高二12月月考数学(文)试题 Word版含答案

合集下载

江苏省扬州中学2021-2022学年高二上学期12月月考试题 数学 Word版含解析

江苏省扬州中学2021-2022学年高二上学期12月月考试题 数学 Word版含解析
【详解】设 , , .
由题意得抛物线焦点坐标为 ,准线方程为 .
因为 ,
所以点 是 的重心,故 ,

故选:A.
6.已知函数 ,则不等式 的解集为()
A. B. C. D.
【答案】D
【解析】
【分析】分析可知函数 为偶函数,且在 上为增函数,由已知可得出 ,解此不等式即可得解.
【详解】函数 的定义域为 ,
【答案】B
【解析】
【分析】求导得到导函数,计算 ,再代入 计算得到答案.
详解】 ,则 , , .
, .
故选:B
5.设 为抛物线 的焦点, , , 为该抛物线上三点,若 ,则 ()
A. 6B. 4C. 3D. 2
【答案】A
【解析】
【分析】设 , , .由 ,得 是 的重心,从而求得 ,然后由焦半径公式求得结论.
故选:BCD.
11.已知 是椭圆 上的一动点,离心率为 ,椭圆与 轴的交点分别为 、 ,左、右焦点分别为 、 .下列关于椭圆的四个结论中正确的是()
A.若 、 的斜率存在且分别为 、 ,则 为一定值
B.若椭圆 上存在点 使 ,则
C.若 的面积最大时, ,则
D.根据光学现象知道:从 发出的光线经过椭圆反射后一定会经过 .若一束光线从 出发经椭圆反射,当光线第 次到达 时,光线通过的总路程为
对于D:圆 圆心 ,半径为 ,圆 圆心 ,半径为 ,若两圆相离,
因为 ,所以 或 ,
所以 或 ,故D错误.
故选:BC
10.已知等比数列 的前 项和为 ,且 , 是 与 的等差中项,数列 满足 ,数列 的前 项和为 ,则下列命题正确的是()
A.数列 的通项公式为 B.
C. 的取值范围是 D.数列 的通项公式

