中考数学总复习 第三章 函数 第13课时 反比例函数

合集下载

中考数学备考专题复习 反比例函数(含解析)(2021年整理)

中考数学备考专题复习 反比例函数(含解析)(2021年整理)

2017年中考数学备考专题复习反比例函数(含解析)2017年中考数学备考专题复习反比例函数(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学备考专题复习反比例函数(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学备考专题复习反比例函数(含解析)的全部内容。

1反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是( )A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3,y3)是反比例函数y= 上的三点,若x1<x2<x3 , y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2—OB2=( )A、—2B、2C 、—D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k2的值为()A 、—B 、—C、—3D、—67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m>0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O13与此图象交于点P,则点P的纵坐标是( )A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB 在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为( )A 、B 、C 、D 、412、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2 , y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________。

2023年中考数学第一轮复习之模块三 函数—专题3 反比例函数(含解析)

2023年中考数学第一轮复习之模块三 函数—专题3 反比例函数(含解析)

2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________.3(2022·黑龙江哈尔滨)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1y B .2yC .3yD .4y3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .102.(2022·黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.1-D.2-3.(2022·四川内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数8yx=和kyx=的图象交于P、Q两点.若S∥POQ=15,则k的值为()A.38B.22C.﹣7D.﹣224.(2022·广西桂林)如图,点A在反比例函数y=kx的图像上,且点A的横坐标为a(a<0),AB∥y轴于点B,若AOB的面积是3,则k的值是_____.5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.6.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.8.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+ B .50y x =C .50y x=D .50=x y2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)当3m 10V =时,求该气体的密度ρ.题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .93.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.4.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.6.(2022·四川宜宾)如图,∥OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM分别交于点A 、B (点B 不与点M 重合).若AB ∥OM 于点B ,则k 的值为______.题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)ky x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫⎪⎝⎭两点,且与反比例函数22ky x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式; (2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.4.(2022·湖南岳阳)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集.5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积.6.(2022·湖北恩施)如图,在平面直角坐标系中,O 为坐标原点,已知∥ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.7.(2022·山东青岛)如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.8.(2022·辽宁营口)如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0ky x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标; (2)求OAC 的周长.9.(2022·内蒙古呼和浩特)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B 作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE上一点,且AC =.(1)求一次函数与反比例函数的解析式; (2)根据图象,请直接写出不等式0mkx b x+-<的解集.10.(2022·四川达州)如图,一次函数1y x=+与反比例函数kyx=的图象相交于(,2)A m,B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1) 【答案】C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断. 