第一次测试
第一次综合测试总结作文

第一次综合测试总结作文
咱这回儿得说说咱们第一次综合测试的情况,咱得正经点,别整那些虚的,直接切入正题。
这第一次综合测试啊,就像咱们北京胡同里的大杂院,啥都得来点儿。
成绩一出,几家欢喜几家愁。
咱得看看这欢喜的是哪儿做得好,愁的又是哪块儿没到位。
先说说这好的方面,不少同学基础知识扎实,就跟咱北京的四合院一样,稳稳当当,经得起风吹雨打。
答题也规范,条理清晰,就跟咱老北京的炸酱面一样,讲究个色香味儿俱全。
这说明平时学习用功,老师教导有方。
再说说需要改进的地方,有些同学在理解题意上还得下下功夫,别跟咱北京胡同里找路似的,绕来绕去走不到正道上。
另外,有些题目涉及的知识点,咱得再巩固巩固,就像咱北京的豆汁儿,得慢慢品,才能品出那味儿来。
咱这综合测试啊,就像个镜子,照出了咱们的优点和不足。
优点咱得保持,不足咱得改。
学习这事儿,就跟咱北京人的生活一样,得踏实,得认真。
往后啊,咱得继续努力,别管是课上听讲还是课下复习,都得用心。
就像咱老北京的京剧,得练得炉火纯青,才能上台表演。
咱也得把知识学精了,才能在考试中拿得出手。
总之啊,这第一次综合测试就是给咱们提个醒儿,让咱们知道哪儿做得好,哪儿还得加油。
咱得把这当做个机会,好好反思,争取下次做得更好。
这才是咱们北京人的风格,不服输,有韧劲儿!。
河北省邯郸市2024届高三上学期第一次调研测试语文试题及答案解析

河北省邯郸市2024届高三上学期第一次调研测试语文试题及答案解析一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
①人们普遍认为,正确的主题思想加上合适的艺术形式,就有可能成为一个好作品。
这种说法勉强也能成立,只不过,那是指常规的好作品,而不是指真正的杰作,更不是指伟大的作品。
②伟大的艺术作品,没有清晰的主题思想,也没有简明的结论。
现在我们似乎说得出几句它们的主题思想和结论,但那是后人强加给它们的。
后人为了讲解它们、分析它们,就找了几条普通人都能理解的“拐杖”,其实那些“拐杖”都不属于伟大作品本身。
例如,人们常常会说《离骚》的主题思想是“怀才不遇的爱国主义”,说《红楼梦》的主题思想是“歌颂封建家庭叛逆者的爱情”,其实都是不对的。
在西方艺术中,荷马史诗,希腊悲剧,莎士比亚几部最好的悲剧,米开朗基罗、达·芬奇、罗丹的绘画和雕塑,贝多芬、巴赫、莫扎特的音乐,也都不存在明确的主题和结论。
讲得越清楚,就离它们越远。
③要用艺术方式来表现大科学家伽利略,有两种常规选择:一、通过伽利略对天文的观察和发现,表现人类与自然的贴近和较量;二、通过伽利略与罗马教会的冲突,表现科学与迷信、人格与神格之间的较量。
但德国剧作家布菜希特摒弃了这两种选择,他在剧作《伽利略传》中故意安排了一个最为难的结构:伽利略在教会的火刑威胁前屈服了,公开宣布自己的科学发现是谬误,教会因此赦免了他死罪,而他原先的学生和朋友也从道德上把他流放了,再也没有人理他;孤独的老人在二十年后又有了重大的科学发现,甚至比二十年前的发现更重要。
这让他的学生们产生了困惑:他当初该不该屈服?当初如果不屈服,必定死亡,那也就说不上后来的科学成就了;但是,屈服又是人们所不能接受的。
显然,布菜希特自己也没有结论,甚至连偏向都没有,他让广大观众与自己一起卷入苦恼。
但对艺术而言,真正震撼人心的地方正在这里,它让人们因苦恼而高贵。
第一次体能测试作文

第一次体能测试作文
清晨的阳光,像天真可爱的孩子,躲回树叶的缝隙,在地面上投下斑驳光影。
操场上的空气,跟着一丝凉意,还混杂着青草的香味。
我站在跑道边,看着远处同学们在老师的指挥下,整齐划一地请排好队。
这是我第一次能参加体能测试。
心脏乱跳,很显然和我的呼吸频率同步。
我不曾像现在这样的激动,像只不安分的小鹿,在胸腔里来来回回地旋转。
望着前方,彷佛注意到终点线向我做了个手势,似是像一座巍峨的高山,拦阻在我行进的道路上。
耳边传来老师响亮的口令,同学们都像离弦的箭一样冲了回去,我却依然站在原地,犹犹豫豫。
那一一声声“加油吧”,仿若不知从何而来远得的地方,让我非常很迷惘。
深吸一口气,我终于迈开了步伐,双腿仿似灌了铅,疲惫异样。
我紧咬牙关,努力地向前狂奔,却总觉得自己越来越大慢,越加脱力。
周围的一切变得什么都看不清楚,只有那条终点线,像一道希望的光芒,领路着我行进。
到了最后,我一路踉跄地跑到了终点线。
汗水浸湿了我的衣裳,双腿仿似失去了了知觉。
我瘫坐在草地上,瞧着碧蓝的天空,心中涌起一股莫明的愧疚。
第一次体测,交给我的是一份刻骨的记忆,也让我清楚了,努力不一定完成,但决定放弃,就一定一次。
江苏省南通市2024届高三年级第一次调研测试数学试卷(附答案)

江苏省南通市2024届高三年级第一次调研测试数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}3,|230,1,2,A x x B =-<<=,则A B = ( )A. {}2,1--B. {}0,1C. {}0,1,2D. {}0,1,2,32 已知8,6i z z z z +=-=,则z z ⋅=( ) A. 25B. 16C. 9D. 53. 若向量(,4),(2,)a b λμ==,则“8λμ=”是“a b∥”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 设{}n a 为等比数列,24623a a a =+,则4725a a a a -=-( )A.19B.13C. 3D. 95. 从正方体八个顶点中选择四个顶点构成空间四面体,则该四面体不可能...( ) A. 每个面都等边三角形 B. 每个面都是直角三角形C. 有一个面是等边三角形,另外三个面都是直角三角形D. 有两个面是等边三角形,另外两个面是直角三角形6. 已知直线1y x =-与抛物线()2:20C x py p =>相切于M 点,则M 到C 的焦点距离为( )A. 1B. 2C. 3D. 47. 已知函数()f x 及其导函数()f x '的定义域均为()0,∞+,若()2()xf x f x '<,则( ).