基因组重测序技术及其应用

合集下载

基因测序技术的研究和应用

基因测序技术的研究和应用

基因测序技术的研究和应用随着生物科技的不断发展,基因测序技术已经成为了现代生物学的一个重要组成部分。

通过分析人类或者其他生命体的基因序列,科学家们能够更加深入地了解生命的本质和机理,同时也能够研发更加智能化和精细化的医疗和药物。

本文将从基因测序技术的原理、应用、前景等多个方面来进行论述。

一、基因测序技术的原理基因测序技术的基本原理是将生命体中的基因片段进行断裂、扩增、测序、片段拼接等一系列操作,最终得到生物的基因序列。

这项技术通常分为两类,一类是Sanger测序法,一类是新一代测序技术。

Sanger测序法是一种经典的DNA序列测定方法,它通过扩增DNA片段,使用DNA聚合酶和两种依赖于缺失核苷酸的dNTP取代物来产生DNA片段的长度变异。

然后,将新合成的DNA片段与DNA模板进行同步合成,最终在聚合酶作用下,产生具有不同长度的DNA片段序列。

新一代测序技术则是针对Sanger测序法存在的一些不足而开发的技术,主要是通过大规模并行测序来提高测序效率。

新一代测序技术主要有Illumina测序、Ion Torrent测序、PacBio测序等。

这些技术主要使用不同的方法来进行DNA扩增、序列检测等操作,其中有代表性的是Illumina测序技术。

Illumina测序技术主要使用胶体电泳法和碱基检测等技术来完成DNA测序,其测序质量高,精度高,而且可以同时处理多个样品,因此被广泛应用于基因测序领域。

二、基因测序技术的应用基因测序技术已经被广泛应用于不同领域,例如生物学、医学、农业等。

这里主要介绍一些新近的应用。

1.基因编辑技术基因编辑技术是通过CRISPR/Cas9等技术来实现的。

这种技术可以准确地对基因片段进行编辑,以实现操控基因的目的。

基因编辑技术可以用于基因治疗、农业生产等领域。

2.个性化医疗基因测序技术可以通过分析个体的基因信息,来进行个性化医疗,即根据个体的基因信息来制定更加合适的治疗方案。

例如,基因测序技术可以用于癌症治疗,以及成人疾病的预防等领域。

基因组测序技术的发展与应用

基因组测序技术的发展与应用

基因组测序技术的发展与应用基因组测序技术是生物学领域中一项至关重要的技术,它的发展和应用对于人类健康、医学研究、农业发展等领域有着深远的影响。

本文将介绍基因组测序技术的发展历程、主要技术原理以及在不同领域中的应用。

一、基因组测序技术的发展历程基因组测序技术的发展可以追溯至上世纪70年代,当时Sanger 等人提出了著名的Sanger测序方法,该方法被广泛运用于初步的基因组测序工作。

随着科学技术的不断进步,新一代测序技术逐渐涌现,如454测序、illumina测序、Ion Torrent测序等,大大提高了测序效率和准确性。

二、主要技术原理Sanger测序:Sanger测序方法是第一代测序技术,其原理是通过DNA聚合酶合成DNA链,同时使用二进制分子进行标记,最终通过凝胶电泳分析DNA的碱基序列。

454测序:454测序技术采用了微珠式扩增和荧光检测原理,通过热循环反应将DNA扩增成微珠固相PCR产物,并通过荧光信号检测其碱基序列。

illumina测序:illumina测序技术利用桥扩增原理,将DNA固定在流动单分子区域中,经过芯片表面单碱基扩增和荧光标记后进行高通量测序。

Ion Torrent测序:Ion Torrent测序技术利用电化学信号检测碱基添加过程,当有新核苷酸加入DNA链时会释放一定量的H+离子,通过检测这些离子来实现DNA碱基的识别。

三、基因组测序在医学研究中的应用疾病诊断:基因组测序可用于快速诊断遗传性疾病,帮助医生选择更合适的治疗方案。

药物研发:通过对个体基因组进行测序分析,可以实现个性化药物设计,提高药物疗效并降低不良反应。

肿瘤治疗:肿瘤细胞往往存在特定的突变,基因组测序可以帮助医生确定肿瘤类型及治疗方案,实现精准治疗。

四、基因组测序在农业领域中的应用优良品种选育:利用基因组测序可以快速筛选出拥有优良遗传特征的植物品种,加速新品种培育过程。

抗病虫害:通过分析农作物基因组信息,可以发现对特定病虫害具有抗性的关键基因,并利用这些信息培育抗病虫害品种。

基因组测序技术的原理和应用

基因组测序技术的原理和应用

基因组测序技术的原理和应用基因组测序是现代分子生物学的重要分支之一,它是指将生物体的基因组DNA序列按照一定的精度进行测序,并将测序结果与对应物种的基因组注释信息对比,发现和分析染色体结构、基因组结构、基因定位、功能区等信息。