【详解】解:∥反比例函数(0)ky k x=≠的图象经过点(2,3)-,∥k =2×(﹣3)=﹣6,∥(﹣2)×(﹣3)=6≠﹣6, (﹣3)×(﹣2)=6≠﹣6, 1×(﹣6)=﹣6, ,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________. 【答案】6【分析】将点()3,A n ,代入1y x =-,求得n ,进而即可求解. 【详解】解:将点()3,A n ,代入1y x =-, 即312n =-=, ()3,2A ∴,326k ∴=⨯=, 故答案为:6.【点睛】本题考查了一次函数与反比例函数综合,求得点A 的坐标是解题的关键.3(2022·黑龙江哈尔滨)已知反比例函数6y x =-的图象经过点()4,a ,则a 的值为___________.【答案】32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可. 【详解】解:把点()4,a 代入6y x =-得:6342a =-=-. 故答案为:32-.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【答案】>【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可. 【详解】解:∥k >0,∥在每个象限内,y 随x 的增大而减小, 25<, ∥1y >2y . 故答案为:>.2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1yB .2yC .3yD .4y【答案】D【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>,∥在每个象限内,y 随x 的增大而减小,∥点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上, ∥1234y y y y >>>,故选D .3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .【答案】A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内,即可求解. 【详解】解:根据题意得:0,0k b >>, ∥0k -<,∥一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内.故选:A 4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .【答案】D【分析】分0k >或0k <,根据一次函数与反比例函数的性质即可得出答案. 【详解】解:当0k >时,一次函数1y kx =+经过第一、二、三象限,反比例函数ky x=位于第一、三象限;当0k <时,一次函数1y kx =+经过第一、二、四象限,反比例函数ky x=位于第二、四象限; 故选:D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .10【答案】B【分析】作AD ∥x 轴,BC ∥x 轴,由1122OBE OCBE AOE ADOE S S S S ∆∆==,即可求解; 【详解】解:如图,作AD ∥x 轴,BC ∥x 轴,∥8OCBE S BC BE =⋅=,2ADOE S AD AE =⋅=∥10OCBE ADOE S S += ∥1122OBE OCBE AOE ADOE S S S S ∆∆==,∥()152AOB OBE AOE OCBE ADOE S S S S S ∆∆∆=+=+=故选:B . 2.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D【分析】连接OA ,设AB 交y 轴于点C ,根据平行四边形的性质可得1522AOBOBADS S ==,AB ∥OD ,再根据反比例函数比例系数的几何意义,即可求解.【详解】解:如图,连接OA ,设AB 交y 轴于点C ,∥四边形OBAD 是平行四边形,平行四边形OBAD 的面积是5, ∥1522AOBOBADSS ==,AB ∥OD ,∥AB ∥y 轴, ∥点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上, ∥3,22COBCOAkSS ==-,∥35222AOBCOBCOAk SSS=+=-=,解得:2k =-.故选:D .3.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S ∥POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【答案】D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =kb a -,再根据ab =8,S △POQ =15,列出式子求解即可.【详解】解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =ka-,∥PQ =PM +MQ =kb a-. ∥点P 在反比例函数y =8x的图象上,∥ab =8.∥S △POQ =15,∥12PQ •OM =15,∥12a (b ﹣k a)=15.∥ab ﹣k =30. ∥8﹣k =30, 解得:k =﹣22. 故选:D .4.(2022·广西桂林)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ∥y 轴于点B ,若AOB 的面积是3,则k 的值是 _____.【答案】﹣6【分析】根据题意和反比例函数的性质,可以得到k 的值. 【详解】解:设点A 的坐标为(a ,ka),由图可知点A 在第二象限,∥a <0,0ka>, ∥k <0,∥∥AOB 的面积是3, ∥32k a a⋅=,解得k =-6, 故答案为:-6. 5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.【答案】2【分析】作A 过x 轴的垂线与x 轴交于C ,证明∥ADC ∥∥BDO ,推出S ∥OAC = S ∥OAB =1,由此即可求得答案.【详解】解:设A (a ,b ) ,如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∥∥ACD =∥BOD =90°,∥ADC =∥BDO ,∥∥ADC ∥∥BDO ,∥S ∥ADC =S ∥BDO ,∥S ∥OAC =S ∥AOD + S ∥ADC =S ∥AOD + S ∥BDO = S ∥OAB =1, ∥12×OC ×AC =12ab =1, ∥ab =2,∥A (a ,b ) 在y =k x上, ∥k =ab =2 .故答案为:2 .6.