的是A. ()()()224e 216e e 4f f f <<B. ()()()22e 44e 216ef f f <<C. ()()()22e 416e 4e 2f f f <<D. ()()()2216e e 44e 2f f f <<8. 某中学开展劳动实习,学生制作一个矩形框架的工艺品.要求将一个边长分别为10cm 和20cm 的矩形零件的四个顶点分别焊接在矩形框架的四条边上,则矩形框架周长的最大值为( )A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 抽样统计甲、乙两位射击运动员的5次成绩(单位:环),得到如下数据: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙 8990918892则( )A. 甲成绩的样本极差小于乙成绩的样本极差B. 甲成绩的样本平均值等于乙成绩的样本平均值C. 甲成绩的样本中位数等于乙成绩的样本中位数D. 甲成绩的样本标准差小于乙成绩的样本标准差10. 设函数()f x 的定义域为R ,()f x 为奇函数,(1)(1)f x f x +=-,(3)1f =,则( ) A. ()11f -= B. ()(4)f x f x =+C. ()(4)f x f x =-D.181()1k f k ==-∑11. 已知点M 在圆22230x y x ++-=上,点()0,1P ,()1,2Q ,则( ) A. 存在点M ,使得1MP = B. π4MQP ∠≤C. 存在点M ,使得MP MQ =D. MQ =12. 我国古代数学家祖暅提出一条原理:“幂势既同,则积不容异”,即两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.利用该原理可以证明:一个底面半径和高都等于R 的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R 的半球的体积相等.现有一个半径为R 的球,被一个距离球心为d (0d >)的平面截成两部分,记两部分的体积分别为()1212,V V V V <,则( ) A. 21π()(2)3V R d R d =-+ B. 2π(2)(2)(3)9V R d R d R d =+-+ C. 当2Rd =时,12527V V = D. 当3Rd ≤时,12720V V ≥ 三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数2log (2),1,()21,1,xx x f x x +≥-⎧=⎨-<-⎩,则21log 3f ⎛⎫= ⎪⎝⎭________.14. 已知()()4234012534512x x a a x a x a x a x a x -+=+++++,则2a =________,12345a a a a a ++++= ________.15. 已知函数π()2sin (0)4f x x ωω⎛⎫=+> ⎪⎝⎭,若()()1212f x f x x x ==-的最小值为π2,则π8f ⎛⎫= ⎪⎝⎭________. 16. 已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为F 1,F 2,设P ,Q 是E 上位于x 轴上方的两点,且直线12//PF QF .若11224||||,2||5||,PF QF PF QF == 则E 的离心率为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知AB 是圆锥PO 的底面直径,C是底面圆周上的一点,2,PC AB AC ===,平面PAC 和平面PBC 将圆锥截去部分后的几何体如图所示.(1)证明:OC ⊥平面PAB ; (2)求二面角A PB C --的余弦值.18. 在ABC 中,角A ,B ,C 对边分别为a ,b ,c .已知31tan ,tan ,654B C b ===.的(1)求A 和c ;(2)若点D 在AC 边上,且222BD AD CD =+,求AD .19. 记正项数列{}n a 的前n 项和为n S ,满足1,n a 成等差数列. (1)求{}n a 通项公式;(2)设集合13,N ,N n n k n a a A k a k n a **++⎧⎫==∈∈⎨⎬⎩⎭,求集合A .20. 已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右顶点分别为()()2,0,2,0A B -,离心率为2.过点()4,0的直线l 与C 的右支交于M ,N 两点,设直线,,AM BM BN 的斜率分别为123,,k k k . (1)若22k =,求3k ; (2)证明:()213k k k +为定值.21. 某商场在元旦期间举行摸球中奖活动,规则如下:一个箱中有大小和质地相同的3个红球和5个白球,每一位参与顾客从箱中随机摸出3个球,若摸出的3个球中至少有2个红球,则该顾客中奖. (1)若有三位顾客依次参加活动,求仅有最后一位顾客中奖的概率;(2)现有编号为1~n 的n 位顾客按编号顺序依次参加活动,记X 是这n 位顾客中第一个中奖者的编号,若无人中奖,则记0X =.证明:()72E X <. 22. 已知函数()ln a f x x x=-. (1)讨论()f x 的单调性;(2)若a >0,记0x 为()f x的零点,1m n a ==+.①证明:0m x n <<; ②探究0x 与2m n+的大小关系.的答案解析一、选择题:本题共8 小题,每小题5 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}3,|230,1,2,A x x B =-<<=,则A B = ( )A.{}2,1-- B.{}0,1 C.{}0,1,2 D.{}0,1,2,3【答案】C 【答案解析】【详细分析】根据题意,由集合的交集运算即可得到结果. 【答案详解】因为{}{}3,|230,1,2,A x x B =-<<=,所以A B = {}0,1,2.故选:C2.