现代基因组测序技术的发展为人们认识基因组起到了至关重要的作用。

本文将从原理和应用两个方面来介绍基因组测序技术。

一、基因组测序技术的原理基因组测序技术的原理是通过测定DNA序列来解析基因组信息。

在基因组测序开始之前需要进行DNA的提取、纯化、扩增和文库构建等前期处理。

而不同的基因组测序技术的原理又各有不同,这里主要介绍几种典型的测序技术:(一) Sanger测序技术Sanger测序技术是一种经典的测序技术。

基于DNA聚合酶的特点,Sanger技术通过脱氧酸核苷酸(ddNTP)的偶联生成方式,使DNA链突变从而实现DNA片段的测序。

最终通过将被编码的碱基读取出来,拼接出锁定DNA的序列。

Sanger技术在测序准确性和可靠度方面表现优异,得出的结果也较为清晰准确,被广泛应用于DNA测序的基础研究中。

只是,Sanger技术的测序时效相对较长,不太适合在大规模基因组测序中使用,而且成本昂贵。

(二) Illumina测序技术Illumina是现在最常用的基因组测序技术之一。

和Sanger技术不同的是,Illumina技术是基于测序-by-synthesis原理开发的,该方法使用小片DNA片段进行重复PCR扩增,依赖荧光信号检测碱基的合成,可以同时测序数百万甚至上亿个DNA片段,其高通量、高分辨率、高灵敏度的特点被广泛应用于基因组结构、基因定位、环境监测、肿瘤学研究等领域中。

然而,Illumina技术的缺点在于其难以处理具有高GC含量的基因组区域。

(三) PacBio测序技术PacBio测序技术是基于SMRT(single molecule real-time)测序过程开发的。

该方法使用非同向性库进行文库构建,随后使用Zero Mode Waveguides(ZMWs)进行光学捕获扫描,以在单一molecule水平上完成PCR扩增和测序过程。

基因组测序技术在生物学中的应用及其发展方向

基因组测序技术在生物学中的应用及其发展方向

基因组测序技术在生物学中的应用及其发展方向生物学是研究生命现象和生命体的科学,而基因组测序技术就是生物学中的重要的技术之一。

随着技术的不断发展,基因组测序技术在生物学中的应用越来越广泛,成为真正意义上的生物学革命。

本文将从基因组测序技术的应用、技术的发展方向以及其在未来的应用前景等方面进行探讨。

一、基因组测序技术的应用1.种系演化基因组测序技术可以帮助我们理解不同物种的演化过程。

通过比较多个物种的基因组序列,我们可以确定它们之间的相似性和差异性。

这有助于建立物种进化树,并且理解不同物种之间的共同点和差异点。

2.基因组学基因组测序技术可以帮助我们探索基因组的组成和结构,揭示基因组中的遗传信息。

我们可以通过基因组测序得到一个物种的完整基因组序列,从而确定该物种有哪些基因,这些基因所编码的蛋白质以及它们是如何相互作用的。

3.人类基因组计划人类基因组计划是历史上第一个成功将人类基因组测序的计划。

人类基因组计划的目的是理解人类基因组的组成和结构,揭示人类遗传信息。

这项计划于2003年完成,是基因组测序技术在生物学中的重要里程碑。

4.药物研发基因组测序技术可以帮助我们加快新药研发的过程。

通过测序病人基因组,我们可以了解病人是否存在某些特殊基因;通过比较病人基因组和正常基因组,我们可以找到与该疾病相关的基因。

这有助于研发更有效的针对该疾病的药物。

二、基因组测序技术的发展方向1.单细胞测序传统的基因组测序技术只能对大量细胞进行测序,而单细胞测序可以帮助我们分析单个细胞的基因组信息。

单细胞测序技术的发展可以解析个体细胞之间的异质性和功能多样性,揭示细胞的发育、分化和疾病等方面的机制。

2.新型测序技术目前已经有多种新型测序技术问世。

这些技术可以更快更准确地进行基因组测序,为精准医疗的实现提供了更好的技术支持。

例如,第三代测序技术和纳米孔测序技术都可以实现快速、准确的基因组测序,并且具有更高的检测灵敏度。

3.结构重建技术结构重建技术可以帮助我们还原基因组的三维结构。

全基因组重测序技术在疾病诊断中的应用

全基因组重测序技术在疾病诊断中的应用

全基因组重测序技术在疾病诊断中的应用引言:全基因组重测序(whole-genome sequencing,WGS)是一项先进的技术,可以对个体的整个基因组进行高通量、高分辨率的测序。

