1命题逻辑基本概念

合集下载

命题的基本概念

命题的基本概念

命题的基本概念1. 概念的定义命题是逻辑学和数理逻辑中的一个基本概念,指的是能够陈述一个明确的陈述句或者陈述句的复合句。

一个命题要么是真的,要么是假的,不存在其他可能性。

命题可以用来表达事实、判断、推理等。

命题可以用符号来表示,常用的符号有大写字母P、Q、R等表示命题,命题的真值用T(true)表示真命题,用F(false)表示假命题。

2. 重要性命题是逻辑学和数理逻辑的基础,它的重要性体现在以下几个方面:2.1 逻辑推理命题是逻辑推理的基础,逻辑推理是通过对命题的合理组合和推理得出结论的过程。

在逻辑推理中,命题可以作为前提、假设或者结论,通过命题之间的逻辑关系进行推理和证明。

2.2 真值表命题的真值表是一种列举出命题在不同情况下的真值的表格。

通过真值表,可以清晰地展示出命题的真值情况,从而帮助我们理解命题之间的逻辑关系和推理规律。

2.3 谓词逻辑在谓词逻辑中,命题可以作为谓词的参数,通过对命题的量化和连接得出更复杂的命题。

谓词逻辑是现代逻辑的基础,广泛应用于数学、计算机科学等领域。

2.4 知识表示命题可以用来表示知识,通过对命题的组合和推理,可以构建出复杂的知识表示体系。

知识表示是人工智能、专家系统等领域的重要研究内容。

3. 应用命题的应用非常广泛,涉及到多个学科和领域,以下介绍几个常见的应用:3.1 数学推理在数学中,命题是数学推理的基础。

通过对命题的逻辑关系进行推理,可以得到数学定理和证明。

3.2 计算机科学在计算机科学中,命题逻辑是形式化方法的基础,用于描述和分析算法和程序的正确性。

命题逻辑在计算机科学中有着广泛的应用,包括程序验证、模型检测、人工智能等领域。

3.3 自然语言处理在自然语言处理中,命题可以用来表示句子的含义和逻辑关系,通过对命题的推理和计算,可以进行机器翻译、信息检索、问答系统等任务。

3.4 人工智能在人工智能领域,命题逻辑是知识表示和推理的基础。

通过对命题的组合和推理,可以构建出复杂的知识表示体系,用于解决问题和推理。

第2章 命题逻辑(1)

第2章 命题逻辑(1)

析取
符号
读作“析取”
定义2.3:设p,q为两命题,复合命题“p或q” 称为p与q的析取式,
记作p Ú q ,符号 称为析取联结词。并规定p q为假当且仅当p与q
同时为假。
真值表:
PQ 00
P Q
0
例子 小李是学数学或者计算
01
1
10
1
11
1
机科学pq p:小李是学数学 q:小李是学计算机 科学
2.1.1 命题与联结词
例3:判断下列命题是否为复合命题
(1)5能被2整除。
原子命题
(2)2是素数当且仅当三角形有三条边。 复合命题
(3)4是2的倍数或是3的倍数。
复合命题
(4)李明与王华是同学。
原子命题
(5)蓝色和黄色可以调配成绿色。
原子命题
(6)3不是偶数。
复合命题
(7)林芳学过英语或日语。
复合命题
合取
例:将下列命题符号化。
(1)吴颖既用功又聪明。
p q
(2)吴颖不仅用功而且聪明。
p q
(3)吴颖虽然聪明,但不用功。
p q
(4)张辉与王丽都是三好学生。
r s
(5)张辉与王丽是同学。
t
p:吴颖用功。
q:吴颖聪明。
r:张辉是三好学生。
s:王丽是三好学生。
t:张辉与王丽是同学。
注意:若“和”、“与”连接的是主语成分,则该陈述句为简单命题。
FT
T
F
F
补充:翻译语句
因为语言(包括一切人类语言)常有二义性,把 句子译成逻辑表达式可以消除歧义
把语言翻译成由命题变量和逻辑联接词组成的表 达式