已知8,6i z z z z +=-=,则z z ⋅=( )A.25 B.16C.9D.5【答案】A 【答案解析】【详细分析】根据给定条件,求出,z z ,再利用复数乘法运算计算即得.答案详解】由8,6i z z z z +=-=,得43i,43i z z =+=-,所以()()43i 43i 25z z ⋅=+-=.故选:A3.若向量(,4),(2,)a b λμ==,则“8λμ=”是“a b∥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【答案解析】【详细分析】由向量平行的充要条件结合充分条件、必要条件的定义判断即可.【答案详解】由题意8a b λμ⇔= ∥,则“8λμ=”是“a b ∥”的充要条件. 故选:C .【4. 设{}n a 为等比数列,24623a a a =+,则4725a a a a -=-( )A.19B.13C. 3D. 9【答案】B 【答案解析】【详细分析】根据等比数列通项和已知条件求出公比,然后代入即可. 【答案详解】设等比数列公比为q ,24623a a a =+,即2422223q q a a a =+,所以24123q q =+,所以213q =,由25247325113a a q q q a a q --===--,故选:B .5. 从正方体的八个顶点中选择四个顶点构成空间四面体,则该四面体不可能...( ) A. 每个面都是等边三角形 B. 每个面都是直角三角形C. 有一个面是等边三角形,另外三个面都是直角三角形D. 有两个面是等边三角形,另外两个面是直角三角形 【答案】D 【答案解析】【详细分析】根据正方体的性质和四面体的特征,结合图形逐个详细分析判断即可. 【答案详解】如图,11D BAC -每个面都是等边三角形,A 不选;11A DD C -每个面都是直角三角形,B 不选;1D ABC -三个面直角三角形,一个面等边三角形,C 不选,选D .故选:D.的6. 已知直线1y x =-与抛物线()2:20C x py p =>相切于M 点,则M 到C 的焦点距离为( )A. 1B. 2C. 3D. 4【答案】B 【答案解析】【详细分析】将直线与抛物线联立方程组,Δ0=求出p ,得点M 坐标得解.【答案详解】设抛物线C 的焦点为F ,联立212y x x py=-⎧⎨=⎩,消y 可得2220x px p -+=,因为直线与抛物线相切,则2480p p ∆=-=,0p > ,2p ∴=,()2,1M ∴,1122M pMF y ∴=+=+=. 故选:B.7. 已知函数()f x 及其导函数()f x '的定义域均为()0,∞+,若()2()xf x f x '<,则( ) A. ()()()224e 216e e 4f f f <<B. ()()()22e 44e 216ef f f <<C. ()()()22e 416e 4e 2f f f <<D. ()()()2216e e 44e 2f f f <<【答案】C 【答案解析】【详细分析】方法一:设()()2f xg x x =利用导数得到函数单调性,从而求解; 方法二:设()1,f x =特例法得解.答案详解】方法一:∵()()2xf x f x '<,∴()()()'2320f x xf x f x x x ⎛⎫-⎝⎭'=< ⎪, 设()()2f xg x x=,则()g x 在()0,∞+上单调递减, 所以()()()2e 4g g g >>,()()()22e 44e 16f f f ∴>>, 即()()()224e 216e e 4f f f >>,故C 正确.【方法二:设()1,f x =又22e 164e <<,C 正确. 故选:C8. 某中学开展劳动实习,学生制作一个矩形框架的工艺品.要求将一个边长分别为10cm 和20cm 的矩形零件的四个顶点分别焊接在矩形框架的四条边上,则矩形框架周长的最大值为( )A. B.C.D.【答案】D 【答案解析】【详细分析】由已知作图如图所示,设AEF α∠=,利用三角函数表示各边长,借助三角函数性质计算可得结果.【答案详解】如图所示,10,20EF FG ==, 令AEF α∠=,则10sin ,2AF AFE παα=∠=-,则BFGa ?,20cos ,20sin ,2BF BG BGF πααα==∠=-,则,10cos CGH CG αα∠==∴周长()()22210sin 20cos 220sin 10cos AB BC αααα=+=+++π60sin 60cos 4ααα⎛⎫=+=+≤ ⎪⎝⎭故选:D .【点评】关键点评:本题解决的关键是利用三角函数的定义表示出所求周长,再利用三角恒等变换即可得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 抽样统计甲、乙两位射击运动员的5次成绩(单位:环),得到如下数据: 运动员 第1次 第2次 第3次 第4次 第5次 甲8791908993乙 89 90 91 88 92则( )A. 甲成绩的样本极差小于乙成绩的样本极差B. 甲成绩的样本平均值等于乙成绩的样本平均值C. 甲成绩的样本中位数等于乙成绩的样本中位数D. 甲成绩的样本标准差小于乙成绩的样本标准差 【答案】BC 【答案解析】【详细分析】由中位数、极差的概念即可判断AC ,由平均数、方程计算公式即可验算BD. 【答案详解】甲的极差93876-=,乙的极差92884-=,A 错. 甲的平均数8791908993905++++=,乙的平均数8990918892905++++=,B 对.甲的中位数90,乙的中位数90,C 对.2==,D 错.故选:BC .10. 设函数()f x 的定义域为R ,()f x 为奇函数,(1)(1)f x f x +=-,(3)1f =,则( ) A. ()11f -= B. ()(4)f x f x =+C. ()(4)f x f x =-D.181()1k f k ==-∑【答案】ABD 【答案解析】【详细分析】根据函数的对称性及奇偶性可得()f x 是周期为4的函数,然后结合条件即可求解. 