沪科版七年级上册数学第三章一元一次方程及解法2(含答案)

合集下载

沪科版七年级数学上册《3.2一元一次方程及其解法》同步练习题及答案

沪科版七年级数学上册《3.2一元一次方程及其解法》同步练习题及答案

沪科版七年级数学上册《3.2一元一次方程及其解法》同步练习题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.将方程 ()316x -= 去括号,正确的是( )A .316x -=B .36x -=C .336x +=D .336x -=2.若23(2)6m m x --=是关于x 的一元一次方程,则m 等于( )A .1B .2C .1或2D .03.设22p y =-,23q y =+若 31p q =+,则 y 等于( )A .25B .52C .25-D .52- 4.如果26x a +=的解与2543x x -+=-的解相同,则a 的值是( )A .4B .3C .2D .15.已知3621x +=,那么23x +的值是( )A .11B .13C .17D .206.若关于x 的一元一次方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,则所有符合条件的整数m 之和为( )A .2B .1-C .0D .3-7.下列解方程去分母正确的是( )A .由1132x x --=,得2133x x -=-B .由2124x x --=-,得224x x --=- C .由135y y -=,得2153y -= D .由1123y y +=+,得()3126y y +=+二、填空题8.已知2(3)60m m x --+=是关于x 的一元一次方程,则m = .9.若45x -与36x -的值互为相反数,则x = .10.已知1y =是方程()1223m y y --=的解,求关于x 的方程()()424m x m x +=+的解是 . 11.已知关于x 的方程213x -=与3102a x --=有相同的解,则a = .12.解方程:3125423x x +=-,则x = . 13.当x = 时,代数式4(1)-x 的值是代数式13x +的值的3倍. 14.已知2x =是关于x 的方程329a x x +=-的解,那么关于y 的方程212ay y -=-+的解为 .三、解答题15.解方程(1)82(4)x x =+; (2)315723x x --=. 16.解方程(1)26182x x +=- (2)244233+=-x x 17. 已知关于x 的方程0(11)k k x --=是一元一次方程,求k 的值.18.解方程: (1)14123x x -=+ (2)0.10.2130.020.5x x -+-= 19.一种数学游戏的规则是:a c ad bc b d ⎡⎤=-⎢⎥⎣⎦,例如:46485658⎡⎤=⨯-⨯⎢⎥⎣⎦,如果0.20.25 1.250.6x ⎡⎤=⎢⎥⎣⎦,求x 的值. 参考答案1.D【分析】本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键. 去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号.【详解】解:()316x -=去括号,得336x -=.故选:D .2.A【分析】本题主要考查了一元一次方程的定义,即只含有一个未知数,且未知数的次数为1,这样的整式方程叫一元一次方程.根据一元一次方程的定义可得:|2|31m -= 20m -≠再解m 即可. 【详解】解:23(2)6m m x --=是关于x 的一元一次方程∴|2|31m -= 20m -≠解得:1m =故选:A .3.B【分析】本题考查了一元一次方程的解法,熟练掌握一元一次方程的解题步骤是解答本题的关键.把22p y =-,23q y =+代入31p q =+,然后解关于y 的一元一次方程即可.【详解】解:把22p y =-,23q y =+代入31p q =+,得()322231y y -=++去括号,得66231y y -=++移项、合并同类项,得410y =系数化为1,得52y =. 故选B .4.A【分析】此题主要考查了同解方程,首先计算出方程2543x x -+=-的解,再把x 的值代入方程26x a +=,解出a 即可.【详解】解:2543x x -+=-解得:1x =-把1x =-代入26x a +=中得:()216a ⨯-+=解得:4a =.故选:A .5.B【分析】本题考查代数式求值,解一元一个次方程.解方程求出x 的值是解题的关键. 根据3621x +=求出x 的值,再代入计算,即可求解.【详解】解:3621x +=3216x =-315x =5x =当5x =时∴2325313x +=⨯+=.故选:B .6.B【分析】表示出方程的解,由方程的解为负整数解,确定出整数m 的值即可.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 【详解】解:方程去括号得:15122323mx x -=- 移项合并得:11()122m x -= 解得:21x m =- 由方程有负整数解,得到整数0m =,-1,之和为1-故选:B .7.D【分析】本题考查了解一元一次方程——去分母.正确的去分母是解题的关键.根据解一元一次方程——去分母,对各选项进行判断作答即可.【详解】解:A. 由1132x x --=,得2633x x -=-,原计算错误; B. 