信号作为待传输消息的表现形式, 可以看做运载 消息的工具, 而系统则是为传送信号或对信号进行加工处理而 构成的某种组合。 研究系统所关心的问题是, 对于给定信号形 式与传输、 处理的要求, 系统能否与其相匹配, 它应具有怎 样的功能和特性。
第 章 信号与系统的基本概念
图1.1 电路中电容两端的电压变化
第 章 信号与系统的基本概念
如果我们只能得到某些采样点的值, 则信号便不是连续曲 线了, 自变量也不是在时间上连续的, 而是一个个离散的点, 通常用x[n]表示, n=…-3, -2, -1, 0, 1, 2, 3, …。 x[n]可以表示自变量本来就是离散的现象, 例如有关人口统 计学中的一些数据、 股票市场的指数等。 图1.2给出了近94年 的道琼斯工业平均(Doe Jones Industrial Average)指数值。 也有一些离散信号是由本来连续的时间信号经过采样而得到的, 这时离散信号x[n]则代表了一个自变量是连续变化的连续时间 信号在一系列离散时刻点上的样本值。
第 章 信号与系统的基本概念
随着信号传输、 信号交换理论与应用的发展, 出现了所 谓“信号处理”的新课题。 信号处理可以理解为对信号进行 某种加工或变换。 信号处理的应用已遍及许多科学技术领域, 例如, 从月球探测器发来的信号可能被淹没在噪声之中, 但 是, 利用信号处理技术进行增强, 就可以在地球上得到清晰 的月球图像。 石油勘探、 地震测量以及核试验监测仪所得数 据的分析都依赖于信号处理技术的应用。 此外, 在心电图、 脑电图分析, 语音识别与合成, 图像数据压缩以及经济形势 预测(如股票市场分析)等各种领域中都广泛采用了信号处理技 术。
第 章 信号与系统的基本概念
信号与系统之间有着十分密切的联系。 离开了信号, 系统 将失去意义。 信号作为待传输消息的表现形式, 可以看做运载 消息的工具, 而系统则是为传送信号或对信号进行加工处理而 构成的某种组合。 研究系统所关心的问题是, 对于给定信号形 式与传输、 处理的要求, 系统能否与其相匹配, 它应具有怎 样的功能和特性。
第 章 信号与系统的基本概念
图1.1 电路中电容两端的电压变化
第 章 信号与系统的基本概念
如果我们只能得到某些采样点的值, 则信号便不是连续曲 线了, 自变量也不是在时间上连续的, 而是一个个离散的点, 通常用x[n]表示, n=…-3, -2, -1, 0, 1, 2, 3, …。 x[n]可以表示自变量本来就是离散的现象, 例如有关人口统 计学中的一些数据、 股票市场的指数等。 图1.2给出了近94年 的道琼斯工业平均(Doe Jones Industrial Average)指数值。 也有一些离散信号是由本来连续的时间信号经过采样而得到的, 这时离散信号x[n]则代表了一个自变量是连续变化的连续时间 信号在一系列离散时刻点上的样本值。
第 章 信号与系统的基本概念
随着信号传输、 信号交换理论与应用的发展, 出现了所 谓“信号处理”的新课题。 信号处理可以理解为对信号进行 某种加工或变换。 信号处理的应用已遍及许多科学技术领域, 例如, 从月球探测器发来的信号可能被淹没在噪声之中, 但 是, 利用信号处理技术进行增强, 就可以在地球上得到清晰 的月球图像。 石油勘探、 地震测量以及核试验监测仪所得数 据的分析都依赖于信号处理技术的应用。 此外, 在心电图、 脑电图分析, 语音识别与合成, 图像数据压缩以及经济形势 预测(如股票市场分析)等各种领域中都广泛采用了信号处理技 术。
信号与系统第1讲第1章信号与系统

学时与学分
总学时64学时。课堂教学48学时,实验16学时。 课程学分3.5学分。
考核方式
闭卷考试。考试与平时作业、实验相结合综合评 定结业成绩 。
先修课程
高等数学、复变函数、线性代数、电路理论等课程。 最好先修MATLAB编程课程。
2024/6/10
信号与线性系统-Байду номын сангаас1讲
9
开讲前言-课程大纲
2024/6/10
信号与线性系统-第1讲
3
开讲前言
生
活
中
的
信
号
与
系
统
-
0001 1010 0111 1100 0110 0101
无
线
0101 0111 0110 0101 0001 1000
发
报
2024/6/10
