新人教版八年级下册数学复习提纲
人教版 八年级下册数学 同步复习 第14讲 一次函数与方程(组)、不等式 讲义

课程标准1. 能用函数观点看一次方程(组),能用辨证的观点认识一次函数与一次方程的区别与联系.2.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想. 3.能运用一次函数的性质解决简单的不等式问题及实际问题.知识点01 一次函数与一元一次方程的关系一次函数y kx b =+(k ≠0,b 为常数),当函数y =0时,就得到了一元一次方程0kx b +=,此时自变量x 的值就是方程kx b +=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y kx b =+(k ≠0,b 为常数),确定它与x 轴交点的横坐标的值. 注意:(1)求一次函数与x 轴的交点,令y=0,解出x 即为与x 轴交点的横坐标;(2)一次函数y kx b =+(k ≠0,b 为常数)是一个关于x 和y 的二元一次方程,这个方程有无数组解,但若已知x 的值(或y 的值),即可求出y 的值(或x 的值);(3)若一次函数y kx b =+,满足等式mk b n += 或0mk b n +-=,则函数必过点(m,n );同理,若一次函数图像上有个点(m ,n ),则二元一次方程有一组解为x my n =⎧⎨=⎩;知识点02 一次函数与二元一次方程组每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 注意:(1)两个一次函数图象的交点与二元一次方程组的解的联系是:在同一直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点一定是相应的两个一次函数的图象的交点.如一次函数学生/课程 年级 8年级 学科 数学 授课教师日期时段核心内容一次函数与方程(组)、不等式 (第14讲)24y x =-+与31322y x =-图象的交点为(3,-2),则32x y =⎧⎨=-⎩就是二元一次方程组2431322y x y x =-+⎧⎪⎨=-⎪⎩的解.(2)当二元一次方程组无解时,相应的两个一次函数在直角坐标系中的直线就没有交点,则两个一次函数的直线就平行.反过来,当两个一次函数直线平行时,相应的二元一次方程组就无解.如二元一次方程组3531x y x y -=⎧⎨-=-⎩无解,则一次函数35y x =-与31y x =+的图象就平行,反之也成立.(3)当二元一次方程组有无数组解时,则相应的两个一次函数在直角坐标系中的直线重合,反之也成立.知识点03 方程组解的几何意义1.方程组的解的几何意义:方程组的解对应两个函数的图象的交点坐标.2.根据坐标系中两个函数图象的位置关系,可以看出对应的方程组的解情况: 根据交点的个数,看出方程组的解的个数;根据交点的坐标,求出(或近似估计出)方程组的解.3.对于一个复杂方程组,特别是变化不定的方程组,用图象法可以很容易观察出它的解的个数.知识点04 一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围. 注意:(1)求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0.从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围. (2)常见的解集:0(0)y kx b >+>或0(0)y kx b ≥+≥或0(0)y kx b <+<或0(0)y kx b ≤+≤或x m >x m ≥x m <x m ≤2x >2x ≥ 2x < 2x ≤2x <-2x ≤- 2x >- 2x ≥-4x <4x ≤ 4x > 4x ≥无论求0(0)y kx b >+>或还是0(0)y kx b <+<或,都应首先求出一次函数与x 轴交点的横坐标(即令y=0),再根据题目要求,确定x 的取值范围: ①y >0时,取x 轴上方图像自变量的范围; ②y <0时,取x 轴下方图像自变量的范围;知识点05 一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解. 注意:(1)不等式的解集中,端点无论取到取不到,该值都是对应方程的解;例如:一次函数y kx b =+,若0y >时,x 的取值范围是2x >,则方程0kx b +=的解为2x =,且一次函数y kx b =+过点(2,0);(2)一次函数y kx b =+,若当a x m << 时,y 的取值范围是b y n <<,则可得出一次函数过点(,),(,)(,),(,)a b m n a n m b 或;知识点06 如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.两个一次函数比较大小,求自变量x 的取值范围,首先要求出两一次函数的交点横坐标(列二元一次方程组),再根据图像判断。
新人教版八年级下册数学复习提纲

八年级数学下册知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=(a ≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式1 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围=-a (a >0)a -(a <0)0 (a =0);(1)x x --+315; (2)22)-(x例3、 在根式,最简二次根式是( ) A.1) 2) B .3) 4) C.1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中,.例5、如图,实数a 、b 在数轴上的位置,化简4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >>a b << 例1、比较与的大小。
八年级数学下册第二十章数据的分析知识点归纳新版新人教版

