Matlab基础:最短路径问题

合集下载

matlab的floyd算法

matlab的floyd算法

matlab的floyd算法Floyd算法,是一种图论算法,用于在加权图中求解最短路径。

它是以发明者之一、罗伯特·弗洛伊德的名字命名的。

这个算法同样被用于对于任意两点之间的最长路径(所谓的最短路径问题)进行求解。

算法描述给定一个带权的有向图G=(V,E),其权值函数为w,下面我们定义从顶点i到顶点j的路径经过的最大权值为dist(i,j)。

特别地,当i=j时,dist(i,j)=0。

为了方便描述算法,我们用D(k,i,j)表示从顶点i到顶点j且路径中的所有顶点都在集合{1,2,⋯,k}中的所有路径中,最大边权值的最小值。

则从顶点i到顶点j的最短路径的边权值就是 D(n,i,j),其中n是图中顶点的数量。

算法思想:建立中间顶点集合算法是通过不断地扩充中间顶点集合S,来求解任意两点之间的最短路径。

具体来说,设S={1, 2, ⋯, k},其中k是整数。

Floyd算法的基本思想是,依次考察所有可能的中间顶点x(即所有S中的顶点),对于每个中间顶点x,若从i到x再到j的路径比已知的路径更短,则更新dist(i,j)为更小的值D(k,i,j)。

最终,在S={1, 2, ⋯, n}的情况下,所得到的D(n,i,j)就是顶点i到顶点j之间的最短路径的长度。

Floyd算法的核心是一个三重循环,在每一轮循环中,枚举S中所有的中间顶点x,通过动态规划计算出从i到j的最短路径长度D(k,i,j)。

这一过程可表述为:for k = 1 to nfor i = 1 to nfor j = 1 to nif D(k,i)+D(j,k) < D(k,i,j)D(k,i,j) = D(k,i)+D(j,k)其中D(0,i,j)即为dist(i,j),若i和j不连通,则D(0,i,j)=+Inf。

算法实现function D = Floyd(adjmat)% adjmat为邻接矩阵邻接矩阵adjmat的定义为:- 若两个顶点之间有边相连,则对应位置为该边的边权值;- 若两个顶点之间没有边相连,则对应位置为0。

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB实现

最短路径法射线追踪的MATLAB 实现李志辉 刘争平(西南交通大学土木工程学院 成都 610031)摘 要:本文探讨了在MA TLAB 环境中实现最短路径射线追踪的方法和步骤,并通过数值模拟演示了所编程序在射线追踪正演计算中的应用。

关键词:最短路径法 射线追踪 MATLAB 数值模拟利用地震初至波确定近地表介质结构,在矿产资源的勘探开发及工程建设中有重要作用。

地震射线追踪方法是研究地震波传播的有效工具,目前常用的方法主要有有限差分解程函方程法和最小路径法。

最短路径方法起源于网络理论,首次由Nakanishi 和Yamaguchi 应用域地震射线追踪中。

Moser 以及Klimes 和Kvasnicha 对最短路径方法进行了详细研究。

通过科技人员的不断研究,最短路径方法目前已发展较为成熟,其基本算法的计算程序也较为固定。

被称作是第四代计算机语言的MA TLAB 语言,利用其丰富的函数资源把编程人员从繁琐的程序代码中解放出来。

MA TLAB 用更直观的、符合人们思维习惯的代码,为用户提供了直观、简洁的程序开发环境。

本文介绍运用Matlab 实现最短路径法的方法和步骤,便于科研院校教学中讲授、演示和理解最短路径方法及其应用。

1 最短路径法射线追踪方法原理最短路径法的基础是Fermat 原理及图论中的最短路径理论。

其基本思路是,对实际介质进行离散化,将这个介质剖分成一系列小单元,在单元边界上设置若干节点,并将彼此向量的节点相连构成一个网络。

网络中,速度场分布在离散的节点上。

相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。

将波阵面看成式由有限个离散点次级源组成,对于某个次级源(即某个网格节点),选取与其所有相邻的点(邻域点)组成计算网格点;由一个源点出发,计算出从源点到计算网格点的透射走时、射线路径、和射线长度;然后把除震源之外的所有网格点相继当作次级源,选取该节点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径、和射线长度;将每次计算出来的走时加上从震源到次级源的走时,作为震源点到该网格节点的走时,记录下相应的射线路径位置及射线长度。