随着测序技术的不断发展和成本的降低,全基因组重测序已经成为许多疾病诊断和治疗中的重要工具。

本文将探讨全基因组重测序技术在疾病诊断中的应用。

一、儿童遗传性疾病的诊断儿童遗传性疾病是指由遗传突变引起的各种罕见疾病。

由于这些疾病表现复杂多样,单一基因突变引起不同临床表型,传统方法很难准确诊断。

而全基因组重测序技术可以快速而精确地鉴定突变位点,并了解患者携带的致病变异情况。

通过对家系及相关资料进行综合分析,可以更精准地判断是否为染色体异常或单基因突变所致,从而为儿童遗传性疾病的诊断提供更准确的依据。

二、肿瘤基因组学研究全基因组重测序技术在肿瘤基因组学研究中具有重要意义。

肿瘤是由一系列DNA 突变和表观遗传异常引起的复杂疾病,因此了解患者的个体基因组信息对精准治疗至关重要。

全基因组重测序可以检测出肿瘤样本中所有突变位点,包括常见和罕见变异,在进一步分析突变驱动机制、变异负荷以及预后评估方面有着不可替代的作用。

此外,全基因组重测序技术还可以帮助发现新型靶向治疗标志物,并指导个性化治疗方案的制定。

三、个体化药物治疗随着全基因组重测序技术的应用,越来越多的医生开始使用“个体化药物治疗”来提高治愈率和降低患者副作用。

通过对患者进行基因组测序并与已经积累的大量数据库进行比对,可以预测疾病和药物反应的关联。

在使用特定药物之前,医生可以预测药物是否有效、是否会引起不良反应,并据此制定个体化的治疗方案。

这种精确的用药策略可以提高治疗效果,减少药物副作用,使患者获得更好的治疗结果。

四、遗传性疾病筛查与婚姻匹配全基因组重测序技术还可以应用于遗传性疾病筛查和婚姻匹配中。

通过对患者进行基因组测序,可以及早发现致病基因突变,并向有关人士提供相关信息以指导受孕决策。

人类基因组测序技术的原理和应用

人类基因组测序技术的原理和应用

人类基因组测序技术的原理和应用随着科学技术的不断发展,人类基因组测序技术已经发生了巨大的变化。

这项技术可以帮助我们更好地了解人类的基因组,从而深入研究人类的生命机制和疾病的发病机制。

本文将介绍人类基因组测序技术的原理和应用。

一、基因组测序的原理基因组测序旨在确定一个生物体的DNA序列。

在当前技术下,人类基因组的测序可以分为三个阶段:1. 扩增分子生物学家使用多种方法来扩增基因组中的特定区域,包括PCR (聚合酶链式反应) 和选择性基因组扩增。

通过扩增,人们可以生成更多可测序的DNA,而且扩增后的片段大小会更小和更容易处理。

2. 序列化测序技术的发展使得研究人员现在可以对DNA序列进行测序,以了解其组成和用法。

目前,基因组测序至少包括两种不同的技术:短读测序和长读测序。

短读测序现在是技术上的主流。

这种技术在扩增特定基因组区域后,通过破碎这些区域使其不断重复,然后将其与注释基因组比对。

同时还会检测DNA序列某些区域是否存在DNA序列变异。

长读测序技术则是用来描绘非常长的单一DNA序列。

这种技术的应用非常广泛,包括了通量测序系统等工具。

3. 数据分析基因组测序得到的信息需要进一步分析,以找出与人类健康和疾病有关的基因。

在分析期间,与注释基因组比对后,可以确定某些基因的突变是什么导致的。