【答案详解】由()f x 为奇函数,即函数()f x 的图象关于()0,0对称, 又()()11f x f x +=-,则()f x 的图象关于1x =对称, 所以(2)()()f x f x f x +=-=-, 则(4)(2)()f x f x f x +=-+=,()f x ∴为周期函数且周期为4T =,B 对.所以()()311f f =-=,A 对. 而(4)()()f x f x f x -=-=-,C 错.由上可知()()200f f =-=,()()400f f ==,所以()()()()()123410100f f f f f +++=--+++=,则181()(1)(2)1k f k f f ==+=-∑,D 对.故选:ABD .11. 已知点M 在圆22230x y x ++-=上,点()0,1P ,()1,2Q ,则( ) A. 存在点M ,使得1MP = B. π4MQP ∠≤C. 存在点M ,使得MP MQ =D. MQ =【答案】ABD 【答案解析】【详细分析】将圆的方程配成标准式,即可得到圆心坐标与半径,从而判断A 、B ,设(),M x y ,若MQ =,推出恒成立,即可判断C 、D.【答案详解】圆22230x y x ++-=即()2214x y ++=,圆心()1,0C -,半径2r =,又()0,1P ,所以CP =,因为点M 在圆22230x y x ++-=上,所以2MP ⎡∈+⎣,所以存在点M ,使得1MP =,故A 对.因为()2211284++=>,所以点Q 在圆外,又2CP r =<=,点P 在圆内,所以当QM 与圆C 相切时,MQP ∠取最大值, 此时π4MQP ∠=,所以π4MQP ∠≤,故B 对.对于D ,设(),M x y ,若MQ =222MQ MP ⇔=2222(1)(2)2(1)x y x y ⎡⎤⇔-+-=+-⎣⎦22230x y x ⇔++-=,又点M 在圆22230x y x ++-=上,MQ ∴=一定成立,故D 对,C 错.故选:ABD .12. 我国古代数学家祖暅提出一条原理:“幂势既同,则积不容异”,即两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.利用该原理可以证明:一个底面半径和高都等于R 的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R 的半球的体积相等.现有一个半径为R 的球,被一个距离球心为d (0d >)的平面截成两部分,记两部分的体积分别为()1212,V V V V <,则( ) A. 21π()(2)3V R d R d =-+ B. 2π(2)(2)(3)9V R d R d R d =+-+ C. 当2Rd =时,12527V V = D. 当3Rd ≤时,12720V V ≥ 【答案】ACD 【答案解析】【详细分析】对于A ,2301ππ3V R d d =-,3102π3V R V =-化简即可验算;对于B ,3202π3V R V =-化简即可验算;对于C ,21322121231R R V d d V R R d d ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,将2R d =代入即可判断;对于D ,求()()()232(1)213231x x f x x x x -+=≥+-的最小值即可. 【答案详解】2301ππ3V R d d =-(同底等高),()()3233232121πππππ23()23333V R R d d R R d d R d R d =-+=-+=-+,A 对.()()()323221ππππ223339V R R d d R d R d R d =+-≠+-+,B 错. ()221323232π121()2321πππ23133R R R d R d V d d V R R R R d d d d ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭对于C ,2Rd=,121551612127V V ⨯∴==+-,C 对. 对于D ,,33R R d d ≤∴≥时,()()()232(1)213231x x f x x x x -+=≥+-, ()()()()223223232121231,0231231x x x x f x f x x x x x --+==>+-+-', ()f x 在[)3,+∞ ,()()7320f x f ≥=,D 对. 故选:ACD.【点评】关键点评:判断D 选项的关键是首先得到21322121231R R V d d V R R d d ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,然后通过换元求导得函数最小值即可验证,从而顺利得解.三、填空题:本题共4小题,每小题5分,共20分.13. 已知函数2log (2),1,()21,1,xx x f x x +≥-⎧=⎨-<-⎩,则21log 3f ⎛⎫= ⎪⎝⎭________.【答案】23-##23- 【答案解析】【详细分析】根据定义域代入计算可得答案.【答案详解】21log 32112log 211333f ⎛⎫=-=-=- ⎪⎝⎭.故答案为:23-. 14. 已知()()4234012534512x x a a x a x a x a x a x -+=+++++,则2a =________,12345a a a a a ++++= ________.【答案】 ①. 8 ②. 16 【答案解析】【详细分析】由二项展开式结合分配律可得第一空答案,由赋值法可得第二空答案. 【答案详解】4432(2)8243216x x x x x +=++++,2x 的系数为232248a =-=, 令0x =,0116a -⨯=,即016a =-;1x =,0123450a a a a a a =+++++,1234516a a a a a ∴++++=.故答案为:8;16.15. 已知函数π()2sin (0)4f x x ωω⎛⎫=+> ⎪⎝⎭,若()()1212f x f x x x ==-的最小值为π2,则π8f ⎛⎫= ⎪⎝⎭________.