由2124x x --=-,得244x x --=-,原计算错误; C. 由135y y -=,得5153y y -=,原计算错误; D. 由1123y y +=+,得()3126y y +=+,计算正确; 故选:D .8.3-【分析】本题考查了一元一次方程的定义,根据未知数的次数等于1且系数不等于0列式求解即可.【详解】解:∴2(3)60m m x--+=是关于x 的一元一次方程∴21m -=且30m -≠解得3m =-.故答案为:3-.9.117/417【分析】本题主要考查了解一元一次方程,相反数的定义,根据相反数的定义得到()6435x x -=--,解方程即可得到答案.【详解】解:∴45x -与36x -的值互为相反数∴()6435x x -=--∴4536x x -=-+ 解得117x = 故答案为:117. 10.0x =【分析】本题考查含参数的一元一次方程,解含参数问题时一般是代入参数值求解新的方程,注意参数字母和未知数字母的转换.先把1y =代入方程得()12123m --=求得1m =,再将1m =代入方程解方程即可. 【详解】解:把1y =代入方程()1223m y y --=得 ()12123m --= 解得1m =.将1m =代入方程()()424m x m x +=+中,得424x x +=+,解得0x =.故答案为:0x =.11.43【分析】本题考查同解方程,先求出213x -=的解,再将解代入3102a x --=,进行求解即可.【详解】解:213x -=解得:2x =把2x =代入3102a x --=,得:32102a --= 解得:43a =; 故答案为:43. 12.5417【分析】本题考查了解一元一次方程,根据解一元一次方程的方法求解即可. 【详解】解:3125423x x +=- 去分母,得336608x x ⨯+=-,即96608x x +=-移项、合并同类项,得1754x =将系数化为1,得5417x =. 故答案为:5417. 13.5【分析】本题考查了解一元一次方程,熟练掌握一元一次方程的解题步骤是解题的关键.根据题意列出方程14(1)33x x ⎛⎫-=+ ⎪⎝⎭,求出方程的解即可. 【详解】根据题意,得14(1)33x x ⎛⎫-=+ ⎪⎝⎭ 去括号,得4431x x -=+移项,得4314x x -=+合并同类项,得5x =故答案为:5.14.1y =【分析】本题主要考查了解一元一次方程和方程的解等知识点,把2x =代入已知方程计算求出a 的值,代入所求方程计算求出y 的值即可,熟练掌握解一元一次方程的方法是解决此题的关键.【详解】把2x =代入方程329a x x +=-中得:347a +=解得:1a =将1a =代入方程212ay y -=-+得:212y y -=-+解得:1y =故答案为:1y =.15.(1)43x =(2)11x =【分析】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1.【详解】(1)解:82(4)x x =+ 828x x =+828x x -=68x =43x =; (2)解:315723x x --= 3(31)2(57)x x -=-931014x x -=-910314x x -=-11x -=-11x =.16.(1)2x =(2)9x =【分析】本题主要考查了解一元一次方程:(1)按照合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,移项,合并同类项,系数化为1的步骤解方程即可.【详解】(1)解:26182x x +=-合并同类项得:816x =系数化为1得:2x =;(2)解:244233+=-x x 去分母得:21246x x +=-合并同类项得:218x -=-系数化为1得:9x =.17.1-【分析】本题考查了一元一次方程的定义,绝对值.熟练掌握一元一次方程的定义,绝对值是解题的关键. 由题意知101k k -≠=,,计算求解即可. 【详解】解:∴关于x 的方程0(11)k k x --=是一元一次方程 ∴101k k -≠=,解得,11k k ≠=±, ∴1k =-∴k 的值为1-.18.(1)95x =- (2)5x =【分析】本题考查解一元一次方程,掌握解方程的步骤是解题的关键.(1)先将分母去掉,然后再把括号去掉,再移项、合并同类项,系数化1即可得出x 的值; (2)先整理,然后去分母,去括号,再移项、合并同类项,系数化1即可得出x 的值;【详解】(1)14123x x -=+ 去分母得:()3186x x -=+去括号得:3386x x -=+移项得:3863x x -=+合并同类项得:59x -=系数化为1得:95x =-; (2)0.10.2130.020.5x x -+-=. 去分母得:()510223x x --+=去括号得:510223x x ---=移项得:521023x x -=++系数化为1得:5x=.19.7x=【分析】本题考查了新定义下的运算和解一元一次方程,理解新定义的运算性质是解题的关键.根据题中新定义的运算可知,a cb d⎡⎤⎢⎥⎣⎦的值等于对角线上a与d的积减去b与c的积,由此进行计算即可.【详解】解:a cad bc b d⎡⎤=-⎢⎥⎣⎦∴0.20.250.20.60.25 1.25 0.6xx⎡⎤=-⨯=⎢⎥⎣⎦即0.20.60.25 1.25 x-⨯=整理得:0.2 1.4x=解得:7x=.。