基因突变的类型可以是无交换或换位突变,单碱基替换和插入/删除。

二、基因组测序的应用人类基因组测序的应用非常广泛。

以下是一些有代表性的应用程序:1. 基因解析:人类基因组测序技术可以帮助科学家对人类基因组进行解析。

其测序结果可以帮助我们更好地了解人类的祖先和历史,从而进一步研究疾病的发病机制。

2. 健康保健:人类基因组测序技术可以帮助医生更好地了解患者的基因组。

通过研究患者的基因组,医生可以得到有关疾病的更多信息,便于在治疗选择时做出更好的决策。

3. 遗传学:人类基因组测序技术可以用于研究遗传疾病。

通过测定个人的遗传信息,科学家可以确定某些疾病在遗传上的本质,并在治疗上得到更好的应用。

微生物基因组测序技术及其应用

微生物基因组测序技术及其应用

微生物基因组测序技术及其应用随着科技进步,微生物基因组测序技术在医学、环境、农业等领域受到广泛关注和应用。

本文将简要介绍微生物基因组测序技术的基本原理和应用场景,以及未来的发展方向。

一、微生物基因组测序技术的基本原理微生物基因组测序技术是指将微生物DNA分子逐一排列,从而得到一条由ATCG四种碱基构成的“基因序列”。

这种技术的基本原理是将DNA从细胞中分离出来,通过PCR扩增等方法得到大量的DNA片段,然后用高通量测序仪对这些DNA片段进行测序,最后将这些片段拼接得到完整的基因组序列。

目前,微生物基因组测序技术主要分为三种方法:Sanger测序技术、454逆转录聚合酶链反应测序技术和Illumina测序技术。

其中,Illumina测序技术是目前最常用的基因组测序方法之一。

二、微生物基因组测序技术的应用场景1.医学应用微生物基因组测序技术被广泛应用于临床诊断中。

如何对感染病原体进行准确快速的鉴定,是临床医生面临的一项困难。

传统的菌落培养法不仅时间长,而且不能鉴定细菌的种系,因此不能满足对临床诊断的要求。

微生物基因组测序技术可以直接从感染部位分离出细菌DNA,进行基因组测序后,通过对基因组序列的比对,快速高效地鉴定病原菌种类以及其耐药性。

同时,该技术还被应用于研究小肠细菌群的变化,对于小肠细菌感染和肠道菌群失调的诱因和机制的研究有着重要的作用。

而在抗生素的研究和开发中,微生物基因组测序技术也发挥着越来越重要的作用。

2.环境应用微生物基因组测序技术的应用不仅局限于医疗领域,也被广泛应用于环境监测领域。

通过微生物基因组测序技术,可以对环境中微生物丰度、多样性和功能进行高通量测定,揭示微生物群落结构和功能特征。

例如,饮用水中的微生物群落结构和数量分布对水质安全和人体健康有着至关重要的作用。

通过微生物基因组测序技术,可以对水中的细菌、病毒和病原真菌等微生物进行定量和定性分析,为水质监测提供有效的手段。

3.农业应用微生物基因组测序技术在农业领域的应用也越来越广泛。

基因组重测序技术及其应用

基因组重测序技术及其应用

基因组重测序技术及其应用随着科技的快速发展,基因组重测序技术逐渐走进我们的生活,这项技术可以通过高通量方法获取DNA序列信息,对于基因组学研究、医学诊断和疾病防治等领域都具有重要价值。