信号与线性系统-第1讲
4
开讲前言
生
活
中
的
信
号
与
系
统
- 电
信号幅度、信号极性、波形周期、间隔时
信号的分类:
(3)周期信号和非周期信号
在较长的时间内(严格说应该是无始无终),每隔一定时间T (或整数N)按照相同规律重复变化的信号称为周期信号
对连续时间信号x(t)
x(t)=x(t+mT) , (m=… ,-2,-1, 0,+1,+2,…) 对离散时间信号x[n]
基波周期T0
x[n]=x[n+mN] , (m=… ,-2,-1, 0,+1,+2,…)
(3)信号根据能量情况的分类
功率有限信号(功率信号)
举例
§1.1连续时间和离散时间信号
信号与系统PPT全套课件

T T
T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T
T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。
信号与系统第一章课件

系统的传递函数
传递函数是描述线性时不变系统的复数域数学模型 ,它包含了系统的频率响应信息。
复数域分析的优势与应用
复数域分析方法可以方便地处理具有非线性 特性的系统和信号,广泛应用于控制工程、 电路分析等领域。
04 线性时不变系统
线性时不变系统的定义与性质
线性
系统的输出与输入成正比 关系,比例系数为常数。
系统的频率响应
系统的频率响应是描述系统对不同频率信号的响 应特性,通过频率响应曲线可以了解系统的性能。
3
频域分析的优势与应用
频域分析方法可以方便地处理复杂信号和系统, 广泛应用于信号处理、通信、雷达等领域。
系统的复数域分析
拉普拉斯变换与复频域分 析
拉普拉斯变换将信号从时域转换到复频域, 通过复频域分析可以了解系统的动态特性和 稳定性。
系统的定义与分类
定义
系统是指一组相互关联的元素或组成部分,它们共同完成某为线性系统和非线性系统;根据系统的动态行为,可 以分为时不变系统和时变系统。
信号与系统的重要性及应用领域
重要性
信号与系统是通信工程、电子工程、 自动控制工程等领域的核心基础,是 实现信息传输、处理、控制和应用的 关键。
要点三
信号与系统的重要意 义
信号与系统作为现代工程和科学研究 的重要基础,其发展对于推动科技进 步和产业升级具有重要意义。未来, 信号与系统的理论和技术将继续发挥 重要作用,为人类社会的进步和发展 做出贡献。
THANKS FOR WATCHING
感谢您的观看
因果性
系统的输出只与过去的输入 有关,与未来的输入无关。
时不变
系统的特性不随时间变化。
稳定性
系统在受到外部激励时, 其输出不会无限增长。
信号与系统精品课件1.1

•系统:系统的描述方式、组合规律、以及系统特性等。
•与:信号进入输入或激励系统后,系统的输出或响应。
我们将按照“信号→系统→与”的思路来讨论本书的基础性 知识。
静态元素:“信号”和“系统” 动态过程:“与”
本章结构
信号
• 表示方式 • 分类 • 运算 • 若干基本信号 • 信号之间关系
系统
与
• 表示方式
电信号:具体表现形式为电压、电流、磁通量等。 电系统:构成电系统的基本元件为电阻、电容、电感等。 本课程重点不在于具体电路元件的特定的信号值,而是从 系统的角度上关注其相应的功能。
vin t
R C
vout t
图1.1.1 积分电路
信号与系统
•信号:信号的描述方式、运算规则、相互关系、以及信号的 分解等。
• 输入输出法
→
• 分类 • 特性
பைடு நூலகம்
→ • 状态变量法
• 系统特性判断
重点和难点
• 信号的运算 • 冲激信号 • 系统特性的判断
信息(Information)
信息的载体,不同信号所包含的信息不同,因此从具体的内 容或应用来看,信息的定义显然是不同的。
信号总是和系统联系在一起的,从系统(也就是信号的接 收者)的角度来看,信息的功能就是使得接收者消除对特 定对象状态的不确定性。
抽象意义上来说信息就是某种不确定性。
电信号、电系统
信号与系统
§1.1 引 言
信号(Signal)
信号
系统
信号(Signal)
信号: 从一般意义上来讲就是信息的载体。通常通过某种客观变量, 包括物理变量、化学变量或者是生物变量等等的变化得以体 现。 信息: 1000多种定义!?