第二十章数据的分析知识点,数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个根本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考杏的对象是解决有关总体、个体、样木、样本容堂问题的关键。
2. 平均数a上下波动时,一般选用简化平均数公式[=;+々,其中a是取接近于这组数据平均数中比拟'整”的数:当所给一组数据中有成夏屡次出现的数据,常选用加权平均数公式。
3. 众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的堂。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动.当一组数据中有个数据太高或太低. 用平均数来描述整体趋势那么不适宜,用中位数或众数那么较适宜•中位数与数据排列有关,个别数据的波动对中位数没影响:当一组数据中不少数据屡次垂复出现时,可用众数来描述。
4 .极差用一•组数据中的最大值;成去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值一最小值。
5. 方差与标准差用“光平均.再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是1s s=n [(xi-x)2+(X2-x)>...t(Xn-x)2].方差是反映一组数据的波动大小的一个拉・其值越大,波动越大,也越不稳定或不整齐。
一、选择题1. 一组数据3, 5. 7, m, n的平均数是6,那么m, n的平均数是()A.6B.7C. 7.5D. 152. 小华的数学平时成绩为92分,期中成绩为90分,期末成绒为96分,假设按3: 3: 4的比例计算总评成绩,那么小华的数学总评成绩应为()A. 92B. 93C. 963. 关于•组数据的平均数、中位数、众数.以下说法中正确的选项是()A.平均数,定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4. 某小组在一次测试中的成绩为x 86, 92, 84, 92, 85, 85, 86, 94, 92, 83,那么这个小组本次测试成绩的中位数是()A. 85B. 86C. 925. 某人上山的平均速度为35,沿原路下山的平均速度为5km/h,上山用lh,那么此人上下山的平均速度为(〉A. 4 km/hB. 3. 75 km/hC. 3.5 km/hD. 4.5 km/h6. 在校冬季运动会上,有15名选手参加了200成绩各不相同,某选手要想知道自己是否进入决界,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题,(每题6分,共42分〉7. 将9个数据从小到大排列后,第 __________ 个数是这组数据的中位数8. 如果一组数据4. 6, x. 7的平均数是5.那么x = _________________ ・9. 己知一组数据:5, 3. 6. 5, 8. 6, 4, lh那么它的众数是__________________ .中位数是________ .10. 一组数据12, 16, 11, 17. 13, x的中位数是14,那么、= _______________________ .H.那么这组数据的平均数是________ ,中位数是 _________ ,众数是 _________ ・12. 某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,那么这个小组的本次测试的平均成绩为_____________________ .13. 为了了解某立交桥段在四月份过往车辆承载情况,连续id录了6天的车流量(单位:千WH): 3. 2, 3.4, 3, 2. 8. 3.4, 7,那么这个月该桥过往车辆的总数大约为_____________________辆.第二十章数据的分析知识点*选用恰当的数据分析数据知识点详解,-:5个根本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。
最新八年级数学下册复习提纲

八年级数学下册复习提纲【篇一】八年级数学下册复习提纲变量与函数一、变量与常量1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。
常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。
2、注意事项:(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。
如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。
二、函数概念1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有的值与其对应,那么,我们就说y 是x的函数,其中x叫做自变量,y叫做因变量。
2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。
三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。
四、求函数自变量的取值范围1.实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。
2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)解析式为整式的,x取全体实数;(2)解析式为分式的,分母必须不等于0式子才有意义;(3)解析式的是二次根式的被开方数必须是非负数式子才有意义;(4)解析式是三次方根的,自变量的取值范围是全体实数。
3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。
函数的图象一、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。
在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。
新人教版八年级下册数学复习提纲