【答案解析】【详细分析】由题意得π4π2π43i x k ω+=+或125ππ2π,,33k k x x ω+∈-≥Z ,结合题意可得ω,然后代入求值即可.【答案详解】π2sin 4i x ω⎛⎫+= ⎪⎝⎭()πsin ,1,242i x i ω⎛⎫∴+=-= ⎪⎝⎭, 所以,π4π2π43i x k ω+=+或125ππ2π,,33k k x x ω+∈-≥Z , ()ππ22π,,2sin 23334f x x ωω⎛⎫∴⨯=∴==+ ⎪⎝⎭,所以ππππ2sin 2sin 81243f ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭16. 已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为F 1,F 2,设P ,Q 是E 上位于x 轴上方的两点,且直线12//PF QF .若11224||||,2||5||,PF QF PF QF == 则E 的离心率为________.【答案】3【答案解析】【详细分析】根据椭圆定义用a 表示1122||||||||PF QF PF QF 、、、,再利用余弦定理可解. 【答案详解】设1||PF m =,则1||4QF m =,又222||5||,PF QF =由椭圆定义,()()22524,a m a m -=-得3am =, 所以1122452,,,,3333a a a a PF QF PF QF ==== 又因为12//PF QF ,所以1221cos cos 0PF F QF F ∠+∠=,2222221254164499990,1524223333a a c a a c a a a a +-+-∴+=⋅⋅⋅⋅所以3c e a ==.故答案为:3. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知AB 是圆锥PO 的底面直径,C是底面圆周上的一点,2,PC AB AC ===,平面PAC和平面PBC 将圆锥截去部分后的几何体如图所示.(1)证明:OC ⊥平面PAB ; (2)求二面角A PB C --的余弦值. 【答案】(1)证明见答案解析(2)7【答案解析】【详细分析】(1)由等腰三角形三线合一得OC AB ⊥,由线面垂直的性质得PO OC ⊥,结合线面垂直的判定定理即可得证;(2)建立适当的空间直角坐标系,求出两平面的法向量,然后利用向量夹角公式即得. 【小问1答案详解】C 为底面圆周上一点,CA CB ∴⊥,又2,AC AB BC ==∴= ,又O 为AB 中点,OC AB ∴⊥, 又PO ⊥ 底面ABC ,OC ⊂底面ABC ,PO OC ∴⊥,又,AB PO O ⋂=,AB PO ⊂底面PAB , OC ∴⊥平面PAB .【小问2答案详解】PO ⊥ 底面ABC ,,OC OB ⊂底面ABC ,所以,PO OC PO OB ⊥⊥, 又因为OC AB ⊥,所以以O 为原点,,,OC OB OP 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,因为2,PC AB AC ===,(()(),0,1,0,1,0,0PO P B C ==∴ ,(()0,1,,1,1,0PB BC ∴==-,设平面PBC 的一个法向量()1,,n x y z =,由11ꞏ0ꞏ0n PB n BC ⎧=⎪⎨=⎪⎩,00y x y ⎧=⎪∴⎨-=⎪⎩,取1z =,所以)1n = ,而平面APB 的一个法向量()21,0,0n =,设二面角A PB C --平面角为θ,显然θ为锐角,1212cos 7n n n n θ⋅∴=== .18. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知31tan ,tan ,654B C b ===. (1)求A 和c ;(2)若点D 在AC 边上,且222BD AD CD =+,求AD . 【答案】(1)3π4(2)2AD = 【答案解析】详细分析】(1)由两角和正切得tan 1A =-,进一步得3π,sin 4A C B ===,结合正弦定理即可求解.(2)由222BD AD CD =+结合余弦定理即可求解.【【小问1答案详解】()17tan tan 20tan tan 131tan tan 120B CA B C B C +=-+=-=-=---, 且(),,0,πA B C ∈,3π,sin 4A C B ∴=== 在ABC中,6sin sin 3c b c C B =⇒=⨯=. 【小问2答案详解】 设,6AD x CD x =∴=-,222282(6)2BD x x x ⎛⎫∴=+-⋅⋅-=+- ⎪ ⎪⎝⎭, 2162802x x x ⇒-+=⇒=或,1406x << ,2x ∴=,即2AD =.19. 记正项数列{}n a 的前n 项和为n S ,满足1,n a 成等差数列. (1)求{}n a 的通项公式; (2)设集合13,N ,N n n k n a a A k a k n a **++⎧⎫==∈∈⎨⎬⎩⎭,求集合A . 【答案】(1)21n a n =- (2){}8,11A =. 【答案解析】【详细分析】(1)首先根据条件和等差数列的定义,得{}n a 是以1为首项,以2为公差的等差数列,根据等差数列通项公式即可得; (2)由(1)得,122721k a n n =++-,根据k a 为正奇数,得到1221n -为正整数即可解出. 【小问1答案详解】n a成等差数列,()2141n n n a S a ∴+==+①, ()21141n n S a ++=+②,222211111422,220n n n n n n n n n a a a a a a a a a +++++-⇒=-+-∴---=②①,()()()11120n n n n n n a a a a a a ++++--+=,因为0n a >,所以12n n a a +-=,且()211141,1a a a =+∴=, 所以{}n a 是以1为首项,以2为公差的等差数列,()12121n a n n ∴=+-=-.