第七章 弯曲变形分析
合集下载
第七章 平板弯曲问题的有限元分析

w 的值在单元交界线之间是连续的,而对 s
w 却不连续;s表示交界线切线方向而n表示交界线法线方向。因此我们 n
现在所讨论的单元是非协调元,或称为不完全协调单元。
以 1 的ij边界为例说明
s i
n1
w c c1 c2 c3 2 c4 3
n2 j s
24
该边界上两端点i , j共有4个已知条件:
(7-14)
0 和0 分别是 0 其中记号
i , 0 i。
22
由(7-12)式可以看到,整个薄板的位移完全由平面在z方向的挠度 w所决定,而在中面各点不产生x和y方向位移。因此薄板所可能产生的刚 性位移就只有沿z方向的平动以及绕x和y轴的转动,而对于z轴方向的旋 转是没有的。位移模式(7-10)式中是前三项反映了薄板单元的这三个刚 体位移。再由(7-3)式看到,板内各点的应变完全由挠度w的三个二阶导 数所决定。如果这三个二阶导数不随坐标而变化,则描述平板单元的一个 常应变状态,(7-10)式中的第四、五、六三个二次项反映了这个常应变 状态(或称常曲率状态)。因此,我们总是能够保证存在一组结点位移, 可以反映单元的刚体位移和常应变状态,因此,这个矩形单元是完备的。
式中f 1
( x, y) 和 f 2 ( x , y ) 是x,y的任意函数。
11
根据假设中面部产生应变的假定),可得
u z 0 0 , v z 0 0
(7-1)
w w u z , v z x y
而
w=w(x,y)
(7-2)
式中u,v和w是板内某点对于坐标轴方向的位移分量。从上面二式可以
w
( N w
i i 1
4
i
N xi xi N yi yi )
w 却不连续;s表示交界线切线方向而n表示交界线法线方向。因此我们 n
现在所讨论的单元是非协调元,或称为不完全协调单元。
以 1 的ij边界为例说明
s i
n1
w c c1 c2 c3 2 c4 3
n2 j s
24
该边界上两端点i , j共有4个已知条件:
(7-14)
0 和0 分别是 0 其中记号
i , 0 i。
22
由(7-12)式可以看到,整个薄板的位移完全由平面在z方向的挠度 w所决定,而在中面各点不产生x和y方向位移。因此薄板所可能产生的刚 性位移就只有沿z方向的平动以及绕x和y轴的转动,而对于z轴方向的旋 转是没有的。位移模式(7-10)式中是前三项反映了薄板单元的这三个刚 体位移。再由(7-3)式看到,板内各点的应变完全由挠度w的三个二阶导 数所决定。如果这三个二阶导数不随坐标而变化,则描述平板单元的一个 常应变状态,(7-10)式中的第四、五、六三个二次项反映了这个常应变 状态(或称常曲率状态)。因此,我们总是能够保证存在一组结点位移, 可以反映单元的刚体位移和常应变状态,因此,这个矩形单元是完备的。
式中f 1
( x, y) 和 f 2 ( x , y ) 是x,y的任意函数。
11
根据假设中面部产生应变的假定),可得
u z 0 0 , v z 0 0
(7-1)
w w u z , v z x y
而
w=w(x,y)
(7-2)
式中u,v和w是板内某点对于坐标轴方向的位移分量。从上面二式可以
w
( N w
i i 1
4
i
N xi xi N yi yi )
材料力学第七章课后题答案 弯曲变形

3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC
材力第7章 弯曲变形分析

AC段:
1(x)
1 EI
M1(x)dx
C1
1 EI
1 16
qlx2
C1
v1(x)
1 EI
1(x)dx
D1
1 EI
1 48
qlx3
C1x
D1
CB段:
2 (x)
1 EI
M 2 (x)dx
C2
1 EI
[1 16
qlx2
1 6
q(x
l 2
)3
]
C2
v2 (x)
1 EI
2 (x)dx
D2
1 EI
[1 48
7
【例7-1】 【解】
1)先求弯矩方程