3.2+第3课时+去分母解一元一次方程++课件+++2024-2025学年沪科版七年级数学上册

3.2+第3课时+去分母解一元一次方程++课件+++2024-2025学年沪科版七年级数学上册

系数化为 1,得 x = 12.
(2)3x x 1 3 2x 1
2
3
解:去分母(方程两边乘 6),得
18x + 3(x-1) =18-2 (2x -1)
去括号,得 18x + 3x-3 = 18-4x + 2
移项,得 18x + 3x + 4x = 18 + 2 + 3
合并同类项,得 25x = 23 系数化为 1,得 x 23
2. 去分母的依据是 等式性质 2 ,去分母时不能 漏乘 没有分母的项 ;
3. 去分母与去括号这两步分开写,尽量不要 跳步,防止忘记变号.
练一练
1.解下列方程:(1)
x
6
1
2
x 3
1
1;
解:去分母 (方程两边乘 6),得 (x-1)-2(2x + 1) = 6.
去括号,得 x-1-4x-2 = 6. 移项,得 x-4x = 6 + 2 + 1. 合并同类项,得 -3x = 9. 系数化为 1,得 x =-3.
25
3.
3. 解下列方程:
(1) x 3 3x 4; 5 15
(2) 5 y 4 y 1 2 5 y 5 .
3
4
12
答案: (1) x 5 . (2) y 4 .
6
7
4. 小马在解关于 x 的方程 2x 1 x a 1 去分母时,方
32
程右边 -1 忘记乘 6,因而求得的解为 x = 2,试求 a 的 值,并正确解方程. 解:按小马去分母的方法,得 2(2x:通过探究去分母解一元一次方程,归纳解一元
一次方程的步骤.
1. 等式的性质 2:等式两边都乘同一个 数 ,或除以 同一个不为 0 的数, 等式 两边仍然相等.

沪科版七年级上册数学第三章3.1一元一次方程及其解法(二)(课件)

沪科版七年级上册数学第三章3.1一元一次方程及其解法(二)(课件)

x 克.
2 x+13=6 x+5
解得
x 2.
程:
(1) 3 x-7+4 x=6 x-8;(2) 2+5 x=3 x-14;
1 7 3 5 19 11 (3) - x+5=17+ x; x- = - x . ( 4 ) 4 4 2 3 6 2
.
思考:观察下面的方程有什么特点?应该怎么解?
1、解一元一次方程有哪些步骤?
(1)去分母、 (2)去括号、
(3)移项、
(4)合并同类项 、 (5)系数化为1
2、去分母时的步骤是什么呢?
(1)确定各分母的最小公倍数
(2)不要漏乘没有分母的项 (3)分数线有括号的作用,分子是多项式的 时候,去括号后,要用括号把分子括起来
结束语
谁若游戏人生,他就一世无成,谁不能 主宰自己,永远是一个奴隶。 ——歌德
2x- 4-12x+3=9- 9x
移项,得 2x-12x+9x=9+4-3
合并同类项,得 -x=10
系数化成1,得
x=-10
QQ空间刷留言
天平的左边放2枚硬币和13克砝码,右边放6枚硬币和5 克砝码,此时天平恰好平衡.每枚硬币的质量是多少克?
解:设每枚硬币的质量是
把方程中的某一项改变符号后,从方程的一
移项
移项时,应注意什么? 移项应注意:移项要变号
例2.解方程:3x+5=5x-7 解法2:移项,得 解法1:移项,得 5+7=5x-3x 3x-5x=-7-5 合并同类项,得 合并同类项,得 12=2x -2x=-12 两边同除以2,得 两边都除以-2, 6=x x=6 即 x=6
解下列方程: 2x 1 x 2 (1) 1 3 4
1 1 (2) x (3 2 x) 1 5 2