新人教版八年级下册数学复习提纲湖北罗田平湖中学 高第十六章二次根式1.二次根式的概念一般地,形如____(a ≥0)的式子叫做二次根式。
(1)对于二次根式的理解:①带有根号,②被开方数是非负数 (2)a 是非负数,即a ≥0易错点:(1)二次根式中,被开方数一定是非负数,否则就没有意义。
(2)4是二次根式,虽然4=2,但2不是二次根式,因此二次根式指的是某种式子的“外在形态”。
2.二次根式的性质(a )2=a ( a ≥0 )a 2=|a|=⎩⎪⎨⎪⎧a (a ≥0),-a (a<0).3.最简二次根式满足下列两个条件的二次根式,叫做最简二次根式 (1)被开方数中不含____;(2)被开方数中不含能__________的因数或因式。
4.二次根式的运算a *b =____(a ≥0,b ≥0)ba=______(a ≥0,b>0) 二次根式相加减时,可以先将二次根式化成_______,再将_______________进行合并。
第十七章 勾股定理1.勾股定理勾股定理:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么a 2+b 2=____ 勾股数:能构成直角三角形的三条边长的三个正整数,称为勾股数。
2.勾股定理的逆定理:如果三角形的三边长分别为a 、b 、c ,满足______________,那么这个三角形是直角三角形。
作用:(1)判断某三角形是否为直角三角形; (2)判断三角形的形状; (3)证明两线段是否垂直; (4)实际应用。
3.互逆定理、互逆命题及其关系互逆命题:在两个命题中,如果一个命题的题设和结论分别是另一个命题的_______和_______,那么这两个命题称为互逆命题.如果一个叫原命题,那么另一个叫它的__________.互逆定理:一般地,如果一个定理的逆命题经过证明是__________,那么它也是一个定理,称这两个定理互为逆定理,其中一个定理为另一个定理的_________方法技巧掌握勾股定理和直角三角形的判别条件的实际应用,即能用它们解决简单的实际问题.将实际问题转化为直角三角形模型,就可用勾股定理和直角三角形的判别条件解决实际问题.第十八章平行四边形1.平行四边形的定义和性质定义:两组对边分别________的四边形是平行四边形.平行四边形的性质:(1)平行四边形的两组对边分别________;(2)平行四边形的两组对边分别________;(3)平行四边形的两组对角分别________;(4)平行四边形的对角线互相________.[拓展] 若一条直线过平行四边形的对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线等分平行四边形的面积.2.平行四边形的判定定义:两组对边分别______的四边形是平行四边形.定理1:两组对角分别______的四边形是平行四边形;定理2:两组对边分别______的四边形是平行四边形;定理3:对角线________的四边形是平行四边形;定理4:一组对边平行且________的四边形是平行四边形.3.矩形定义:有一个角是直角的平行四边形是矩形.性质:(1)矩形对边________ ;(2)矩形四个角都是________(或矩形四个角相等);(3)矩形对角线________、________.[拓展] (1)矩形的两条对角线把矩形分成四个面积相等的等腰三角形;(2)矩形是一个轴对称图形,它有两条对称轴.[注意] 利用“矩形的对角线相等且互相平分”这一性质可以得出直角三角形的一个常用的性质:直角三角形斜边上的中线等于斜边长的一半.判定:(1)定义:有一个角是直角的____________是矩形.(2)有三个角是直角的____________是矩形.(3)对角线相等的____________是矩形.4.菱形定义:一组邻边相等的___________是菱形.性质:(1)菱形的四条边都___________ ;(2)菱形的对角线互相___________ ,互相__________ ,并且每一条对角线平分一组对角;(3)菱形是轴对称图形,两条对角线所在的直线是它的对称轴.[注意] 菱形的面积:(1)由于菱形是平行四边形,所以菱形的面积=底×高;(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形分成4个全等三角形,故菱形的面积等于两对角线乘积的__________.判定:(1)定义:一组邻边相等的___________是菱形;(2)对角线互相垂直的___________是菱形;(3)四条边都相等的___________是菱形.5.正方形定义:有一组邻边相等的___________形是正方形.性质:(1)正方形对边平行;(2)正方形四边相等;(3)正方形四个角都是直角;(4)正方形对角线相等,互相___________ ,每条对角线平分一组对角;(5)正方形是轴对称图形,对称轴有四条.判定:(1)定义:有一组邻边相等的___________形是正方形;(2)有一个角是直角的___________是正方形.[注意] 矩形、菱形、正方形都是平行四边形,且是特殊的平行四边形.矩形是有一内角为直角的平行四边形;菱形是有一组邻边相等的平行四边形,正方形既是矩形又是菱形.6.三角形中位线定义、定理:定义:连接三角形两边中点的线段,叫做三角形的中位线。
八年级下册数学复习提纲(汇总9篇)

八年级下册数学复习提纲(汇总9篇)八年级下册数学复习提纲(1)一、课内重视听讲,课后及时复习数学新知识的学习,数学能力的培养主要在课堂上进行。
所以要特别重视课内的学习效率,不干有一丝马虎,一定要形成正确的学习方法。
上课时要紧跟老师的思路,积极拓展自己的思维,比较自己的解题思路与老师讲的有那些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,多想几个为什么?应尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,一定要让自己冷静下来认真分析题目,尽量自己解决,理清思路。
在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系,形成自己的学习体系。
二、适当多做题,并养成良好的解题习惯要想学好数学,多做题,是学好数学的必有之路,熟悉掌握各种题型的解题思路。
刚开始要以基础题目入手,以课上的题目为准,提高自己的分析能力。
掌握一般的解题思路。
对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。
在平时养成良好的解题习惯。
让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异。
如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态、正确对待考试首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上学习。
因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候都保持镇静,思路有条不紊,克服浮躁情绪。
特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感。
人教版八年级数学下册反比例函数知识点归纳(重点)