【小问2答案详解】 由(1)得,()()()2132125(21)821121227212121n n k n n n n n a a a n a n n n ++++-+-+====++---k a 为正奇数,又21n -为正奇数,∴1221n -为正整数. 所以211,3n -=,2n ∴=或1n =,当1n =时,212111;2k k n -===,时,21158k k -==,,{}8,11A ∴=.20. 已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右顶点分别为()()2,0,2,0A B -,.过点()4,0的直线l 与C 的右支交于M ,N 两点,设直线,,AM BM BN 的斜率分别为123,,k k k . (1)若22k =,求3k ; (2)证明:()213k k k +为定值. 【答案】(1)32k =-(2)证明见答案解析 【答案解析】【详细分析】(1)依题意,求得双曲线,设出直线MN 的方程,联立方程组,由韦达定理可解;(2)利用两点斜率公式,结合双曲线方程求得12k k ,再结合(1)中结论即可得证. 【小问1答案详解】由题意知2222212a a cb a a bc =⎧⎪=⎧⎪=⇒⎨⎨=⎩⎪+=⎪⎩,双曲线:2214x y -=.易知直线MN 的斜率不为零,所以设直线MN 的方程为4x my =+,()11,M x y ,()22,N x y ,22444x my x y =+⎧∴⎨-=⎩,得()2248120m y my -++=, 则()()()222Δ8441216120m m m =--⨯=+>,则121222812,44m y y y y m m +=-=--, ()()()12121223212121212222224y y y y y y k k x x my my m y y m y y ∴=⋅==--+++++ 2222123412842444m m m m m m -==--+⋅+--,23,22k k =∴=-. 【小问2答案详解】因为2121111222111111422444x y y y k k x x x x -=⋅===+---,()2131223131442k k k k k k k ∴+=+=-=-为定值..21. 某商场在元旦期间举行摸球中奖活动,规则如下:一个箱中有大小和质地相同的3个红球和5个白球,每一位参与顾客从箱中随机摸出3个球,若摸出的3个球中至少有2个红球,则该顾客中奖. (1)若有三位顾客依次参加活动,求仅有最后一位顾客中奖的概率;(2)现有编号为1~n 的n 位顾客按编号顺序依次参加活动,记X 是这n 位顾客中第一个中奖者的编号,若无人中奖,则记0X =.证明:()72E X <. 【答案】(1)50343(2)证明见答案解析 【答案解析】【详细分析】(1)先求一位顾客中奖的概率,然后求仅有最后一位顾客中奖的概率;(2)欲求随机变量X 的分布列,需先求随机变量X 可取的数值,然后求得其相应的概率,根据数学期望的公式求得随机变量X 的期望. 【小问1答案详解】一位顾客中奖的概率为21335338C C C 2C 7⋅+=, ∴仅有最后一位顾客中奖的概率55250777343P =⨯⨯=. 【小问2答案详解】X 的所有可能取值为0,1,2,,n ,()()()()15252520,1,2,,777777n n P X P X P X P X n -⎛⎫⎛⎫======⨯==⋅ ⎪ ⎪⎝⎭⎝⎭ X 的分布列如下:X12Ln()2125551237777n E X n -⎡⎤⎛⎫⎛⎫∴=+⋅+++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 令()221555512317777n n n S n n --⎛⎫⎛⎫⎛⎫=+⋅+⋅++-⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ①, ()()221555555221777777n n n n S n n n --⎛⎫⎛⎫⎛⎫⎛⎫=+++-+-+⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ②, ①-②2125555177777n n n S n -⎛⎫⎛⎫⎛⎫⇒=++++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51175757217n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-⋅< ⎪⎝⎭- ()492497,4742n S E X ∴<∴<⨯=. 22. 已知函数()ln a f x x x =-. (1)讨论()f x 的单调性;(2)若a >0,记0x 为()f x 的零点,1m n a ==+. ①证明:0m x n <<;②探究0x 与2m n +的大小关系. 【答案】(1)答案见答案解析(2)①证明见答案解析;②02m n x +<. 【答案解析】【详细分析】(1)求导讨论0a ≥和<0a 两种情况,根据导数的正负得到单调区间. (2)①证明:由()f x 在()0,∞+上单调递增,0m x n <<⇔()()0f m f n <<,()f m f ==,()()ln 11a f n a a =+-+分别构造()g a =-,()()1ln 111p a a a =++-+,利用导数研究两个函数的单调性进而求得()()00g a g <=,()()00p a p >=,证得结果;②()1ln 22m n a f h a ++⎛⎫== ⎪⎝⎭利用导数证明函数()h a 在()0,∞+上单调递增,()()00h a h >=,即证得()002m n f f x +⎛⎫>= ⎪⎝⎭,由()f x 的单调性即可证得结果.【小问1答案详解】()221a x a f x x x x='+=+. 当0a ≥时,()()0f x f x '>,单调递增;当0a <时,令()0f x x a =⇒=-' ()f x 在()0,a -上单调递减;(),a ∞-+上单调递增.