完整版沪科版七年级上册数学第3章 一次方程与方程组含答案

完整版沪科版七年级上册数学第3章 一次方程与方程组含答案

沪科版七年级上册数学第3章一次方程与方程组含答案一、单选题(共15题,共计45分)1、一个正整数N的各位数字不全相等,且都不为0,现要将N的各位数字重新排列,可得到一个最大数和一个最小数,此最大数与最小数的和记为N的“和数”;此最大数与最小数的差记为N的“差数”。

例如,245的“和数”为542+245=787;245的“差数”为542-245=297。

一个四位数M,其中千位数字和百位数字均为a,十位数字为1,个位数字为b(且a≥1,b≥1),若它的“和数”是6666,则M的“差数”的值为( )A.3456或3996B.4356或3996C.3456或3699D.4356或36992、下列方程中,是一元一次方程的是()A.x 2﹣4x=3B.3x-1=C.x+2y=1D.xy﹣3=53、以下方程中,是二元一次方程的是()A.8x-y=yB.xy=3C.3x+2yD.y=4、判断下列四组x,y的值,是二元一次方程2x﹣y=﹣4的解的是()A. B. C. D.5、已知实数x,y满足+x2+4y2=4xy,则(y﹣x)2015的值为()A.0B.-1C.1D.20156、已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.37、下列说法正确的是().A.如果,那么B.如果,那么C.如果,那么D.如果,那么8、若a=3x-5,b=x-7,a+b=20,则x的值为()A.22B.12C.32D.89、当1-(3m-5)2取得最大值时,关于x的方程5m-4=3x+2的解是()A. B. C.- D.-10、下列变形中,错误的是()A.由,得B.由,得C.由,得 D.由,得11、解以下两个方程组,较为简便方法的是 ( )①A.①②均用代入法B.①②均用加减法C.用代入法②用加减法 D.①用加减法②用代入法12、如果5x3m-2n-2y n-m+11=0是二元一次方程,则()A.m=1,n=2B.m=2,n=1C.m=-1,n=2D.m=3,n=413、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形。

沪科版七年级数学上册 3.2 一元一次方程及其解法(第3章 一次方程与方程组 自学、复习、上课课件)

沪科版七年级数学上册 3.2 一元一次方程及其解法(第3章 一次方程与方程组 自学、复习、上课课件)
的左边,常数项放在等号的右边 .若移项时为计 算简便不是这样放置的,在合并时可直接交换 过来,这不需要变号,因为等式有对称性 .
感悟新知
例3 解方程:8-3x=x+6.
知2-练
解题秘方:利用移项解一元一次方程的步骤(移项 →合并同类项→系数化为 1)解方程.
解: 移项,得 -3x-x=6 - 8. 合并同类项,得 -4x=-2.
常数, a≠ 0) 的形式,如 果 ax+b=0 是一元一次 方程,那么必有a≠ 0.
感悟新知
例1 下列各式中,哪些是一元一次方程?
知1-练
(1) 12x+y=1-2y; (2) 7x+5=7( x-2);
(3)
5x2-
1 3
x-2=0;
(4)
2 x-1
=5;(5)
3 4
x=
1 2