(2022·山东烟台)如图,A ,B 是双曲线y =k x(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.【答案】6【分析】应用k 的几何意义及中线的性质求解. 【详解】解:D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)k y x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.【答案】4- 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值. 【详解】解:设点,k A a a ⎛⎫ ⎪⎝⎭, ∥点D 为线段AB 的中点.AB ∥y 轴∥22AB AD a ==-,又∥()1242=⨯-⨯=ABC k S a a△, ∥4k =-.故答案为:4-8.(2022·贵州铜仁)如图,点A 、B 在反比例函数k y x =的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.【答案】3 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,可得AD a =,k OD a =,从而得到CD =3a ,再由BC AC ⊥.可得点B 3,3⎛⎫ ⎪⎝⎭k a a ,从而得到23k BC a=,然后根据AOD AOBC OBCD S S S =+四边形梯形,即可求解. 【详解】解∥设点,k A a a ⎛⎫ ⎪⎝⎭, ∥AC y ⊥轴,∥AD a =,k OD a=,∥12AD AC =, ∥AC 2a =,∥CD =3a ,∥BC AC ⊥.AC y ⊥轴,∥BC ∥y 轴,∥点B 3,3⎛⎫ ⎪⎝⎭k a a , ∥233k k k BC a a a=-=, ∥AOD AOBC OBCD S S S =+四边形梯形,四边形AOBC 间面积为6, ∥12136232k k a k a a ⎛⎫+⨯=+ ⎪⎝⎭, 解得:3k =.故答案为:3.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >【答案】D 【分析】根据图象进行分析即可得结果;【详解】解:∥22x x >∥12y y >由图象可知,函数12y x =和22y x=分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-,, 由图象可以看出当10x -<<或1x >时,函数12y x =在22y x =上方,即12y y >,故选:D .2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)k y k x=>的图象上,若120y y <<,则a 的取值范围是______.【答案】1a > 【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于120y y <<,得到021a a <-<,从而得到a 的取值范围.【详解】解:∥在反比例函数y =k x中,k >0, ∥在同一象限内y 随x 的增大而减小,∥120y y <<,∥这两个点在同一象限,∥021a a <<-,解得:1a >,故答案为:1a >.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2m y x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.【答案】-2<x <0或x >4【分析】先求出n 的值,再观察图象,写出一次函数的图象在反比例函数的图象下方时对应的自变量的取值范围即可.【详解】解:∥反比例函数2m y x=的图象经过A (-2,2), ∥m =-2×2=-4, ∥4y x=-, 又反比例函数4y x=-的图象经过B (n ,-1), ∥n =4,∥B (4,-1), 观察图象可知:当12y y <时,图中一次函数的函数值小于反比例函数的函数值,则x 的取值范围为:-2<x <0或x >4.故答案为:-2<x <0或x >4.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .50y x =+B .50y x =C .50y x =D .50=x y 【答案】C【分析】根据:平均每人拥有绿地y =总面积总人数,列式求解. 【详解】解:依题意,得:平均每人拥有绿地50y x=. 故选:C2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态【答案】C【分析】根据函数图象分析即可判断A ,B ,根据图3公式计算即可判定C ,D .【详解】解:根据函数图象可得,A.R 随K 的增大而减小,则呼气酒精浓度K 越大,1R 的阻值越小,故正确,不符合题意;B. 当K =0时,1R 的阻值为100,故正确,不符合题意;C. 当K =10时,则332200102200101022mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为酒驾状态,故该选项不正确,符合题意;D. 当120=R 时,40K =,则332200102200401088mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为醉驾状态,故该选项正确,不符合题意;故选:C.3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .【答案】400【分析】先根据待定系数法求出反比例函数解析式,再把S =0.25代入,问题得解. 【详解】解:设反比例函数的解析式为()0k p k S=≠, 由图象得反比例函数经过点(0.1,1000),∥0.11000100k =⨯=,∥反比例函数的解析式为100p S =, 当S =0.25时,1004000.25p ==.故答案为:400 4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式;(2)当3m 10V =时,求该气体的密度ρ.【答案】(1)()100V Vρ=> (2)13kg/m【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.(1)设密度ρ关于体积V 的函数解析式为()0,0k V k V ρ=>≠, 把点A 的坐标代入上式中得:2.54k =, 解得:k =10, ∥()100V V ρ=>. (2)当3m 10V =时,10110ρ==(3kg/m ). 即此时该气体的密度为13kg/m .题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0k y x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-【答案】C【分析】过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,可证明∥COE ∥∥ABE (AAS ),则OE =BD由S ∥BDC =12•BD •CF CF =9,由∥BDC =120°,可知∥CDF =60°,所以DF D 的纵坐标为C (m ,D (m +9,,则k m +9),求出m 的值即可求出k 的值.