【小问2答案详解】①证明:()f x 在()0,∞+上单调递增, 要证:0m x n <<⇔证()()0f m f n << 而()f m f ==令()g a =, ()1021g a a ==='<+,()g a ∴在()0,∞+上单调递减,()()00g a g <=. ()0,f m ∴<()()()1ln 1ln 1111a f n a a a a =+-=++-++, 令()()1ln 111p a a a =++-+,则()()()22110111a p a a a a =-=>+++'()p a ∴在()0,∞+上单调递增,()()00p a p >=. ()0f n ∴>()()00f m f n m x n ∴<<⇒<<.②()1ln 22m n a f h a +++⎛⎫== ⎪⎝⎭()h a ='====0=> ()h a ∴()0,∞+上单调递增,()()00h a h >=()0022m n m n f f x x ++⎛⎫∴>⇒< ⎪⎝⎭. 【点评】思路点评:本题利用函数的单调性将问题0m x n <<转化为()()0fm f n<<,()f m f ==,()()ln 11a f na a =+-+分别构造()g a =-,()()1ln 111p a a a =++-+,利用导数研究两个函数的单调性通过求得()()00g a g <=,()()00p a p >=,得出()()0f m f n <<.在。
第一次月考综合测试卷(试题)2024-2025学年统编版语文五年级上册

2024-2025学年度第一学期五年级语文第一次月考测试卷(考查范围:第一、第二单元)班级:_________________ 姓名:_________________ 成绩:_________________一、看拼音,写词语。
(8分)二、用“√”选择加点字正确的读音或汉字。
(6分)音韵.(yún yùn)眼眸.(móu mù)挽.救(wán wǎn)强.迫(qiáng qiǎng)削.皮(xiāo xuē)搁.置(gē gé)流泻.(xiě xiè)铿.锵(jiāng kēn)窗(筐框)警(戒诫)等(侍待)(雕碉)堡三、根据句子中划线部分的意思写出二字词语或四字词语。
(6分)1.我们姐弟第一次尝试种花生,没过几个月,没想到收获了。
()2.做人要做有用的人,不要做只讲外表好看,而对别人没有好处的人。
()3.虽然家乡景色很好,但还是有缺陷,村里都是土路,下雨时泥泞不堪,晴天时沙土飞扬。
()4.不要把别人对你的帮助,视为从道理上讲应当这样。
()5.面对暴徒的恶性,人们简直是愤怒得头发直竖,把帽子都顶了起来。
()6.天上的星星真是太多了,没法计算数目。
()四、给句子中的加点词选择正确的解释。
(4分)温和:①指物体具备使人感到暖和的适当温度;②指性情、态度、言语等温柔平和;③指气候不冷不热。
1.昆明气候温和..,夏无酷暑,冬不严寒,四季如春,有“春城”之美称。
()2.大熊猫性情温和,游客们都喜欢它们。
()姿态:①神情举止,容貌体态;②指物体呈现的样子;③诗文书画意趣的表现;④风俗、气度。
3.石缝里长出些高高矮矮的树木,苍翠、茂密,姿态不一。
()4.商场的橱窗里摆放着姿态各异的模特。
()五、按要求写句子。
(8分)1.白鹭本身不就是一首很优美的歌吗?(改为陈述句)__________________________________________________________________________________2.弟弟淘气也没人搭理他,他只得乖乖回家。
二年级第一次作文:第一次体能测试

二年级第一次作文:第一次体能测试今天,我们二年级进行了第一次体能测试。
我早早地来到了学校,和同学们一起等待着测试的开始。
体育老师带领我们来到操场上,他先给我们做了简单的热身运动,让我们的身体变得热乎乎的。
然后,他给我们解释了体能测试的内容和流程。
首先是50米跑。
我们要尽全力跑得快一些,用时最短的同学就是冠军。
我紧紧地握住拳头,迈开大步向前奔跑。
虽然跑的过程有些紧张,但是我还是坚持到了终点。
我花费了15秒完成了50米跑。
接着是立定跳远。
我跑到跳远区域,屏住呼吸,然后用全身的力量蹬地跳起。
我看着自己越过了标记线,心里不禁暗自高兴。
我的跳远成绩是1米50。
然后是掷球。
体育老师给了我们一个小球,让我们尽力掷出去。
我站在投球区域,把球紧紧地抱在胸前,然后用力甩出。
可惜,我的掷球没能达到很远的距离,只有3米。
我有点失望,但我知道下次一定会更好。
最后是坐位体前屈。
我们要坐在一个垫子上,双脚伸直,然后向前伸直手去触碰脚尖。
我的身体有些僵硬,但我还是努力地做了几次。
我成功地触碰到了脚尖,成绩为5厘米。
随着最后一项测试结束,体能测试就圆满完成了。
我们都感到有些疲惫,但是也很开心。
体能测试让我们认识到了自己的身体素质,也让我们知道了自己的不足之处。
通过测试,我们可以更加有针对性地锻炼自己的身体,变得更加强壮健康。
这次的体能测试虽然很累,但是我收获了很多。
我知道,只有通过不断努力和锻炼,我才能变得更加强壮,跑得更快,跳得更高。
我会努力训练,争取在下次的体能测试中取得更好的成绩。
第一次体能测试,给了我很大的鼓舞和动力。
我相信,只要我坚持努力,未来的体能测试中我一定会有更大的进步!。
二年级第一次作文:第一次体能测试

二年级第一次作文:第一次体能测试
今天,我们班进行了第一次体能测试。
我很紧张,因为这是我第一次参加这样的测试。
老师告诉我们,体能测试是为了了解我们的身体素质,让我们知道自己的体能水平,也可
以帮助我们更好地锻炼身体,提高身体素质。
体能测试包括跑步、跳远、引体向上等项目,我觉得有点难。
首先是跑步,我在操场
上一边喘气一边跑啊跑,感觉心跳加快,腿也有些发软。
但我很努力地跑完了,虽然感觉
有些吃力,但我很开心。
下一个项目是跳远,我拿起脚下的助跑,努力奔跑,然后用尽全
力跳了起来。
跳的时候,我感觉自己好像在天空中飞翔一样,很有成就感。
最后一个项目
是引体向上,我虽然力气不大,但我还是全力以赴地完成了这个项目。