(6) 2x2+5=2(x2-x) .
感悟新知
解:根据题意,可得 |m|-1=1,且 m+2 ≠ 0. 由 |m|-1=1,得 |m|=2,解得 m=± 2. 由 m+2 ≠ 0,得 m ≠ -2,所以 m=2.
切勿忽略未知数的 系数不为0 的条件.
知1-练
感悟新知
知1-练
2-1.已知关于x的方程(m2-1) x2+(m-1) x+7m2=0 是一 元一次方程,则m= ( C )
3. 解方程中去括号的顺序 先去小括号,再去中括号,最后去
大括号,一般是由内向外去括号,也可以由外向内去括号.
感悟新知
知3-讲
特别提醒 1. 去括号的目的是能利用移项解方程,其实质
是乘法分配律 . 2. 解方程中的去括号法则与整式运算中的去括

2024七年级数学上册第3章3.2一元一次方程及其解法第2课时用去分母法解一元一次方程课件新版沪科版

2024七年级数学上册第3章3.2一元一次方程及其解法第2课时用去分母法解一元一次方程课件新版沪科版


C
6,其错误的原因是(
)
A. 分母的最小公倍数找错
B. 去分母时,漏乘了分母为1的项
C. 去分母时分子部分的多项式未添括号,导致符号错误
D. 去分母时,分子未乘相应的数
返回
1
2
3
4
5
6
7
8
9
10
11
知识点2
用去分母法解一元一次方程
4. [2024·合肥四十五中月考]根据下列解方程
.+.
1
2
3
4
5
6
7
8
9
10
11
【解】将2 x +3, x -2分别看成一个整体,移项、合并
同类项,得


(2 x +3)= ( x -2),




即 (2 x +3)= ( x -2).


去分母,得2(2 x +3)= x -2.
去括号,得4 x +6= x -2.
移项、合并同类项,得3 x =-8.
返回
1
2
3
4
5
6
7
8
9
10
11
6. [母题 教材P100例3]解下列方程:
+

+
-1=

.



【解】去分母,得10(3 x +2)-20=5(2 x -1)-4(2 x +1).
去括号,得30 x +20-20=10 x -5-8 x -4.移项、合并

同类项,得28 x =-9.系数化为1,得 x =- .


系数化为1,得 x =- .

沪科版七年级数学上册3.1.3 一元一次方程的解法(2)课件

沪科版七年级数学上册3.1.3  一元一次方程的解法(2)课件
系数化为1,得 y= 14
3
(2)5(m+8)– 6(2m – 7 )= 1
解 去括号,得 5m+40 – 12m+42=1
移项,得 5m – 12m=1 – 40 – 42
系数化为1,得 m= 81
7
(3)5(x+2)=2(2x+7) 解 去括号,得
5x+10=4x+14 移项,得
5x – 4x=14 – 10 系数化为1,得
课堂小结
利用去括 号解一元 一次方程
去括号注意 事项
解含有括号 的一元一次 方程步骤
去括号 移项 合并同类项 ④系数化1
解一元一次方程的一般步骤
步骤 去分母
根据 等式性质2
注意事项 ①漏乘不含分母的项; ②注意给分子添括号.
去括号
分配律、去括号 ①不漏乘括号里的项;
法则
②括号前是“-”号,要变号.
3x 1 2 3x 2 2x .
2
10 5
去分母(方程两边同乘 各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 2(2x 3)
去括号
15x 5 20 3x 2 4x 6
移项
15x 3x 4x 2 6 5 20
合并同类项
16x 7
系数化为1
x 7 16
1 3
(m-1)=2,
2-
1 3
m+
1 3
=2,
∴m=1,
把m=1代入,
得(x-3)-2=(2x-5),
x-3-2=2x-5,
∴x=0.
探究新知
利用去分母解方程
解方程:3x 1 2 3x 2 2x .
2
10 5