AC段 CB段
b M 1 (x) l Px, (0 x a)
M
2
(x)
b l
Px
P(xC段
1 ( x)
1 EI
M1 ( x)dx
C1
Pbx2 2EIl
C1
v1(x)
1 ( x)dx
D1
1 EI
Pb 6l
x3
C1x
D1
CB段
2 ( x)
1 EI
M 2 (x)dx
C2
P EI
[b 2l
x2
1 2
(x
a)2 ]
C2
v2 (x)
2 (x)dx
D2
P EI
[b 6l
x3
1 6
(x
a)3] C2x
D2
2020年10月17日星期六
北京邮电大学自动化学院
8
【例7-1】 【解】
3)用边界条件和连续条件确定四
个积分常数C1、D1、C2、D2 。
材料力学:第七章 弯曲变形

刚度设计依据
(1) 挠度w大小取决于M, E, I三个参数 应该取较小的M, 较大的E, I
(2) 弯矩M大小取决于载荷\约束分布及梁跨度大小
(3) 截面惯性矩I 大小和截面形状有关,
弹性模量E大小和材料有关
Iz =
y2dA,
A
当A大小一定时, y越大, I 越大
梁的合理刚度设计
选择I 较大的薄壁横截面形状
1 度静不定 选 FBy 为多余力, 去约 束, 写出位移边界条件
-变形协调条件 -物理方程
利用边界条件 解出未知力
列平衡方程,求其他约束力:
-补充方程
分析方法与步骤:
判断梁的静不定度
用多余力代替多余约
束的作用,得相当系统
相当系统
相当系统有多种选择:
计算相当系统在多余约
束处的位移,并根据变形 协调条件建立补充方程。
例题
解:
()
()
例题
例题
解:
()
()
()
例题
图示组合梁,EI=常数,求 wB 与qA
例题
解:
P378, 情况8
()
P377, 情况1,2
()
例题
图示刚架,求截面 C 的铅垂位移
例题
解:
位移w1包括AB弯曲 和AB扭转两部分
例题
矩形截面梁, 自由端承受集中载荷F作用, 该载荷与对 称轴y的夹角为θ, 用叠加法计算自由端求自由端截面形心C
的位移d
解:
例题
一般情况下
挠曲轴与外力作用面一般不重合
§6 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法
静不定度与多余约束
静不定度 4-3= 1
(1) 挠度w大小取决于M, E, I三个参数 应该取较小的M, 较大的E, I
(2) 弯矩M大小取决于载荷\约束分布及梁跨度大小
(3) 截面惯性矩I 大小和截面形状有关,
弹性模量E大小和材料有关
Iz =
y2dA,
A
当A大小一定时, y越大, I 越大
梁的合理刚度设计
选择I 较大的薄壁横截面形状
1 度静不定 选 FBy 为多余力, 去约 束, 写出位移边界条件
-变形协调条件 -物理方程
利用边界条件 解出未知力
列平衡方程,求其他约束力:
-补充方程
分析方法与步骤:
判断梁的静不定度
用多余力代替多余约
束的作用,得相当系统
相当系统
相当系统有多种选择:
计算相当系统在多余约
束处的位移,并根据变形 协调条件建立补充方程。
例题
解:
()
()
例题
例题
解:
()
()
()
例题
图示组合梁,EI=常数,求 wB 与qA
例题
解:
P378, 情况8
()
P377, 情况1,2
()
例题
图示刚架,求截面 C 的铅垂位移
例题
解:
位移w1包括AB弯曲 和AB扭转两部分
例题
矩形截面梁, 自由端承受集中载荷F作用, 该载荷与对 称轴y的夹角为θ, 用叠加法计算自由端求自由端截面形心C
的位移d
解:
例题
一般情况下
挠曲轴与外力作用面一般不重合
§6 简单静不定梁
静不定度与多余约束 简单静不定梁分析方法
静不定度与多余约束
静不定度 4-3= 1
材料力学 第7章 弯曲变形

M
Fx 挠曲轴近似微分方程: w ' ' EI 3 2 Fx Fx w Cx D w' ( x) C 6 EI 2EI
梁的弯矩方程: M ( x ) Fx
2、确定积分常数
FAy
A x