matlab弗洛伊德算法求出最短距离

matlab弗洛伊德算法求出最短距离

最短路径Floyd算法
Floyd算法是一种用于解决最短路径问题的动态规划算法,其时间复杂度为O(n^3 )。

Floyd算法可以求出任意两点之间的最短路径,并且可以处理负权边(但不能处理负权环)。

算法思想
Floyd算法的基本思想是:对于图中的每一对顶点i和j,看看是否存在一个顶点k,使得从i 到k 再到j 比已知的路径更短。

如果是更短的,就修改当前路径为更短的那个路径。

算法步骤
1.初始化:将图中任意两点之间的最短路径长度初始化为它们之间的权值,如果两点之间没有直接的边,则权值为∞。

2.对于每一个中间节点k,依次考察所有的节点对(i,j),如果从i到j经过节点k比原来的路径更短,则更新最短路径长度。

3.最后得到的矩阵即为任意两点之间的最短路径长度。

Matlab代码
function [D,P] = floyd(W)
% W为邻接矩阵
% D为最短距离矩阵
% P为最短路径矩阵
n = size(W,1);
for k=1:n
for i=1:n
for j=1:n
if W(i,k)+W(k,j)<W(i,j)
W(i,j)=W(i,k)+W(k,j);
P(i,j)=k;
end
end
end
end。

matlab、lingo程序代码1-最短距离

matlab、lingo程序代码1-最短距离

例9 某公司在六个城市c1, c2, …c6 中有分公司,从ici到cj的直接航程票价记在下述矩阵的(I,j)位置上。

(∞表示无直接航路),请帮助该公司设计一张城市c1到其它城市间的票价最便宜的路线图。

clc,cleara=zeros(6);a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20;a(4,5)=10;a(4,6)=25;a(5,6)=55;a=a+a';a(find(a==0))=inf;pb(1:length(a))=0;pb(1)=1;index1=1;index2=ones(1,length(a));d(1:length(a))=inf;d(1)=0;temp=1;while sum(pb)<length(a)tb=find(pb==0);d(tb)=min(d(tb),d(temp)+a(temp,tb));tmpb=find(d(tb)==min(d(tb)));temp=tb(tmpb(1));pb(temp)=1;index1=[index1,temp];temp2=find(d(index1)==d(temp)-a(temp,index1));index2(temp)=index1(temp2(1));endd, index1, index2编写LINGO 程序如下:model:sets:cities/A,B1,B2,C1,C2,C3,D/;roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x;endsetsdata:w=2 4 3 3 1 2 3 1 1 3 4;enddatan=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i)));@sum(roads(i,j)|i #eq#1:x(i,j))=1;@sum(roads(i,j)|j #eq#n:x(i,j))=1;endmodel:sets:cities/1..11/;roads(cities,cities):w,x;endsetsdata:w=0;enddatacalc:w(1,2)=2;w(1,3)=8;w(1,4)=1;w(2,3)=6;w(2,5)=1;w(3,4)=7;w(3,5)=5;w(3,6)=1;w(3,7)=2;w(4,7)=9;w(5,6)=3;w(5,8)=2;w(5,9)=9;w(6,7)=4;w(6,9)=6;w(7,9)=3;w(7,10)=1;w(8,9)=7;w(8,11)=9;w(9,10)=1;w(9,11)=2;w(10,11)=4;@for(roads(i,j):w(i,j)=w(i,j)+w(j,i));@for(roads(i,j):w(i,j)=@if(w(i,j) #eq# 0, 1000,w(i,j))); endcalcn=@size(cities); !城市的个数;min=@sum(roads:w*x);@for(cities(i)|i #ne#1 #and# i #ne#n:@sum(cities(j):x(i,j))=@sum(cities(j):x(j,i)));@sum(cities(j):x(1,j))=1;@sum(cities(j):x(j,1))=0; !不能回到顶点1;@sum(cities(j):x(j,n))=1;@for(roads:@bin(x));end例12 用Floyd算法求解例9。