【详解】解:过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,∥四边形OABC 为平行四边形,∥AB ∥OC ,AB =OC ,∥∥COE =∥ABD ,∥BD ∥y 轴,∥∥ADB =90°,∥∥COE ∥∥ABD (AAS ),∥OE =BD∥S ∥BDC =12•BD •CF ∥CF =9,∥∥BDC =120°,∥∥CDF =60°,∥DF∥点D 的纵坐标为设C (m,D (m +9,,∥反比例函数y =k x(x <0)的图像经过C 、D 两点, ∥km +9),∥m =-12,∥k =-故选:C .2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B 【分析】设P A =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k +t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k ),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论.【详解】解:连接AC ,与BD 相交于点P ,设P A =PB =PC =PD =t (t ≠0).∥点D 的坐标为(3,23k ), ∥点C 的坐标为(3-t ,23k +t ). ∥点C 在反比例函数y =2k x 的图象上, ∥(3-t )(23k +t )=k2,化简得:t =3-23k , ∥点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k , ∥点B 的坐标为(3,6-23k ),∥3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B .3.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)k y x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.【答案】4【分析】作CF 垂直y 轴, 设点B 的坐标为(0,a ),可证明AOB BFC ≌(AAS ),得到CF =OB =a ,BF =AO =3,可得C 点坐标,因为E 为正方形对称线交点,所以E 为AC 中点,可得E 点坐标,将点C 、E 的坐标代入反比例函数解析式中,即可求出k 的值.【详解】作CF 垂直y 轴于点F ,如图,设点B 的坐标为(0,a ),∥四边形ABCD 是正方形,∥AB =BC ,∥ABC =90°,∥∥OBA +∥OAB =∥OBA +∥FBC =90°∥∥OAB =∥FBC在∥BFC 和∥AOB 中90OAB FBC AOB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∥AOB BFC ≌∥BF =AO =3,CF =OB =a∥OF =OB +BF =3+a∥点C 的坐标为(a ,3+a )∥点E 是正方形对角线交点,∥点E 是AC 中点,∥点E 的坐标为33,22+a +a ⎛⎫ ⎪⎝⎭∥反比例函数(0,0)k y x k x=>>的图象经过点C ,E ∥()()133/223k a a k a a⎧==+⎪+⎪⎨⎪=+⎪⎩ 解得:k =4故答案为:44.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0k y k x=≠经过AC 边的中点D,若BC =k =______. 【答案】32- 【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB是等腰直角三角形,再根据BC = A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k△【详解】∥ABC 是等腰直角三角形,BC x ⊥轴.∥90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB ==. ∥AOB 是等腰直角三角形.∥BO AO ===故:A,(C .(D . 将D 点坐标代入反比例函数解析式.32D D k x y =⋅==-. 故答案为:32-. 5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.【答案】24【分析】过点C作CE∥y轴,由正方形的性质得出∥CBA=90°,AB=BC,再利用各角之间的关系得出∥CBE=∥BAO,根据全等三角形的判定和性质得出OA=BE=2,OB=CE=4,确定点C的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C作CE∥y轴,∥点B(0,4),A(2,0),∥OB=4,OA=2,∥四边形ABCD为正方形,∥∥CBA=90°,AB=BC,∥∥CBE+∥ABO=90°,∥∥BAO+∥ABO=90°,∥∥CBE=∥BAO,∥∥CEB=∥BOA=90°,∥ABO BCE,∥OA=BE=2,OB=CE=4,∥OE=OB+BE=6,∥C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.6.(2022·四川宜宾)如图,∥OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB∥OM于点B,则k的值为______.【答案】【分析】过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,-,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,如图:∥∥OMN 是边长为10的等边三角形,∥OM =MN =ON =10,∥MON =∥MNO =∥M =60°,∥∥OBC =∥MAB =∥NAD =30°,设OC =x ,则OB =2x ,BC ,MB =10-2x ,MA =2MB =20-4x ,∥NA =10-MA =4x -10,DN =12NA =2x -5,AD x -- ∥OD =ON -DN =15-2x ,∥点B (x ),点A (15-2x ,-,∥反比例函数y =k x(x >0)的图象与边MN 、OM 分别交于点A 、B ,∥x =(15-2x -,解得x =5(舍去)或x =3,∥点B (3,,∥k题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0k y k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1)8k ,12p = (2)点C 的坐标为(4,2)【分析】(1)先求出点B 的坐标,得到3OB =,结合点A 的横坐标为2,求出AOB 的面积,再利用:3:4AOB COD S S =△△求出4COD S =,设,k C m m ⎛⎫ ⎪⎝⎭,代入面积中求出k ,得到反比例函数解析式,再将点A 横坐标代入出点A 纵坐标,最后将点A 坐标代入直线()30y px p =+≠即可求解;(2)根据(1)中点C 的坐标得到点E 的坐标,结合OE 将四边形BOCE 分成两个面积相等的三角形,列出关于m 的方程,解方程即可求解.