本文将从技术原理、数据分析和应用领域等方面介绍基因组重测序技术及其应用。

一、基因组重测序技术的原理基因组重测序技术是一种将目标DNA样本分解为小片段、进行高通量测序的技术。

传统测序方法需要使用琼脂糖凝胶或者聚丙烯酰胺凝胶等凝胶材料对DNA进行分离和分析,而基因组重测序技术则可以同时处理数百万个小DNA片段。

该技术主要分为两种:全基因组重测序,即对整个基因组进行测序;和外显子组重测序,即只对外显子区域进行测序。

其中,外显子组重测序通常用于检测某些突变位点和基因变异,具有高度的实用性。

二、数据分析基因组重测序技术会产生大量的数据,其中包含了数百万条片段的序列信息。

因此,在进行数据分析时需要进行预处理、比对、拼接和注释等多个步骤。

在预处理中,需要去除低质量序列、提取有用的信息等。

比对步骤则是将测序数据与参考基因组相对比,找到测序数据中的对应片段。

拼接步骤就是将这些对应片段拼接成完整的DNA序列,并对其进行修复。

最后,注释工作则是将数据翻译成具有生物学意义的信息,如基因结构、编码和非编码序列等。

三、基因组重测序技术的应用领域基因组重测序技术可以广泛应用于医学研究、育种、环境污染监测等多个领域。

其中,在医学领域中,该技术通常用于寻找患病基因和识别病原微生物。

在育种领域,基因组重测序技术可以用于鉴定优良品种、筛选育种材料,以及深入分析某些种类的基因组结构和功能。

在环境污染监测方面,该技术则可以帮助研究人员监测水体、土壤、大气等环境中的污染物,对于环境保护和生态平衡的维护具有重要意义。

四、未来展望基因组重测序技术的发展趋势将从单样本到多样本,从低深度到高深度,从全基因组到全转录组、全基因组外显子和全基因组甲基化等多个方面不断拓展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样品类型:DNA样品,无降解 或轻微降解,无污染; 样品需求量(单次):≥ 1 μ g(单次),如果需要多次 制备样品,则需要样品总量= 制备样品次数×1 μ g; 样品浓度:≥ 25 ng/μ L;
测序方法
生信分析流程和内容
第一部分 NGS数据质控
原始数据
质控数据、过滤
比对(有参考基因组 )
第二部分 变异检测
HiSeq X Ten
10台仪器同时运行时,每周至少可完成320个人类基 因组测序(以30×覆盖度计算),每年完成的数量可 超过18000个。
个人基因组产品
个人基因组的解读-----健康风险
老年痴呆症 银屑病 结肠直肠癌
个人基因组产品
个人基因组的解读-----药物反应
质子泵抑制剂代谢
阿巴卡韦过敏
外显子重测序产品
分析内容
测序数据统计及质量评估 SNP检测及在基因组中的分布 InDel检测及在基因组的分布 孟德尔遗传疾病高级信息分析 癌症的高级信息分析 复杂疾病的高级信息分析
外显子重测序产品
在孟德尔遗传疾病研究应用
第5指综合征(Coffin-Siris syndrome,简称CSS)是一种罕见的先 天性疾病,由于患者父母多为健康个体 ,CSS通常被认为是一种隐性遗传病。 CSS遗传机制的阐明有待于对其致病基 因及突变的鉴定。本研究使用外显子组 测序方法成功的找到了CSS致病基因。
全基因组重测序产品
全基因组重测序是对已知基因组序列的物种进行不同个 体的基因组测序,并在此基础上对个体或群体进行差异 性分析。全基因组重测序的个体,通过序列比对,可以 找到大量的单核苷酸多态性位点(SNP),插入缺失位 点(InDel,Insertion/Deletion)、结构变异位点(SV ,Structure Variation)位点。
SNP检测:
RAD tags基本统计 Tags个体聚类后按照测序深度排序 Tags群体聚类、碱基纠错和过滤 杂合位点检测 SNP注释、统计
第三部分 个性化分析
群体进化研究:
• • • • 群体遗传结构分析 系统发育树构建 PCA分析 连锁不平衡分析
遗传图谱构建:
• • • • 基因分型 遗传图谱构建 QTL定位 遗传连锁图谱整合
外显子重测序产品
外显子重测序
孟德尔 遗传 疾病
癌症
基因诊断
复杂 疾病
外显子重测序产品
一、样本要求
样品类型:DNA 样品; 样品需求量:≥ 30μg(人样品) 样品浓度:≥ 100 ng/μL 样品纯度:OD260/280 =1.8~2.0 二、捕获芯片 Agilent SureSelect V3、V4、 V4+UTR、V5、V5+UTR 三、测序要求 覆盖深度:建议覆盖度在50X以上
研究目的:对NCPC10086进行de novo测序,然后与Wisconsin54-1255进行比
较基因组分析 ,来揭示青霉菌高产机制
我们的案例
杭州市疾病预防控制中心