matlab中求最短路径的函数

matlab中求最短路径的函数

matlab中求最短路径的函数在matlab中,有多种方法可以求解最短路径问题。

其中,较为常用的方法包括Dijkstra算法、Bellman-Ford算法和Floyd算法等。

这些方法对应的函数分别为dijkstra、bellmanford和floyd。

以下是这些函数的使用方法:1. dijkstra函数dijkstra函数可以求解带权有向图的单源最短路径问题。

其使用方法如下:[d,path] = dijkstra(W,s,t)其中,W为带权邻接矩阵,s为源节点,t为目标节点。

函数返回最短路径长度d和路径path。

例如,假设有以下带权有向图:W = [0 1 12 0;0 0 9 3;0 0 0 0;0 0 4 0];其中,0表示两节点之间没有边相连。

则可以使用以下代码求解1号节点到4号节点的最短路径:[d,path] = dijkstra(W,1,4)最短路径长度为7,路径为[1 2 4]。

2. bellmanford函数bellmanford函数可以求解带权有向图的单源最短路径问题,但是可以处理负权边。

其使用方法如下:[d,path] = bellmanford(W,s,t)其中,W为带权邻接矩阵,s为源节点,t为目标节点。

函数返回最短路径长度d和路径path。

例如,假设有以下带权有向图:W = [0 1 12 0;-4 0 9 3;0 0 0 0;0 0 4 0];其中,负权边被用负数表示。

则可以使用以下代码求解1号节点到4号节点的最短路径:[d,path] = bellmanford(W,1,4)最短路径长度为-1,路径为[1 2 4]。

3. floyd函数floyd函数可以求解带权有向图的所有节点之间的最短路径问题。

其使用方法如下:[D,path] = floyd(W)其中,W为带权邻接矩阵。

函数返回最短路径长度矩阵D和路径矩阵path。

例如,假设有以下带权有向图:W = [0 1 12 0;0 0 9 3;0 0 0 0;0 0 4 0];则可以使用以下代码求解所有节点之间的最短路径:[D,path] = floyd(W)最短路径长度矩阵为:D = [0 1 10 4;Inf 0 9 3;Inf Inf 0 Inf;Inf Inf 4 0];其中,Inf表示两节点之间不存在路径。

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题摘要:一、Dijkstra 算法简介1.Dijkstra 算法背景2.Dijkstra 算法原理二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象2.计算最短路径3.可视化结果三、Dijkstra 算法应用示例1.例题描述2.解题步骤3.结果分析正文:一、Dijkstra 算法简介Dijkstra 算法是一种经典的图论算法,用于计算图中两个节点之间的最短路径。

它是由荷兰计算机科学家Edsger W.Dijkstra 于1956 年提出的,其基本思想是以起始点为中心向外层层扩展,直到扩展到终点为止。

Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

可以用堆优化来提高效率。

二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象首先,我们需要使用MATLAB 的graph 函数创建一个图对象,指定节点和边的信息。

例如,我们创建一个简单的图,包含4 个节点和3 条边:```matlabG = graph(4, 3);```其中,4 表示图中有4 个节点,3 表示图中有3 条边。

2.计算最短路径接下来,我们可以使用MATLAB 的shortestpath 函数计算两个节点之间的最短路径。

例如,我们计算节点1 到节点3 的最短路径:```matlabSP = shortestpath(G, 1, 3);```3.可视化结果最后,我们可以使用MATLAB 的plot 函数将最短路径可视化。