(1)解:∥直线3y px =+与y 轴交点为B ,∥()0,3B ,即3OB =.∥点A 的横坐标为2, ∥13232AOB S =⨯⨯=. ∥:3:4AOB COD S S =△△,∥4COD S =, 设,k C m m ⎛⎫ ⎪⎝⎭,∥142k m m⋅=, 解得8k .∥点()2,A q 在双曲线8y x=上, ∥4q =, 把点()2,4A 代入3y px =+,得12p =, ∥8k ,12p =; (2)解:由(1)得,k C m m ⎛⎫ ⎪⎝⎭, ∥1,32E m m ⎛⎫+ ⎪⎝⎭. ∥OE 将四边形BOCE 分成两个面积相等的三角形,∥BOE COE S S =△△, ∥32BOE S π=△,13422COE m S m ⎛⎫=+- ⎪⎝⎭△, ∥3134222m m π⎛⎫=+- ⎪⎝⎭, 解得4m =或4m =-(不符合题意,舍去),∥点C 的坐标为(4,2).2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.【答案】(1)3y x=(2)【分析】(1)用待定系数法求出函数解析式;(2)作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,进行计算即可;(1) 解:把(3,)(31,)3k a b a b ++,代入1y x =-,得 313113b a k b a =-⎧⎪⎨+=+-⎪⎩, 解得,3k =, 所以反比例函数解析式是3y x=;(2)存在点P 使∥ABP 周长最小,理由: 解133y x y x ⎧=⎪⎪⎨⎪=⎪⎩和33y x y x =⎧⎪⎨=⎪⎩得, 31x y =±⎧⎨=±⎩和13x y =±⎧⎨=±⎩, 0x ,∴31x y =⎧⎨=⎩和13x y , ∴()()3,1,1,3A B ,作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,当点A 、P 、'B 在一条直线上时,线段'AB 的长度最短,所以存在点P 使∥ABP 周长最小,∥ABP 的周长=AB BP AP ++'AP AB B A =++'AB B A =+ ,===3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.【答案】(1)115,22y x =-+22.y x= (2)01x <<或4x >, (3)65【分析】(1)先运用待定系数法求出直线解析式,再根据OAP △的面积为54和直线解析式求出点P 坐标,从而可求出反比例函数解析式;(2)联立方程组并求解可得点K 的坐标,结合函数图象可得出x 的取值范围;(3)作点K 关于x 轴的对称点K ',连接KK ',PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,求出点C 的坐标,再根据PKC AKM KMC PAC S S S S ∆∆∆∆=--求解即可.(1)解:∥一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点, ∥把()5,0A ,50,2B ⎛⎫ ⎪⎝⎭代入11y k x b =+得, 1505,2k b b +=⎧⎪⎨=⎪⎩,解得,11252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∥一次函数解析式为115,22y x =-+ 过点P 作PH x ⊥轴于点H ,∥(5,0),A∥5,OA 又5,4PAO S ∆= ∥15524PH ⨯⨯= ∥1,2PH = ∥151222x -+=, ∥4,x = ∥1(4,)2P ∥1(4,)2P 在双曲线上, ∥2142,2k =⨯= ∥22.y x= (2) 解:联立方程组得,15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得,1112x y =⎧⎨=⎩ ,22412x y =⎧⎪⎨=⎪⎩∥(1,2),k根据函数图象可得,反比例函数图象在直线上方时,有01x <<或4x >, ∥当21y y >时,求x 的取值范围为01x <<或4x >,(3)解:作点K 关于x 轴的对称点K ',连接KK '交x 轴于点M ,则K '(1,-2),OM =1,连接PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小, 设直线PK '的解析式为,y mx n =+ 把1(4,),(1,2)2P K '-代入得,2142m n m n +=-⎧⎪⎨+=⎪⎩解得,56176m n ⎧=⎪⎪⎨⎪=-⎪⎩∥直线PK '的解析式为517,66y x =- 当0y =时,106657x -=,解得,751x =, ∥17(,0)5C ∥175OC = ∥17121,55MC OC OM =-=-= 178555AC OA OC =-=-= 514AM OA OM =-=-=,∥PKC AKM KMC PAC S S S S ∆∆∆∆=--1112181422225252=⨯⨯-⨯⨯-⨯⨯ 122455=-- 65= 4.(2022·湖南岳阳)如图,反比例函数()0k y k x =≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积;(3)请结合函数图象,直接写出不等式k mx x<的解集. 【答案】(1)2y x =- (2)4(3)1x <-或01x <<【分析】(1)把点()1,2A -代入()0k y k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式k mx x <的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∥2k =-, ∥反比例函数的解析式为2y x=-; (2)∥反比例函数()0k y k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∥()1,2B -,∥点C 是点A 关于y 轴的对称点, ∥()1,2C ,∥2CD =, ∥()122242ABC S =⨯⨯+=△. (3) 根据图象得:不等式k mx x<的解集为1x <-或01x <<. 5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x =>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.。