F L
B
X=0, w=0 X=L, w=0
M
Me L C=- ,D=0 6 EI
3、挠度方程、转角方程及B截面的转角
FAy
x
F L
B
M
3、挠度方程、转角方程及B截面的转角
Fx w' (x) 2EI 3 Fx w 6 EI
2
将 x=L 代入转角方程:
FL2 B 2 EI
例2:简支梁AB,弯曲刚 度 EI为常数,受力偶 M=FL作用,求w(x),
FAy
A x
F L
B
θ(x);
解:1、 建立挠曲轴微分方程并积分 A端约束反力 FAy=F
FA A a l
x
F D b
FB
B x
Fb 解:坐标系如图,求出反力。 FA l 分AD、DB两段分析:
y
Fa FB l
b AD段: 0 x a M x F x l b M x F x 则: EIw1 l
积分可得:
b M x F x EIw1 l
= 0
自由端:无位移边界条件。 位移连续与光滑条件 挠曲轴在B点连续且光滑 连续:wB左= wB右 光滑:左 = 右
F A B D
写出梁的挠曲轴方程的边界条件和连续条件。 例:
F A B C E D
思考: 1、 该梁可分几段积分? 2、 各边界和内部分界点有多少位移边界与连续条件? 分4段。 位移边界条件:A端:2个; C端:1个;D端:无。 位移连续条件:E:2个;B:1个;C:2个
材料力学-第7章 弯曲变形

引言
梁弯曲问题的近似和简化
q( x)
M0
ML
Q0
QL
弯曲问题中,不考虑轴向拉伸。因此,梁内力只有弯矩和剪力 下面,我们分别考虑弯矩和剪力引起的弯曲变形效果
材料力学-第7章 弯曲变形
挠度曲线 垂直于轴线的横截面弯曲后仍为平面,仍 垂直于轴线,只是相互间转动一个角度
M
弯矩引起的弯曲变形
M
剪力引起的弯曲变形
例题
2
已知:简支梁受力如 图所示。FP、EI、l均为已 知。 求:加力点B的挠度和 支承A、C处的转角。
材料力学-第7章 弯曲变形
§7- 3 计算梁位移的积分法
解:1. 确定梁约束力 首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。 解:2. 分段建立梁的弯矩方程 因为B处作用有集中力FP,所以需要分为AB和BC两段 建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的 弯矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~ l范围内各截面上的弯矩,则需要考虑左端A处的约束力 3FP/4和荷载FP。
Q
垂直于轴线的横截面弯曲后不垂直于轴线
Q
材料力学中一般考虑细长梁,顾而可以忽略剪力引起的变形,只 考虑弯矩引起的变形。因为所有横截面始终与轴线垂直,所以,梁的 弯曲变形可以仅用轴线来表征。空间的梁简化成一轴线。
材料力学-第7章 弯曲变形
挠度曲线
问题1: 如何表征梁的弯曲变形
-用什么物理量来描述梁的变形
( x)
w
x
x
( x)
w( x)
材料力学-第7章 弯曲变形
挠度曲线
* 弯曲变形的表征
梁在弯曲变形后,横截面的位置将发生改变,这种位置 的改变称为位移 (displacement) 。梁的位移包括三部分:
梁弯曲问题的近似和简化
q( x)
M0
ML
Q0
QL
弯曲问题中,不考虑轴向拉伸。因此,梁内力只有弯矩和剪力 下面,我们分别考虑弯矩和剪力引起的弯曲变形效果
材料力学-第7章 弯曲变形
挠度曲线 垂直于轴线的横截面弯曲后仍为平面,仍 垂直于轴线,只是相互间转动一个角度
M
弯矩引起的弯曲变形
M
剪力引起的弯曲变形
例题
2
已知:简支梁受力如 图所示。FP、EI、l均为已 知。 求:加力点B的挠度和 支承A、C处的转角。
材料力学-第7章 弯曲变形
§7- 3 计算梁位移的积分法