例如,我们绘制节点和边以及最短路径:```matlabplot(G, SP);```三、Dijkstra 算法应用示例以下是一个使用Dijkstra 算法求解最短路径的例题:在一个图中,有4 个节点和3 条边,如下所示:```1 --2 -- 3| /| /| /| /|/4```请问,节点1 到节点4 的最短路径是多少?。

MATLAB解决最短路径问题代码

MATLAB解决最短路径问题代码

默认是Dijkstra 算法是有权的, 我想如果把权都赋1的话, 就相当于没权的了参数是带权的稀疏矩阵及结点看看这两个例子(一个有向一个无向), 或许你能找到你想知道的% Create a directed graph with 6 nodes and 11 edgesW = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; %这是权DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W) %有权的有向图h = view(biograph(DG,[],'ShowWeights','on')) %画图, 这个好玩% Find shortest path from 1 to 6[dist,path,pred] = graphshortestpath(DG,1,6) %找顶点1到6的最短路径% Mark the nodes and edges of the shortest pathset(h.Nodes(path),'Color',[1 0.4 0.4]) %上色edges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));set(edges,'LineColor',[1 0 0]) %上色set(edges,'LineWidth',1.5) %上色下面是无向图的例子% % Solving the previous problem for an undirected graph% UG = tril(DG + DG')% h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on')) % % Find the shortest path between node 1 and 6% [dist,path,pred] = graphshortestpath(UG,1,6,'directed',false)% % Mark the nodes and edges of the shortest path% set(h.Nodes(path),'Color',[1 0.4 0.4])% fowEdges = getedgesbynodeid(h,get(h.Nodes(path),'ID'));% revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)),'ID')); % edges = [fowEdges;revEdges];% set(edges,'LineColor',[1 0 0])% set(edges,'LineWidth',1.5)clc;close all; clear;load data;% global quyu;quyu = [2,3];%一片区域z_jl = lxjl(jdxx,lxxh);%计算路线的距离z = qyxz(jdxx,quyu,z_jl);% 根据节点信息,从z中将y区域的节点和路线选出所有点的信息hzlx(z);%绘制Z的图像[qypt, nqypt] = ptxzm(xjpt,quyu);changdu = length(bhxz(jdxx,1:6));%选出x中y区的标号,只是分区域,求长度并绘制它tt = z(:,[1,2,end])';k = min(min(tt(1:2,:)));%求两次最小值t = tt(1:2,:) ;xsjz = sparse(t(2,:),t(1,:),tt(3,:),changdu,changdu);%产生稀疏矩阵[dist, path, pred] = zdljxz(xsjz, qypt, k );%三个原包矩阵通过zdljxz计算得到最短路径hold onfor j = 1:nqyptcolors = rand(1,3);%产生随机数并用颜色标记hzptxc(path{j},jdxx,colors)endhold offaxis equal%把坐标轴单位设为相等zjd = jdfgd( path, quyu);function z = lxjl(x, y)%计算路线的距离[m n] = size(y);for i = 1:myy(i,1:2) = x(y(i,1),2:3);yy(i,3:4) = x(y(i,2),2:3);endz = sqrt((yy(:,3) - yy(:,1)).^2 + (yy(:,2) - yy(:,4)).^2);y = sort(y');y = y';z = [y yy z];z = sortrows(z);function [z lz] = ptxz(xjpt,y)pt = xjpt(:,2);wei = ismember(xjpt(:,1),y);z = pt(wei);lz = length(z);unction hzptxc(path,jdxx,colors)n = length(path);% hold onfor i = 1:nhzptjd(jdxx, path{i},colors)end% hold offunction hzptjd(jdxx,x,colors)% m = length(x);% x = x';hold onplot(jdxx(x,2),jdxx(x,3),'o','LineStyle' ,'-' ,...'Color',colors,'MarkerEdgeColor',colors)plot(jdxx(x(1),2),jdxx(x(1),3),'*','MarkerFaceColor',colors)hold offfunction hzlx(x)%绘制x的图像[m n] = size(x);hold onfor i = 1:mplot([x(i,3) x(i,5)],[x(i,4) x(i,6)],'k:')endhold offfunction z = bhxz(x,y)%选出x中y区的标号,只是分区域xzq = x(:,4);xzr = ismember(xzq,y);z = x(xzr,:);z = z(:,1);。

matlab实现dijkstra算法

matlab实现dijkstra算法

matlab实现dijkstra算法Matlab实现Dijkstra算法第一段:什么是Dijkstra算法,为什么它重要?Dijkstra算法是一种用于解决最短路径问题的经典算法。