2014年中考数学专题(考点知识梳理+典例精析+巩固训练+考点训练)复习:第13讲 反比例函数

2014年中考数学专题(考点知识梳理+典例精析+巩固训练+考点训练)复习:第13讲 反比例函数
点对称的中心对称图象,故其交点也关于原点中心对称,所
以点 B 的坐标为(2,-1).
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
例 2 (2012·河南)如图,点 A,B 在反
比例函数 y=kx(k>0,x>0)的图象上,过点 A,B 作 x 轴的垂线,垂足分别为 M,N, 延长线段 AB 交 x 轴于点 C,若 OM=MN =NC,△AOC 的面积为 6,则 k 的值为 ____________.
第13讲 反比例函数
首页 上一页 下一页
zxxkw
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
考点一反比例函数的定义
一般地,函数 y=
k x
(或写成 y=kx-1)(k 是常数,k≠0)
叫做反比例函数.
反比例函数解析式可以写成 xy=k(k≠0),它表明在反 比例函数中自变量 x 与其对应函数值 y 之积,总等于已知常
【点拨】本题考查确定反比例函数的系数 k.
【解答】因为 OM=MN=NC,所以 OM=13OC.因为 △AOC 的面积为 6,所以△AOM 的面积为 2,根据反比例函 数中系数 k 的几何意义可知 k=2S△AOM=4.
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
例 3 (2012·天津)已知反比例函数 y=k-x 1(k 为常数, k≠1).
首页 上一页 下一页
【解答】(1)C 由近视眼镜的度数 y(度)与镜片焦距 x(m) 成反比例,可设近视眼镜的度数 y(度)与镜片焦距 x(m)之间 的函数关系式为 y=kx(k≠0),把(0.25,400)代入 y=kx即可求得 k=0.25×400=100,所以 y 与 x 的函数关系式为 y=10x0, 故选 C.

第十三讲反比例函数详解

第十三讲反比例函数详解

第十三讲 反比例函数第一部分 知识梳理一、反比例函数的解析式1.反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

2.反比例函数解析式的确定 由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

二、反比例函数的图像及性质1.反比例函数的图象反比例函数的图象是双曲线,有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的性质3.反比例函数中反比例系数的几何意义(如图)面积为k 。

连接该点和原点,所得三三角形(如图)的面积m 的值D .21-〖选题意图〗对于反比例函数)0(≠=k xky 。

由于11-=x x ,所以反比例函数也可以写成1-=x y (k 是常数,k ≠0)的形式,有时也以xy=k (k 是常数,k ≠0)的形式出现。

(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.本题需要理解好反比例函数定义中的系数和指数,同时需要掌握反比例函数的性质,这样才能防止漏解或多解。

〖解题思路〗根据反比例函数的定义m 2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.〖参考答案〗解:∵函数()521-+=m xm y 是反比例函数,且图象在第二、四象限内,∴⎩⎨⎧+-=-01152<m m ,解得m =±2且m <﹣1,∴m =﹣2.故选B .【课堂训练题】1.已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x =1时,y =﹣1;当x=3时,y=5.求y 与x 的函数关系式. 〖难度分级〗A 类〖参考答案〗解:设y 1=k 1x (k 1≠0),y 2=错误!未找到引用源。

中考数学考点专题复习课件反比例函数的图象和性质

中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.