解:1. 确定梁约束力 首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。 解:2. 分段建立梁的弯矩方程 因为B处作用有集中力FP,所以需要分为AB和BC两段 建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的 弯矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~ l范围内各截面上的弯矩,则需要考虑左端A处的约束力 3FP/4和荷载FP。
Q
垂直于轴线的横截面弯曲后不垂直于轴线
Q
材料力学中一般考虑细长梁,顾而可以忽略剪力引起的变形,只 考虑弯矩引起的变形。因为所有横截面始终与轴线垂直,所以,梁的 弯曲变形可以仅用轴线来表征。空间的梁简化成一轴线。
材料力学-第7章 弯曲变形
挠度曲线
问题1: 如何表征梁的弯曲变形
-用什么物理量来描述梁的变形
( x)
w
x
x
( x)
w( x)
材料力学-第7章 弯曲变形
挠度曲线
* 弯曲变形的表征
梁在弯曲变形后,横截面的位置将发生改变,这种位置 的改变称为位移 (displacement) 。梁的位移包括三部分:
七弯曲变形ppt课件

x
挠曲线方程: w f (x)
转角方程: tan f ( x) d w
dx
四、画绕曲线近似外形的方法 1、思索支座的约束特点
固定端:w = 0,θ = 0
铰支座:w A= 0,wB = 0
2、思索弯矩的变化
弯矩为正,下凸
A
弯矩为负,上凸
弯矩为O的线段,直线 M 弯矩为O的点,拐点
P
P
B
x
例:
q P
A a Ba
•边境条件 x 1 0 ,w A 0 ;x 2 a ,w B 0 ;
•延续条件 x 1 x 2 a ,w 1 w 2 w B , 1 2 B ;
C
P
a
a
•边境条件 x 1 0 ,w A 0 , A 0 ;
•延续条件 x 1 x 2 a ,w 1 w 2 w C , 1 2 C ;
平面曲线(挠曲线) w f (x)
上恣意点的曲率公式。
对于小挠度情形有
dw
2
d x
1
d2w M (x)
dx2
EI
d2w dx2
M (x) EI
d 2w 0 dx 2
d2w M (x) dx2 EI ——挠曲线的近似微分方程
d 2w dx 2 0
d2w dx2
M (x) EI
d2w dx2
w ma xw 1xx0
Pb(l2b2)3 93EzlI
讨论:
〔1〕
AC段:
EEIww I11E PlbIx11Pl bx212C1
EI1wPl bx613C1x1D1
CB段: Ew I2 Pl b x2P(x2a)
Ew 2 IE2IP l x 2 b 2 2P(x2 2a)2C 2
工程力学弯曲变形(H)详解

第七章 弯曲变形
二、弯曲变形的基本概念
(x)
A x l F
x
l
v( x)
B
描述截面上任一点的位移: 1、形心轴的线位移 —— 挠度 v 2、截面绕形心轴的角位移 ——转角
第七章 弯曲变形
二、弯曲变形的基本概念
(x)
A x l
x
l
v( x)
B
F
F 变弯的形心轴 —— 挠曲线 F 挠度随坐标变化的方程 —— 挠曲线方程
正负号确定——确定坐标系:
v
x
x
M 0, v 0
第七章 弯曲变形
M 0, v 0
§7-3
用积分法求弯曲变形
EIv M ( x )
EIv M ( x) dx C
EIv M ( x)dxdx Cx D
F C、D为积分常数,它由位移边界与连续条件确定。
弯曲变形
解:
ql q 2 M ( x) x x 2 2 ql q 2 EIv x x 2 2
y
q
B
x l x
A ql 2 q 3 EIv x x C 4 6 ql 3 q 4 EIv x x Cx D 12 24
由边界条件:
x 0时,v 0 x l 时,v 0
第七章 弯曲变形
ql 3 B 24 EI
5ql 4 384 EI
x
l 2
例3:已知梁的抗弯刚度为EI。试求图示悬臂梁在集中力 P 作用下的转角方程、挠曲线方程,并确定max 和 vmax。 解: M ( x) P(l x)