它由荷兰计算机科学家Edsger Dijkstra在1956年提出,被广泛应用于网络路由、地图导航和图论等领域。

该算法的核心思想是在给定的带权图中找到从起点到终点的最短路径,通过迭代的方式逐步推进,直到找到最短路径或处理完所有节点。

Dijkstra算法被广泛认为是一种高效、可靠的解决方案,具有良好的理论基础和实际应用性。

第二段:如何在Matlab中实现Dijkstra算法?在Matlab中实现Dijkstra算法,可以分为以下几个步骤:1. 创建带权图:我们需要将问题转化为带权图的形式。

在Matlab中,可以使用邻接矩阵来表示图的连接关系,其中每个边的权重存储在矩阵中的对应位置。

2. 初始化距离和路径:将起点到每个节点的距离初始化为无穷大,并为每个节点设置一个空路径。

将起点的距离设置为0,表示起点到自身的距离为0。

3. 遍历节点:循环遍历所有节点,找到距离起点最近的节点,并标记为已访问。

更新与该节点相邻节点的距离和路径信息。

如果经过当前节点到达某个相邻节点的距离更短,则更新该节点的距离和路径。

4. 重复步骤3,直到所有节点都被遍历为止。

这样,我们就能得到从起点到其他节点的最短路径信息。

第三段:个人观点和理解Dijkstra算法是解决最短路径问题的经典算法之一,它具有广泛的应用价值。

在日常生活中,我们经常需要找到最佳的路径规划,例如快递员送货时选择最短路径、地铁或公交车乘客选择最快到达目的地的路线等。

对于这些问题,Dijkstra算法可以提供一个可靠、高效的解决方案。

在使用Matlab实现Dijkstra算法时,我们可以利用Matlab强大的矩阵运算能力和易用的函数库来简化算法的实现过程。

Matlab还提供了丰富的可视化工具,可以帮助我们直观地展示算法执行过程和结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

for i=1:n
if nargin==3
for j=1:n
min1=D(start,terminal);
if D(i,j)~=inf
m(1)=start;
path(i,j)=j;
i=1;
end, end, end
2) 有向图、无向图和混合图;
3) 权非负.
算法思路:
采用标号作业法,每次迭代产生一个永久标号, 从而生长一颗以v0为根的最短路树,在这颗树上每 个顶点与根节点之间的路径皆为最短路径.
Dijkstra算法——算法步骤
S: 具有永久标号的顶点集; l(v): v的标记; f(v):v的父顶点,用以确定最短路径;
L=length(path);
path=path(L:-1:1);
end, end
if ins==0
v=i;
if label(v)>(label(u)+w(u,v))
label(v)=(label(u)+w(u,v)); f(v)=u;
end, end, end
v1=0;
k=inf; for i=1:n
for i=1:n
① ins=0;
for j=1:length(s) if i==s(j) ins=1;
min=label(terminal);
path(1)=terminal;
i=1;
while path(i)~=start
path(i+1)=f(path(i));
i=i+1 ; end