第2章_1节-命题逻辑基本概念

第2章_1节-命题逻辑基本概念


定义2.4 设p,q为两个 命题“如果p,则q” 称作p与q的蕴涵式, 记作 pq,并称p是 蕴涵式的前件,q为蕴 涵式的后件,称蕴 涵联接词.其真值表为 : p q pq 0 0 1 0 1 1 1 0 0 1 1 1
pq也可表示为: (1)只要p,就q; (2)因为p,所以q (3)p仅当q; (4)只有q,才p; (5)除非q,才平; (6)除q,否则非p; (7)假如没有q,就没有p.
离散数学
主讲教师:易静
1
2.1 命题逻辑基本概念
关键知识点: • 命题与真值 •联结词(¬ , , , , , ) •命题公式(重言式,矛盾式,可满足式) •重要等值式 •重要推理规则 •个体,个体域与谓词 •全称量词与存在量词
2
命题与真值
命题:所表达的判断是真(正确)或假(错误)但不能可 真可假的陈述句。通常用p,q,r等表示(即命题符号化) 命题的真值:作为命题所表达的判断只有两个结果:正确 和错误,此结果称为命题的真值。 命题是正确的,称此命题的真值为真;命题是错误 的,称此命题的真值为假。 在数理逻辑中,命题的真值的真和假,有时分别用 1和0来表达,也有时分别用T(True)和F(False)来表 达。本书用1和0来表达。(即真值的符号化) 真命题:真值为真的命题 假命题:真值为假的命题 例如, p:2+2=4, q:3是偶数 它们都是命题, p是真命题, q是假命题.


定义2.2 设p,q为二 命题,复合命题“p并 且q”(或“p与q”) 称为p与q的合取式, 记作pq,称作合取 联接词. 其真值表为:
p 0 0 1 1 q 0 1 0 1 pq 0 0 0 1
也可表示联接词: “既......,又.......”, “不但......而 且......”, “虽然......但 是.......”, “一面......一 面.......”等

命题逻辑的基本概念

命题逻辑的基本概念

命题逻辑的基本概念命题逻辑(propositional logic),又称命题演算,是数理逻辑的一个分支,它研究命题与命题之间的逻辑关系。

在命题逻辑中,命题是语句或陈述,可以判断为真或假。

命题逻辑的基础概念包括命题、联结词和复合命题等。

一、命题在命题逻辑中,命题是用来陈述某种事实或陈述的语句,可以判断为真或假。

命题通常用字母表示,如p、q、r等。

下面是一些例子:1. p:今天是晴天。

2. q:明天会下雨。

3. r:1+1=2。

二、联结词联结词是用来连接命题的词语,它们可以表示不同的逻辑关系。

常见的联结词有否定、合取、析取、条件、双条件等。

1. 否定(¬):表示命题的否定,将命题的真值取反。

例如,¬p表示命题p的否定。

2. 合取(∧):表示逻辑与的关系,表示两个命题都为真时,结果命题才为真。

例如,p∧q表示命题p和命题q都为真。

3. 析取(∨):表示逻辑或的关系,表示两个命题中至少一个为真时,结果命题为真。

例如,p∨q表示命题p或命题q至少一个为真。

4. 条件(→):表示逻辑蕴含的关系,表示命题p成立时,命题q也必定成立。

例如,p→q表示命题p蕴含命题q。

5. 双条件(↔):表示逻辑等价的关系,表示命题p和命题q有相同的真值。

即当p和q同时为真或同时为假时,结果命题为真。

例如,p↔q表示命题p和命题q等价。

三、复合命题复合命题是由多个命题通过联结词构成的新命题。

复合命题的真假取决于其组成命题的真假以及联结词的逻辑关系。

例如:1. (p∧q)→r:表示命题p和命题q的合取蕴含命题r。

2. ¬(p∨q):表示命题p和命题q的析取的否定。

3. p↔q∧r:表示命题p和命题q等价,并且命题r为真。

在命题逻辑中,通过运用联结词的组合和推理规则,可以进行逻辑推理和推断。

命题逻辑为我们提供了分析和解决复杂问题的思维工具。

总结:命题逻辑是数理逻辑的一个重要分支,研究命题与命题之间的逻辑关系。

1命题逻辑基本概念

1命题逻辑基本概念
6
东南大学
Introduction
Assume a very fast PC:

1 flop = 1 nanosecond = 10-9 sec. = 1,000,000,000 ops/sec = 1 GHz.
7
东南大学
Introduction
If n=8, T(n) = 7•8! = 282,240 flops < 1/3 sec. If n=50, T(n) = 49•50! = 1.48 1066 = 1.49 1057 seconds = 2.48 1055 minutes = 4.13 1053 hours = 1.72 1052 days = 2.46 1051 weeks = 4.73 1049 years.
定义1.1 设原子命题为p,则复合命题“p的否定” 或“非p”称为p的否定式。记做¬p,符号 ¬称 作否定联结词。规定¬p为真当且仅当p为假。
15
东南大学
1.1 命题与联结词
(2)严格由真值表定义 (3)举例: 北京是一座城市。 p 北京不是一座城市。 ¬p 每一种生物均是动物。 q 有一些生物不是动物。 ¬q 不是每一种生物均是动物。¬q 每一种生物均不是动物。 p ¬p T F F T

circuit design many other CS problems n cities c1, c2, . . . , cn distance between city i and j, dij
Given:

Find the shortest tour.
5
东南大学
Introduction
A tour requires n-1 additions. How many different tours?

命题的基本概念

命题的基本概念
指派
当命题变元P用一个特定的简单命题取代时,P才能确定真值,这时也称对P进行指派。
本章小结
只有陈述句才有可能是命题,但并不是所有的陈述句都能成为命题。 本小节的思维形式注记图:
• 意味着P表示“今天下雨”这个命题的名。 • 也可用数字表示此命题 例如:[12]:今天下雨 表示命题的符号称为命题标识符,P和[12]就是命题标识符。
1.1.3 命题标识符
命题常元
一个命题标识符如果表示确定的简单命题,就称为命题常元。
命题变元
如果一个命题标识符只表示任意简单命题的位置标志,就称它为命题变元。 因为命题变元可以表示任意简单命题,所以它不能确定真值,故命题变元不是命题。
命题
判断给定的句子是否为命题的基本步骤
首先应是陈述句; 其次要有唯一的真值。
68%
80%
Sed ut perspiciatis unde omnis.
Sed ut perspiciatis unde omnis.
180
175
案例
1)该吃早饭了! 祈使句,不是命题。
2)多漂亮的花呀! 感叹句,不是命题。
我正在说谎,二者也相矛盾。这其实是一个语义上的悖论。悖论不是命题。
5) x-y >2。
Sed ut perspiciatis
Sed ut perspiciatis
unde omnis.
unde omnis.
不是命题。因为x, y的值不确定,某些x, y使x−y>2为真,某些x, y使x−y>2为假,即
复合命题的基本性质是:其真值可以由其原子命题的真值以及它们复合成该复合
命题的联结方式确定。
1.1.3 命题标识符
命题标识符
• 为了能用数学的方法来研究命题之间的逻辑关系和推理,需要将命题符号化。 • 通常使用大写字母P, Q, R…或用带下标的大写字母或用数字,如Pi,[12]等表