我觉得自己虽然有
些累,但也很开心,因为我不是很擅长这些项目,但我还是完成了。
体能测试结束了,我觉得自己收获了很多。
虽然有些项目做得不够好,但我知道了自
己的不足,也知道了自己需要加强的地方。
我会更加努力地锻炼身体,提高自己的体能水平。
我相信在老师和同学的帮助下,我一定会变得更强壮、更健康。
通过这次体能测试,我明白了:健康是最重要的,只有拥有健康的体魄,我们才能更
好地学习和生活。
我会更加珍惜每一次锻炼的机会,努力提高自己的身体素质,做一个健
康的、阳光的孩子!。
第一次语文测试试卷分析

第一次语文测试试卷分析一、试卷结构及命题特点:试卷能紧扣新大纲,充分体现了语文课程标准的理念,提倡并考查了学生的自主阅读、研究性阅读的能力,立足于课内,并进行了适当拓展延伸。
本次测试的试卷共分四个部分:试卷第一部分为语言的积累及运用,共20分,主要考查学生的识记积累和口语交际能力,涉及汉字字形、词语的理解、词语的感情色彩分析、语境填空成语的运用、歧义句的修改、古诗默写、写话几个方面。
第二部分为诗词默写,共10分,主要考查学生对课本上知识的识记。
第三部分是阅读理解,共40分。
主要考查学生的理解、运用、分析、概括能力。
文质兼美的文章,新颖的题型,特别是两段课外文章的阅读考查,更是体现了语文课程标准“重视能力,注重过程方法,强调情感态度和价值观”的新理念。
第四部分是作文,计50分。
文题以“认识幸福”为话题写一篇文章,可写自己的经历、体验、见闻、认识。
题目本身贴近生活,留给了学生较大的思维想象的空间和下笔材料,对作文字数的要求为不少于600字。
二、考试情况分析:第一部分主要是考查学生对语言积累运用,得分率不是很高。
学生对于语文知识的运用存在一些问题,这部分失分率最高是第7、9小题,这是两道语言运用题(一是考察学生对成语的应用,一是课本中作者的简介常识)学生得分率较低。
此外第3题得分也不高,(让学生分析出古文常见字义属于相同的一项)第二部分为诗词默写,对于本题,大部分的学生做的较好,但也有少数同学得分不高,后段应加强对这些学生的记忆督促。
第三部分是阅读理解分析题,本题共分四篇文章,两篇是现代文阅读,其余两篇为古文阅读,这四篇阅读课文,得分率较高的是与课本知识有关的阅读,而对于学生不是很熟悉的课外阅读失分较重,应在后段加强这方面知识的复习。
第四部分作文部分,得分平均30多分,其主要原因是不少同学写的作文缺乏新意,再者有不少同学字写的不够工整,影响得分。
以后需要关注的问题是学生的书写,整体上不够工整美观,作文的构思组材方面不够重视,有新意的佳作还不多的缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一次假期测试
总分120分,考试时间100分钟
姓名 得分
一、选择题。
(3,每题共24分)
1. a,b 是有理数,它们在数轴上的对应点的位置如下图所示:
把a,-a,b,-b 按照从小到大的顺序排列 ( )
A -b <-a <a <b
B -a <-b <a <b
C -b <a <-a <b
D -b <b <-a <a
2. 下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A ①②
B ①③
C ①②③
D ①②③④
3.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )
A 0.8kg
B 0.6kg
C 0.5kg
D 0.4kg
4.一根1m 长的小棒,第一次截去它的
,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是( )
A ()5m
B [1-()5]m
C ()5m
D [1-()5
]m 5.已知啊a/5=b/7=c/8,且3a-2b+c=9,则2a+4b-3c=( )
A 、14
B 、42
C 、7
D 、5
6、1、下面能化成有限小数的是( )
A 、49
B 、733
C 、914
D 、625
7、甲数的35 与乙数的47
相等,则甲数( )乙数。
A 、大于 B 、等于 C 、小于 D 、无法确定
8、904除以27的余数是( )。
A 、0
B 、13
C 、1.3
D 、0.13
二、填空题。
(每空2分,共20分)
1、比
大而比小的所有整数的和为 。
2、2.1∶0.6化成最简整数比是( ),比值是( )。
3一个位三位小数用“四舍五入”法取近似值是7.68,这个三位小数最大是( ),最小是( )。
4.若是2ab 2c 3x -1与-5ab 2c 6x +3是同类项,则x = ;
5、x = 时,代数式与代数式的差为0;
6、-ab 的系数是( )
7.一项工程甲15天完成,乙10天完成,二人的效率比( )
8、的相反数是( )
9、x =3是方程
的解,那么 ,当2,方程的
解 ;
10、把3.702的小数点向右移动两位,这个小数( )。
A 、扩大2倍 B 、缩小2倍 C 、扩大100倍 D 、缩小100倍
三、计算题。
(每题6分,共18分)
1、
2、 2.25×1.8+ 1.25×0.18
3、
1817×109+18
17×10
四、解方程(1、2题各6分,3题10分,共22分)
1、(10-7.5)x=0.125×8
2、203:21=x
8.0;
3、
四、解答题。
(每题9分,共36分)
1某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km )
第一次
第二次 第三次 第四次 第五次 第六次 第七次 -4
+7 -9 +8 +6 -5 -2 (1) 求收工时距A 地多远?
(2) 在第 次纪录时距A 地最远。
(3) 若每km 耗油0.3升,问共耗油多少升?
2 一张零件图的比例尺是8:1,如果在图上量得某线段长56毫米,其实际长度是多少?
3、甲、乙两个工程队共同开凿一个隧道。
开凿了15天,甲队比乙队少开凿了120米,甲队每天开凿65米,乙队每天开凿多少米?
4六年级共有学生207人,选出男生的2/11 和7名女生参加数学竞赛,剩下的男女生人数相同,六年级有女生多少人?。