path(i)=start;
最短路径问题
参考书: 1.傅鹂 龚劬 刘琼荪 何中市 《数学实验》科学出版社 2.张绍民 李淑华 《数据结构教程C语言版》中国电力出版社
主要内容
引例1:最短运输路线问题 引例2:最廉价航费表的制定 Dijkstra算法 Floyd算法 两个例子的求解
引例1:最短运输路线问题
如图的交通网络,每条弧上的数字代表车辆在该路段行 驶所需的时间,有向边表示单行道,无向边表示可双向 行驶。若有一批货物要从1号顶点运往11号顶点,问运 货车应沿哪条线路行驶,才能最快地到达目的地?
MATLAB程序(Dijkstra算法)
function [min,path]=dijkstra(w,start,terminal)
n=size(w,1); label(start)=0; f(start)=start;
for i=1:n if i~=start label(i)=inf;
end, end s(1)=start; u=start; while length(s)<n
的路径中权最小者 P*(u,v)称为u到v的最短路径.
2
8 177
33 54
5
6 1 12
9 62
5 10 11
8
8
3 99
7 2 10
2
5
最短路径算法
Dijkstra算法
使用范围:
2
8 177
8
8
3354
5
61 1
9 9
6 2 5 12 11
3
9
7 210Fra bibliotek0 21) 寻求从一固定顶点到其余各点的最短路径;
Floyd算法
使用范围:
2
8 177
8
8
3354
5
61 1
9 9
6 2 5 12 11
3
9
7 2
10
0 2
1) 求每对顶点的最短路径;
2) 有向图、无向图和混合图;
算法思想:
直接在图的带权邻接矩阵中用插入顶点的方法依次
递推地构造出n个矩阵D(1), D(2), …, D(n), D(n)是 图的距离矩阵, 同时引入一个后继点矩阵记录两点 间的最短路径.
调用格式为 [min,path]=dijkstra(w,start,terminal), 其中输入变量w为所求图的带权邻接矩阵,start, terminal分别为路径的起点和终点的号码。返回start 到terminal的最短路径path及其长度min. 注意:顶点的编号从1开始连续编号。
9
最短路径算法

ins=0;
for j=1:length(s)
if i==s(j)
ins=1;
end, end
if ins==0
v=i;
if k>label(v)
k=label(v); v1=v;
end, end, end
s(length(s)+1)=v1;
u=v1;
end
最短路径算法
Dijkstra算法程序的使用说明:
廉价路线航费表。
0 50 40 25 10
50 0 15 20 25
15 0 10 20
40 20 10 0 10 25
25 20 10 0 55
10 25 25 55 0
4
最短路径问题
定义:设P(u,v)是加权图G中从u到v的路径,则该路
径上的边权之和称为该路径的权,记为w(P). 从u到v
2
8 177
8
8
33 54
5
6 1 12
9 62
5 10 11
9
3
9
7 2 10
2
3
引例2:最廉价航费表的制定
某公司在六个城市C1,C2,C3,C4,C5,C6都有分公司, 公司成员经常往来于它们之间,已知从Ci到Cj的直达航 班票价由下述矩阵的第i行,第j列元素给出(表示无
直达航班),该公司想算出一张任意两个城市之间的最
d(i,j)d(i,k)+d(k,j) , path(i,j)path(i,k) , k k+1 3)重复2)直到k=n+1
MATLAB程序(Floyd算法)
function [D,path,min1,path1]=floyd(a,start,terminal)
D=a;n=size(D,1);path=zeros(n,n);
输入加权图的带权邻接矩阵w=[w(vi,vj)]nxm. 1) 初始化 令l(v0)=0,S=; vv0 ,l(v)=; 2) 更新l(v), f(v)
寻找不在S中的顶点u,使l(u)为最小.把u加入到S中, 然后对所有不在S中的顶点v,如l(v)>l(u)+w(u,v),则 更新l(v),f(v), 即 l(v)l(u)+w(u,v),f(v)u; 3) 重复步骤2), 直到所有顶点都在S中为止.
Floyd算法——算法步骤
d(i,j) : i到j的距离; path(i,j): i到j的路径上i的后继点; 输入带权邻接矩阵a(i,j). 1)赋初值
对所有i,j, d(i,j)a(i,j) , path(i,j)j,k=l. 2)更新d(i,j) , path(i,j)
对所有i,j, 若d(i,k)+d(k,j)<d(i,j),则
相关文档
最新文档