•与:信号进入输入或激励系统后,系统的输出或响应。
我们将按照“信号→系统→与”的思路来讨论本书的基础性 知识。
静态元素:“信号”和“系统” 动态过程:“与”
本章结构
信号
• 表示方式 • 分类 • 运算 • 若干基本信号 • 信号之间关系
系统
与
• 表示方式
电信号:具体表现形式为电压、电流、磁通量等。 电系统:构成电系统的基本元件为电阻、电容、电感等。 本课程重点不在于具体电路元件的特定的信号值,而是从 系统的角度上关注其相应的功能。
vin t
R C
vout t
图1.1.1 积分电路
信号与系统
•信号:信号的描述方式、运算规则、相互关系、以及信号的 分解等。
• 输入输出法
→
• 分类 • 特性
பைடு நூலகம்
→ • 状态变量法
• 系统特性判断
重点和难点
• 信号的运算 • 冲激信号 • 系统特性的判断
信息(Information)
信息的载体,不同信号所包含的信息不同,因此从具体的内 容或应用来看,信息的定义显然是不同的。
信号总是和系统联系在一起的,从系统(也就是信号的接 收者)的角度来看,信息的功能就是使得接收者消除对特 定对象状态的不确定性。
抽象意义上来说信息就是某种不确定性。
电信号、电系统
信号与系统
§1.1 引 言
信号(Signal)
信号
系统
信号(Signal)
信号: 从一般意义上来讲就是信息的载体。通常通过某种客观变量, 包括物理变量、化学变量或者是生物变量等等的变化得以体 现。 信息: 1000多种定义!?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定信号
随机信号的一个样本
t
t
3.按自变量t的取值特点: 连续时间信号:用全体实数描写时间. 离散时间信号:用特定的整数(实数)描写时间。
4.按信号幅值的取值特点: 模拟信号:幅值、时间连续 量化信号:幅值离散、时间连续 抽样信号:时间离散、幅值连续 数字信号:幅值、时间离散(图1-3)
5、从数学表达式来看,信号可以分为一维信号和多维信号 一维信号:语音信号(空间某点的声压随时间的变化规律) 二维信号:一张黑白图像每个点的光亮度 三维信号:电磁场在空间电磁波传播 四维信号:若考虑到时间变量
中科大信号与系统课ຫໍສະໝຸດ 第一章二、什么是信号?什么是系统?
• 信号是消息的表现形式,消息则是信号的具体内容。 • 系统是由若干相互作用和相互依赖的事物组合而成的具有
特定功能的整体。 • 信号与系统之间的关系
① 信号必定是由系统产生、发送、传输与接收,离开系 统没有孤立存在的信号; ② 系统的重要功能就是对信号进行加工、变换与处理。 • 本课程的主要任务:回答信号作用于系统产生什么响应。
2、正弦信号
3、复指数信号
4、Sa(t)信号(抽样信号)
5、钟形信号(高斯函数)
1.3 信号的运算
1.4 阶跃信号与冲激信号
1.5 信号的分解
1.6 系统模型及分类
1.7 线性时不变(LTI:linear time-invariant)系统
6.按重复性 周期信号:按一定时间间隔周而复始,无始无终的信号。
f ( t ) = f ( t + n T ) n = 0 , 1 , 2( 任 意 整 数 )
T称为信号的周期 非周期信号:在时间上不具有周而复始的特点,或看
成是周期T趋于无限大的周期信号 伪随机信号:具有相对较长周期的确定性信号
三、典型的连续时间信号 1、指数信号
汇报结束
谢谢大家! 请各位批评指正
1.2 信号的描述、分类和典型示 例
一、信号的描述
• 数学上: 信号是一个或多个变量的函数。 自变量:时间、位移、周期、频率、幅度、相位
• 形态上:信号表现为一种波形
二、信号的分类
1.按实际用途:电视,雷达,控制,载波,广播,通信。 2.按信号随时间变化的规律:确定信号,随机信号。
确定信号是指能够以确定的时间函数表示的信号。 随机信号也称为不确定信号,不是时间的确定函数。