简易逻辑知识点

简易逻辑知识点

简易逻辑知识点1. 逻辑的基础概念- 命题:一个可以判断为真或假的陈述。

- 论证:由一个或多个前提和一个结论组成的逻辑结构。

- 推理:从已知信息推导出新信息的过程。

2. 逻辑运算- 否定(NOT):对一个命题进行否定,如果原命题为真,则否定后为假;如果原命题为假,则否定后为真。

- 合取(AND):两个命题都为真时,合取的结果才为真。

- 析取(OR):两个命题中至少有一个为真时,析取的结果为真。

- 蕴含(IMPLIES):如果前提为假或结论为真,则蕴含的命题为真;仅当前提是真而结论为假时,蕴含的命题为假。

3. 逻辑形式- 条件语句:一种表达式,包含条件(如果...)和结果(那么...)。

- 逻辑等价:两个逻辑表达式在所有可能情况下都有相同的真值。

- 逻辑谬误:在推理过程中出现的逻辑错误,导致无效的论证。

4. 逻辑证明- 直接证明:通过一系列已知的命题直接推导出要证明的命题。

- 间接证明:通过证明相反假设导致的矛盾来证明原命题。

5. 逻辑的分类- 形式逻辑:研究逻辑形式和推理规则的学科。

- 非形式逻辑:研究日常语言中的推理和论证,不严格遵循形式逻辑的规则。

6. 逻辑的应用- 计算机科学:逻辑用于设计算法、编程语言和人工智能。

- 哲学:逻辑用于构建哲学理论和分析论证。

- 数学:逻辑是数学推理的基础,用于证明定理和公式。

7. 逻辑的局限性- 逻辑不能处理所有类型的推理,如基于直觉、情感或价值判断的推理。

- 逻辑无法解决所有问题,特别是那些需要创造性和想象力的问题。

8. 逻辑的学习方法- 练习:通过解决逻辑谜题和练习题来提高逻辑推理能力。

- 阅读:阅读逻辑和哲学相关的书籍和文章,了解逻辑的历史和应用。

- 讨论:与他人讨论逻辑问题,通过交流不同的观点来提高理解力。

以上是简易逻辑知识点的概述,每个知识点都可以进一步深入学习和探索。

逻辑是理解世界和解决问题的重要工具,掌握基本的逻辑知识对于提高思维能力和决策质量至关重要。

命题逻辑的基本概念和符号

命题逻辑的基本概念和符号

命题逻辑的基本概念和符号命题逻辑作为逻辑学的一个重要分支,研究的是命题及其之间的关系。

在命题逻辑中,有一些基本概念和符号是我们必须要了解的。

一、命题命题是一个陈述性的句子,它要么是真的,要么是假的,不存在中间值。

比如,“天空是蓝色的”和“2加2等于5”都是命题。

我们可以用大写字母P、Q、R等来表示命题。

二、命题变项命题变项是指用小写字母p、q、r等来表示具体的命题。

它们通常用来表示多个具体的命题,而不是单个的命题。

三、命题运算符命题运算符是用来表示命题之间关系的符号。

常见的命题运算符有如下几种:1. 否定运算符(¬):表示取反,即命题的否定。

若P为一个命题,那么¬P表示P的否定。

2. 合取运算符(∧):表示逻辑“与”,即两个命题同时为真时结果才为真。

若P和Q都是命题,那么P∧Q表示P与Q同时为真。

3. 析取运算符(∨):表示逻辑“或”,即两个命题其中一个为真时结果就为真。

若P和Q都是命题,那么P∨Q表示P或Q至少一个为真。

4. 条件运算符(→):表示逻辑“如果...那么”,即若一个命题成立,则另一个命题也成立。

若P和Q都是命题,那么P→Q表示如果P成立,则Q也成立。

5. 双条件运算符(↔):表示逻辑“当且仅当”,即两个命题同时为真或同时为假时结果为真。

若P和Q都是命题,那么P↔Q表示当且仅当P和Q同时为真或同时为假。

四、真值表真值表是用来列出命题在不同情况下的真值的表格。

通过真值表,我们可以确定命题在各种情况下的真假情况,从而帮助我们进行逻辑推理。

五、重言式和矛盾式重言式是指在所有情况下都为真的命题,矛盾式是指在所有情况下都为假的命题。

根据命题逻辑的基本规则,我们可以通过真值表判断一个命题是重言式还是矛盾式。

六、命题公式命题公式是由命题和命题运算符组成的复合命题。

常见的命题公式可以通过命题运算符的组合得到,如(P∧Q)→R。

综上所述,命题逻辑的基本概念和符号对于我们理解和分析命题之间的逻辑关系非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档