y
A
P
x
B
EIv P(l x)
二、弯曲变形的基本概念
(x)
A x l F
x
l
v( x)
B
描述截面上任一点的位移: 1、形心轴的线位移 —— 挠度 v 2、截面绕形心轴的角位移 ——转角
第七章 弯曲变形
二、弯曲变形的基本概念
(x)
A x l
x
l
v( x)
B
F
F 变弯的形心轴 —— 挠曲线 F 挠度随坐标变化的方程 —— 挠曲线方程
正负号确定——确定坐标系:
v
x
x
M 0, v 0
第七章 弯曲变形
M 0, v 0
§7-3
用积分法求弯曲变形
EIv M ( x )
EIv M ( x) dx C
EIv M ( x)dxdx Cx D
F C、D为积分常数,它由位移边界与连续条件确定。
弯曲变形
解:
ql q 2 M ( x) x x 2 2 ql q 2 EIv x x 2 2
y
q
B
x l x
A ql 2 q 3 EIv x x C 4 6 ql 3 q 4 EIv x x Cx D 12 24
由边界条件:
x 0时,v 0 x l 时,v 0
第七章 弯曲变形
ql 3 B 24 EI
5ql 4 384 EI
x
l 2
例3:已知梁的抗弯刚度为EI。试求图示悬臂梁在集中力 P 作用下的转角方程、挠曲线方程,并确定max 和 vmax。 解: M ( x) P(l x)
y
A
P
x
B
EIv P(l x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v 光滑连续条件:
c
vc
P
c
c
C
例:已知梁的抗弯刚度为EI。试求图示简 支梁在均布载荷q作用下的转角方程、挠曲线 方程,并确定θmax和vmax。
y
q
x
l
解:M(x) ql x q x2
y
22
q
EIv ql x q x2 22
A
B
x
EIv ql x2 q x3 C
x
l
46
梁的转角方程和挠曲线方程分别为:
1
qa 6EI
(11a 2
3x12 )
2
q 6EI
[ 3ax2 2
(x2
a)3
11a 3
v1
qa 6EI
(11a 2 x1
x13 )
v2
q 24 EI
[ 4ax2 3
(x2
a)4
44a 3x2 ]
最大转角和最大挠度分别为:
max
A
1
x1 0
11qa 3 6EI
EIv ql x3 q x4 Cx D 12 24
由边界条件: x 0时,v 0
x l时,v 0
得: C ql 3 , D 0
24
梁的转角方程和挠曲线方程分别为:
y
q (6lx2 4x3 l 3 )
q
24EI
v
qx
A (2lx2 x3 l 3 )
x θA
θB
B
x
24EI
(x2
a)2
EIv1 qax1
(0 x1 a) (a x2 2a)
q EIv2
y
qax2
q 2 (x2
a)2
A
C
D
E
B
x
qa x1
qa
x2
a
a
a
a
EIv1
qa 2
x12
C1
EIv1
qa 6
x13
C1 x1
D1
EIv1 qax1
EIv2
qax2
q 2
( x2
a)2
EIv2
qa 2
曲线 y f (x)的曲率为
y K
(1 y 2 ) 3/2
1 M 梁纯弯曲时中性层的曲率:
EI z
1
v (1 v 2 ) 3/2
v
M v 或 EIv M EI z
y M0
M v 0 M
y M0
M v 0 M
x
x
EIv M
梁的挠曲线近似微分方程:
EIv M (x) 或:
l
最大转角和最大挠度分别为:
max
A
B
ql 3 24 EI
v max
v
x l 2
5ql 4 384 EI
例:已知梁的抗弯刚度为EI。试求图示悬 臂梁在集中力P作用下的转角方程、挠曲线方 程,并确定θmax和vmax。
y
P
A l
Bx
解:M(x) P(l x) y
EIv P x P l
第七章 弯曲变形 静不定梁
§7-1 概 述 一、工程实践中的弯曲变形问题