新沪科版7年级上册数学教学课件 3.2 1元1次方程及其解法 第2课时 利用去分母解1元1次方程

新沪科版7年级上册数学教学课件 3.2 1元1次方程及其解法 第2课时 利用去分母解1元1次方程
去分母,得2(-2-a)-3(-1-a)=-12. 去括号,得-4-2a+3+3a=-12. 移项,得-2a+3a=-12+4-3. 合并同类项,得a=-11.
课堂总结
解一元一次方程的一般步骤
去括号
移项
合并同类项
系数化为1
去分母
怎么去分母:方程两边都各乘分母的最小公倍数
去分母的依据:等式的性质2
去分母的注意点:
随堂练习
1.解下列方程:
【教材101 练习 第1题】
(1) ;
解:去分母,得3(2x+1)-5(x+1)=0. 去括号,得6x+3-5x-5=0. 移项,得6x-5x=-3+5. 合并同类项,得x=2.
(2) ;
3.2 一元一次方程及其解法利用去分母解一元一次方程
沪科版七年级上册
情境导入
请你列出方程算一算,丢番图去世时的年龄?
点击图片播放视频
解:设丢番图去世时的年龄为x岁,得出方程
你能解出这道方程吗?
把你的解法与其他同学交流一下,看谁的解法好.
像上面这样的方程中有些系数是分数,如果能化去分母,把系数化为整数,则可以使解方程中的计算更方便些.
探索新知
例3:解方程: .
【教材P100 例3】
思考:1.若使方程各项的系数变成整数,方程两边应该同乘以什么数?
2.去分母时要注意什么问题?
解:去分母,得12x-2(10x+1)=3(2x+1)-12.
去括号,得12x-20x-2=6x+3-12.
解:去分母,得10y-5(y-1)=-2(y+2). 去括号,得10y-5y+5=-2y-4. 移项,得10y-5y+2y=-4-5. 合并同类项,得7y=-9.两边同除以7,得y= .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版七年级上册数学第三章一元一次方程及解法(含答案)
1. 下列变形中,属于移项的是( )
A. 由3x=-2,得x=-3
2 B. 由2
x =3,得x=6 C. 由5x -7=0,得5x=7
D. 由-5x+2=0,得2-5x=0
2.将方程3x+6=2x -8移项后,正确的是( )
A.3x+2x=6-8
B.3x -2x=-8+6
C.3x -2x=-6-8
D.3x -2x=-8-6
3.下列是李明同学作业的部分内容,其中正确的是( )
A.方程2x -3=3x -2,移项得3x -2x=-8+6
B.方程2x -4x=5-3,合并同类项得x=-1
C.方程8x -2x=-12,合并同类项得6x=-12,系数化为1,得x=2
D.方程-6x=-12,系数化1,得x=2
4.方程2x -1=3x+2的解为( )
A.x=1
B.x=-1
C.x=3
D.x=-3
5.将下列方程移项:
(1)方程2x -1=3x+4,移项得______________________.
(2)方程1.5x+1=0.5x -4,移项得_______________________.
(3)方程2-0.3y=0.5y -2,移项得_______________________.
6.解方程:-3x+7=5x -9.
解:移项得-3x+___=-9+______.
合并同类项得_______=_______.
两边都除以_______,得x=_______.
7. 若关于x 的方程2ax -12=a+5的解是x=9,则a 的值为___________.
8. 当a=______时,式子2a+1宇2-a 的值互为相反数。

9. 解方程:
(1)4x+12=-8 (2)5x -25+2x=-4
10. 将方程3-5(x+2)=x 去括号后,正确的是( )
A.3-x+2=x
B.3-5x -10=x
C.3-5x+10=x
D.3-x -2=x
11. 方程2x -(x+10)=5x+2(x+1)的解x 是( ) A.34 B.3
4- C.-2 D.2 12.若2(a+3)的值与4互为相反数,则a 的值( )
A.-1
B.2
7- C.-5 D.0.5 13.方程5x -3=3x+7的解是____________.
14.若6的倒数等于2x+2,则x 的值为_____________.
15.当x=_____时,代数式5x -2与2x+1的值相等
16.已知x=1是方程x x a 2)(3
12=--的解,则关于y 的方程a (y -5)-2=a (2y -3)的解为______.
17.规定一种运算法则:a ※b=a 2+2ab ,若(-2)※x=-2+x ,则x=_____.
18.已知关于x 的方程3a -x=0.5x+3的解为x=2,求代数式(-a )2-2a+1的值。

19. 当x 为何值时,整式4x+3与-5x+6的值:
(1)相等
(2)互为相反数
(3)和为1
20.已知y=1是关于y的方程2m+2y=3y+1的解,求关于x的方程2m+3x=2.5x+3的解。

答案。

相关文档
最新文档