中考数学一轮复习:第13课时反比例函数的综合应用课件

中考数学一轮复习:第13课时反比例函数的综合应用课件

2. (202X莆田5月质检10题4分)如图,点A,B分别在反比例函数y=1 (x>0),y

a x
(x<0)的图象上,若OA⊥OB,OOBA
=2,则a的值为(
A)
x
A. -4
B. 4
C. -2
D. 2
第2题图
3. (202X福建16题4分)已知矩形ABCD的四个顶点均在反比例函数y= 1 的图象
15
12
.
x
设OC=a,点B在直线y=x上,∴点B(a,a).
又∵BC⊥x轴,∴△BOC为等腰直角三角形.
返回目录
No
第13课时 反比例函数的综合应用
∵AB⊥l,AD⊥BC,
∴△ABD为等腰直角三角形.
设BD=b,则AD=b,
∴点A(a+b,a-b).
将点A(a+b,a-b)代入y=12,得 x
a-b=a1+2b,
x
(1)如图①,过点A分别作x轴,y轴的垂线,垂足分别为B,C.若四边形OBAC的
面积为2,则k的值为___2_____;
例题图①
No
第13课时 反比例函数的综合应用
(2)过点A作x轴的垂线,垂足为B. ①如图②,点C是y轴上任意一点.若S△ABC=1,则k的值为__2______; ②点A与点C关于原点对称. (i)如图③,若S△ABC=2,则k的值为___2_____;
第13课时 反比例函数的综合应用
返回目录
第13课时 反比例函数的综合应用
No
思维导图
返回目录
利用k的几何意义 确定反比例函数
的解析式
反比例函数 的综合应用
反比例函数 系数k的几何意义
k的几何意义
计算与双曲线 y

【大师特稿】中考数学一轮复习第13讲:反比例函数教案

【大师特稿】中考数学一轮复习第13讲:反比例函数教案

第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。

中考数学专题复习 反比例函数及其应用

中考数学专题复习 反比例函数及其应用
上一页 返回导航 下一页
(教材母题链接:北师九上 P162T11)
上一页 返回导航 下一页
反比例函数与几何图形的综合 9.(2020 滨州)如图,点 A 在双曲线 y=4x上,点 B 在双曲线 y=1x2上, 且 AB∥x 轴,点 C,D 在 x 轴上,若四边形 ABCD 为矩形,则它的面积为 (C )
(C ) A.k=2 B.函数图象分布在第一、三象限
C.当 x>0 时,y 随 x 的增大而增大
D.当 x>0 时,y 随 x 的增大而减小
上一页 返回导航 下一页
2.(2020 河南)若点 A(-1,y1),B(2,y2),C(3,y3)在反比例函数 y= -6x的图象上,则 y1,y2,y3 的大小关系是( C )
上一页 返回导航 下一页
2.关于反比例函数 y=-3x,下列说法不正确的是( D ) A.图象经过点(1,-3) B.图象位于第二、四象限 C.图象关于直线 y=x 对称 D.y 随 x 的增大而增大
上一页 返回导航 下一页
三、反比例函数解析式的确定 待定系数法: (1)设所求的反比例函数的解析式为 y=kx(k≠0); (2)将图象上的一点坐标代入 y=kx中,求出 k; (3)把 k 代入解析式 y=kx中,写出解析式.
第一部分 夯实基础
第三章 函 数
第3节 反比例函数及其应用
上一页 返回导航 下一页
课标导航 ·结合具体情境体会反比例函数的意义,能根据已知条件确定反比例 函数的表达式. ·能画出反比例函数的图象,根据图象和表达式 y=kx(k≠0).探索并理 解 k>0 和 k<0 时,图象的变化情况. ·能用反比例函数解决简单实际问题.
上一页 返回导航 下一页
(2)若一次函数图象与 y 轴交于点 C,点 D 为点 C 关于原点 O 的对称点, 求△ACD 的面积.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档