在工程实践中,对某些受弯构件,除要求 具有足够的强度外,还要求变形不能过大, 即要求构件有足够的刚度,以保证结构或机 器正常工作。
摇臂钻床的摇臂或车床的主轴变形过大, 就会影响零件的加工精度,甚至会出现废品。
桥式起重机的横梁变形过大,则会使小车行 走困难,出现爬坡现象。
x22
q 6
(
x2
a)3
C2
EIv2
qa 6
x23
q 24 (x2
a)4
C2 x2
D2
由连续条件:x1 x2 a时, v1 v2 , v1 v2 得C1 C2
D1 D2
由边界条件:x1 0时, v1 0 得 D1 0
由对称条件:x2 2a时, v2 0
得
C2
11 qa 3 6
A
EIv P x2 Pl x C 2
x
l
EIv P x3 Pl x2 Cx D
6
2
由边界条件:x 0时,v 0, v 0
得: C D 0
P
Bx
梁的转角方程和挠曲线方程分别为:
Px (x 2l)
y
2 EI
A
Px2 v (x 3l)
6EI
x
l
最大转角和最大挠度分别为:
2
12
P
C l 2
B
x
由边界条件: x 0时,v 0 由对称条件: x l 时,v 0
2
得: D 0 得:C Pl 2
16
AC段梁的转角方程和挠曲线方程分别为:
y
P (4x2 l2 )
16EI
A
v Px (4x2 3l2 ) 48EI
x l
2
最大转角和最大挠度分别为:
P
C l 2
max
B
Pl 2 2 EI
v max
vB
Pl 3 3EI
P
θBB x
例:已知梁的抗弯刚度为EI。试求图示简 支梁在集中力P作用下的转角方程、挠曲线方 程,并确定θmax和 vmax。
y
P
A
B
C
x
l
l
2
2
解:AC段:M(x) P x
2
EIv P x
y
2
A
EIv P x2 C
x
4
l
EIv P x3 Cx D
19qa 4 vmax v2 x2 2a 8EI
0 x1 a a x2 2a 0 x1 a a x2 2a
§7-3 用叠加法计算梁的变形 梁的刚度计算
一、用叠加法计算梁的变形
在材料服从胡克定律、且变形很小的前提下, 载荷与它所引起的变形成线性关系。
当梁上同时作用几个载荷时,各个载荷所引 起的变形是各自独立的,互不影响。若计算几个 载荷共同作用下在某截面上引起的变形,则可分 别计算各个载荷单独作用下的变形,然后叠加。
挠曲线
2.挠度和转角
y
挠度v:横截面形心处的铅垂位移。
转角θ:横截面绕中性轴转过的角度。
规定:向上的挠度为正,(Y轴正向) 逆时针的转角为正,(逆时针) 与坐标系相关。
v
x
x
挠曲线方程: v f (x)
df
转角方程: tan f (x) dx
§7-2 梁的挠曲线近似微分方程及其积分
一、梁的挠曲线近似微分方程式
d2v EI M (x)
dx 2
二、用积分法求梁的变形
EIv M(x)
EIv M(x) dx C
EIv M(x) dx dx Cx D
式中积分常数C、D由边界条件和连续条件确定
约束对位移的影响 没有约束无法确定位移
约束对位移的影响 连续光滑曲线;铰支座对位移的限制
约束对位移的影响 连续光滑曲线;固定端对位移的限制
但在另外一些情况下,有时却要求构件具 有较大的弹性变形,以满足特定的工作需要。
例如,车辆上的板弹簧,要求有足够大的
变形,以缓解车辆受到的冲击和振动作用。
P
P
2
2
P
二、弯曲变形的基本概念
1.挠曲线:梁在弯曲变形后的曲线。
在平面弯曲中,梁的轴线将变成XY平面内的一条 曲线,如图所示。在平面假设条件下,挠曲线一 条光滑连续的弹性曲线。
B
x
max
A
B
Pl 2 16EI
v max
v
x l 2
Pl 3 48EI
讨论:
c 0
例:已知梁的抗弯刚度为EI。试求图示简支 梁的转角方程、挠曲线方程,并确定θmax和vmax。
y
q
A
C
D
E
B
x
a
aaΒιβλιοθήκη a解:由对称性,只考虑半跨梁ACD
M1(x1) qax1
M2 (x2
)
qax2
q 2