Clostridium difficile (艰难梭菌)基因组完成图
三代测序仪PacBio RS II
个人基因组产品
背景
2007年,DNA(脱氧核糖核酸)双螺旋结构发现者之一的詹姆斯· 沃森成为世界上拥 有个人基因组图谱的第一人,“破译”组用了2个月时间,耗资100万美元
参考基因组
Ensembl数据库收录的已经测序的动植物
参考基因组 /info/about/species.html
全基因组重测序产品
基因组重测序
群体遗传进 杂交群体基 结构变异相 疾病相关研 化研究 因分型 关研究 究
全基因组重测序产品
一、样本要求
样品类型:DNA 样品; 样品需求量(单次)≥ 30μg 样品浓度:≥ 100 ng/μL 样品纯度:OD260/280 =1.8~2.0
绘制基因组序列 图谱
研究物种起源进化
研究特定环境适应机 制
研究重要功能基因
基因组从头测序产品分析内容
案例 比较基因组分析揭示青霉菌高产机制
研究背景:目前只有低产菌株Wisconsin54-1255被测序和注释。通过经典诱 变Wisconsin54-125产生的菌株,青霉素的产量已经极大的增加。但是关于这 些菌株的基因组变异结构了解仍然很少。 研究对象: 工业高产青霉菌株NCPC10086 低产菌株Wisconsin54-1255 (基因组已经被测序和注释)
个人基因组产品
个人基因组的解读-----遗传特性
遗传性痉挛性共济失调
胼胝体发育不全症
α1-抗胰蛋白酶缺乏症
个人基因组产品
个人基因组的解读-----个性特性
酒精反应 苦味感觉
耳垢类型 眼睛颜色
头发卷曲
DNA测序产品和个人基因组产品
报告人:朱淼
背景
DNA重测序产品应用对象
人类基因组
植物/ 动物基因组
医学 / 疾病研究 农业 / 分子育种 基因组学 / 比较基因组学 遗传学/ 群体遗传学
DNA 测序产品
全基因组重测序产品
外显子测序产品 简化基因组产品(RAD-seq) 基因组从头测序产品
RAD-seq构建黑麦草遗传连锁图谱并对抗秆锈病进QTL定位
研究者使用RAD-seq 对黑麦草的F1群体进 行测序,开发SNP标 记,高效的构建出的 高密度的遗传图谱, 定位获得三个抗杆锈 病QTL:qLpPg1 在 LG7上,8cM 范围内 ,解释的表型变异3038%; qLpPg2 在LG1 上,qLpPg3 在LG6 上 ,分别解释的表型变 异10%。
产品特点
高密度、高覆盖度
获得贯穿整个基因组的高密度分 子标记
性价比高
基于酶切简化的基因组DNA,数据 量低,特别适合大样本量研究
快速高效
只需3-4个月即可完成大样本的图 谱构建或群体进化研究
RAD-seq应用范围
简化基因组测序
遗传连锁图谱购建
群体遗传分析
基因型分型
QTL定位
RAD-seq
一、样本要求
二、测序要求
覆盖深度:建议覆盖度在20X以上
全基因组重测序产品
分析内容
测序数据统计及质量评估 SNP检测及在基因组中的分布 InDel检测及在基因组的分布 S分布 移码突变的分布 DNA水平差异基因分析 遗传进化分析(多样本) 单体型预测(多样本) 全基因组关联分析(多样本)
外显子重测序产品
在前列腺癌研究上的应用
在多个基因上鉴定出与肿瘤发生相关的高频 突变,包括 SPOP,FOXA1 和 MED12
简化基因组产品(RAD-seq)
RAD-seq技术简介: 基于限制位点相关 DNA (Restriction-site Associated DNA,RAD) 的测序技术,即RAD-seq ,是一种对酶切产生的基 因组标签序列(Tags)进 行高通量测序的新技术, 该技术能够大幅降低基因 组的复杂度,可快速在全 基因组范围内鉴定出高密 度的SNP位点。
基因组从头测序产品
从头测序即de novo 测序,不需要任何参考序列资料即 可对某个物种进行测序,用生物信息学分析方法进行拼 接、组装,从而获得该物种的基因组序列图谱。利用全 基因组从头测序技术,可以获得动物、植物、细菌、真 菌的全基因组序列,从而推进该物种的研究。
基因组从头测序产品应用范围
从头测序
全基因组重测序产品
Non-breed horses 特 有变异主要富集在 主要代谢过程、解剖 学的构造 、形态发生 和细胞成分 Breed horse特有变异 主要富集在细胞通讯 、脂质代谢过程、神 经系统进程、肌肉收 缩、离子传输、神经 系统的发育过程和外 细胞层
外显子测序产品
产品特点
性价比高: 相对于全基因组重测序可经济高 效的获得基因组信息,对外显子 区的测序深度更深,结果更准确 。检测准确度高: 可在全基因组范围内鉴定单个碱 基的变异。 适用大样本分析: 外显子测序具有经济高效性,更 适用于大样本量疾病及癌症样本 分析
相关文档
最新文档