人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
八年级下册数学复习提纲及重要题型

八年级数学下册复习提纲及重要题型第一章一元一次不等式和一元一次不等式组一、不等式1、概念:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解. 不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.2、解不等式:求不等式解集的过程叫解不等式。
3、不等式组:由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组4、不等式组的解集 :一元一次不等式组各个不等式的解集的公共部分。
5、等式基本性质:(1)在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。
(2)在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。
6、不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(注:移项要变号,但不等号不变。
)(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(4)若a>b, 则a+c>b+c;(2)若a>b, c>0 则ac>bc若c<0, 则ac<bc7、不等式的其他性质:(1)反射性:若a>b,则b<a。
(2)传递性:若a>b,且b>c,则a>c。
8、解不等式步骤:(1)去分母(2)去括号(3)移项合并同类项(4)系数化为1。
9、解不等式组步骤:(1)解出不等式的解集(2)在同一数轴表示不等式的解集。
10、列一元一次不等式组解实际问题步骤:(1)审题(2)设未知数,找关系式(3)设元,根据关系式列不等式(4)解不等式组,检验并作答。
第二章分解因式1、公式的常见形式:(1)ma+mb+mc=m(a+b+c)(2)a2-b2=(a+b)(a-b)(3)a2±2ab+b2=(a±b)22、分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册知识点总结 第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.二次根式有意义的条件: 大于或等于0。
3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。
6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 7.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a ≥0,b ≥0);(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】 1、概念与性质ab a b b ba a=(>0)(<0)0 (=0);例1下列各式1), 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2) 22)-(x例3、 在根式1) ,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若=b -a ,则 ( )A. a>bB. a<bC. a ≥bD. a ≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a=,b=.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+222;2);3);4)275xa b x xy abc +-2()a b -11()ba b b a a b ++++51+51-(1)、根式变形法当0,0a b >>时,①如果a b >>a b <<。
例1、比较与 (2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
例2、比较 (3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3、的大小。
(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4、 (5)、倒数法例5- (6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、33的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔<例7、的大小。
(8)、求商比较法它运用如下性质:当a>0,b>0时,则: ①1a a b b>⇔>; ②1a a b b<⇔<例8、比较5-与2+ 5、规律性问题例1. 观察下列各式及其验证过程:, 验证:;验证:. (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证; (2)针对上述各式反映的规律,写出用n(n ≥2,且n 是整数)表示的等式,并给出验证过程.4415第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+。
应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b +,22b c a -,22a cb -)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2.勾股定理逆定理:如果三角形三边长a ,b,c 满足c b a 222=+,那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③勾股数扩大相同的的倍数依然是一组新的勾股数。
如ka,kb,kc4.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB⇒BC=2∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°1AB=BD=AD⇒CD=2D为AB的中点5.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)6、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD2=CD•AD⇒AB2=AC•ADCD⊥AB AB2=BC•BD7、常用关系式由三角形面积公式可得:AB•CD=AC•BC8、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系222c+,那么这ba=个三角形是直角三角形。
9、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理用推理的方法判断为正确的命题叫做定理。
5、证明判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
10、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
11、数学口诀.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
第十八章平行四边形一.平行四边形1、定义:两组对边分别平行的四边形是平行四边形.2.平行四边形的性质角:平行四边形的邻角互补,对角相等; 边:平行四边形两组对边分别平行且相等; 对角线:平行四边形的对角线互相平分; 面积:①S=底 高=ah ; 3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; 一组平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形;二、特殊的平行四边形 (一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等; 3、矩形的判定:ABDOCDCO⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.(二)菱形1、定义:有一组邻边相等的平行四边形是菱形。
2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补; ③对角线:对角线互相垂直平分且每条对角线平分每组对角;3、菱形的判定方法:⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. (三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质:①边:四条边都相等;②角:四角都是直角; ③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。
3、正方形的判定方法:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 如图:∵DE 是△ABC 的中位线 ∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题A D BCCD BAOCDABE D CBA① 设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21③ 设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则b S 221=正方形四边形D一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.第十九章 一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。