2022-2023学年山西省晋城市校高二年级上册学期12月月考数学试题【含答案】

2022-2023学年山西省晋城市校高二年级上册学期12月月考数学试题【含答案】

2022-2023学年山西省晋城市第二中学校高二上学期12月月考数学试题一、单选题1.抛物线28y x =的焦点到其准线的距离为( ) A .132B .116 C .18D .4【答案】B【分析】将抛物线方程转化为标准方程求解.【详解】解:抛物线的标准方程为218x y =, 所以焦点坐标为10,32F ⎛⎫⎪⎝⎭,其准线方程为132y =-,所以抛物线28y x =的焦点到其准线的距离为111323216d ⎛⎫=--= ⎪⎝⎭, 故选:B2.若直线1:20l x y -+=与直线2:230l x ay +-=平行,则实数a 的值为( ) A .2- B .1- C .2 D .1【答案】A【分析】解方程1(1)20a ⨯--⨯=即得解. 【详解】解:由题得1(1)20, 2.a a ⨯--⨯=∴=- 经检验,当2a =-时,满足题意. 故选:A3.已知直线3260x y --=经过焦点在坐标轴上的椭圆的两个顶点,则该椭圆的方程为( ) A .22194x y +=B .22419x y +=C .22194y x +=D .22419y x +=【答案】C【分析】求出直线3260x y --=与两坐标轴的焦点为()0,3-,()2,0.根据32->,可设椭圆的方程为22221y x a b+=,求出,a b 即可. 【详解】令0x =,可得=3y -;令0y =,可得2x =. 则由已知可得,椭圆的两个顶点坐标为()0,3-,()2,0.因为32->,所以椭圆的焦点在y 轴上. 设椭圆的方程为22221y x a b +=,则3a =,2b =,所以椭圆的方程为22194y x +=.故选:C.4.若方程222141x y m m-=-+表示焦点在y 轴上的双曲线,则实数m 的取值范围为( )A .()2-∞-,B .()21--,C .()22-,D .()11-,【答案】A【分析】原方程可变形为222141y x m m ---=-,根据已知有21040m m -->⎧⎨-+>⎩,解出即可. 【详解】因为方程222141x y m m -=-+表示焦点在y 轴上的双曲线, 222141x y m m -=-+可变形为222141y x m m ---=-. 所以有21040m m -->⎧⎨-+>⎩,即21040m m +<⎧⎨->⎩,解得2m <-. 故选:A. 5.数列262,4,,203--,…的一个通项公式可以是( ) A .()12nn a n =-⋅ B .()311n nn a n-=-⋅C .()1221n nn a n+-=-⋅D .()31n nn na n⋅-=-【答案】B【分析】利用检验法,由通项公式验证是否符合数列的各项结合排除法即可. 【详解】选项A :()331236a =-⨯⨯=-,不符合题意; 选项C :()212222132a +-=-⨯=不符合题意; 选项D :()222327122a -=-⨯=,不符合题意; 而选项B 满足数列262,4,,203--,故选:B6.在棱长为2的正方体1111ABCD A B C D -中,E 是1CC 的中点,则1AE BD ⋅=( )A .0B .1C .32D .2【答案】D【分析】建立空间直角坐标系,利用坐标法求解即可. 【详解】解:如图,建立空间直角坐标系, 则()()()()12,0,0,0,2,1,2,2,0,0,0,2A E B D , 所以,()()12,2,1,2,2,2AE BD =-=--, 所以,14422AE BD ⋅=-+=. 故选:D7.在数列{}n a 中,122,a a a ==,且132(2,N )n n a a n n n *+=-++≥∈,若数列{}n a 单调递增,则实数a 的取值范围为( ) A .(2,52)B .(2,3)C .(52,4)D .(2,4)【答案】C【分析】由递推关系,结合条件122,a a a ==,求出数列的通项公式,再结合数列的单调性,列不等式可求实数a 的取值范围.【详解】因为132(2,N )n n a a n n n *+=-++≥∈,所以()21312(N )n n a a n n *++=-+++∈,328a a =-+,所以23(2,N )n n a a n n *+=+≥∈,又2a a =, 328a a =-+,所以数列{}n a 的偶数项按项数从小到大排列可得一公差为3的等差数列,所以当n 为偶数时,332n a n a =+-, 当n 为大于等于3的奇数时,3722n a n a =+-, 因为数列{an }单调递增,所以1n n a a -≥(2,N )n n *≥∈,所以当n 为大于等于3的奇数时,()37313222n a n a +->-+-,化简可得4a <,当n 为大于等于4偶数时,()33731222n a n a +->-+-,解得52a >,由21a a >可得,2a >, 所以542a <<, 故选:C.8.已知椭圆()2222:10x y C a b a b +=>>的左,右顶点分别为A ,B ,且椭圆C,点P是椭圆C 上的一点,且1tan 4PAB ∠=,则tan APB ∠( )A .109-B .1110-C .1110D .109【答案】B【分析】设()00,P x y 是椭圆上的点,设11tan 4k PAB =∠=,2tan k PBA =-∠求出12k k ⋅为定值,从而能求出tan PBA ∠的值,然后根据()tan tan APB PAB PBA ∠=-∠+∠求解. 【详解】设()00,P x y 代入椭圆方程,则()22002210x y a b a b+=>>整理得:()2222002,b y a x a=-设11tan 4k PAB =∠=,2tan k PBA =-∠ 又010y k x a =+,020y k x a=-,所以 ()22222000122222000116y y y b a c k k e x a x a x a a a -⋅=⋅==-=-=--=-+-- 而11tan 4k PAB =∠=,所以22tan 3k PBA =-∠=-,所以2tan 3PBA ∠=()12tan tan 1143tan tan 121tan tan 10143PAB PBA APB PAB PBA PAB PBA +∠+∠∠=-∠+∠=-=-=--∠⋅∠-⨯ 故选:B二、多选题9.在等比数列{n a }中,262,32a a ==,则{n a }的公比可能为( ) A .1- B .2-C .2D .4【答案】BC【分析】根据等比数列的通项即可求解.【详解】因为在等比数列{n a }中,262,32a a ==,设等比数列的公比为q ,则54611216a a q q a q a ===,所以2q =±, 故选:BC .10.已知圆226430C x y x y +-+-=:,则下列说法正确的是( ) A .圆C 的半径为16B .圆C 截x 轴所得的弦长为C .圆C 与圆E :()()22621x y -+-=相外切D .若圆C 上有且仅有两点到直线340x y m ++=的距离为1,则实数m 的取值范围是()()19,2426,21⋃--【答案】BC【分析】先运用配方法将一般式方程化为标准方程,可确定其圆心个半径;根据点到弦的距离可求出弦长;圆心距和半径的关系可确定圆与圆的位置关系;圆心到直线的距离与半径之间的数量关系可确定圆C 上有且仅有两点到直线的距离为1【详解】A:将一般式配方可得:()()223216,4x y r -++=∴=,A 错;B :圆心到x 轴的距离为2,弦长为B 对;C:5,C E CE r r ===+外切,C 对;D: 圆C 上有且仅有两点到直线340x y m ++=的距离为111,35r d r ∴-<<+∴<<,解之: ()()14,2426,16m ∈⋃--,D 错;故选:BC11.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且151416S S S <<,则下列说法正确的是( ) A .0d > B .0d <C .300S >D .当15n =时,n S 取得最小值【答案】ACD【分析】根据题干条件利用()12n n n a S S n -=-≥可得到150a <,15160a a +>,160a >,然后即可根据三个结论依次判断四个选项的正误.【详解】因为151416S S S <<,所以1515140a S S =-<,1616150a S S =->,151616140a a S S +=->. 对于A 、B 选项,因为150a <,160a >,所以16150d a a =->,故选项A 正确,选项B 错误; 对于C ,因为15160a a +>,所以()()130301516301502a a S a a +==+>,故选项C 正确; 对于D ,因为150a <,160a >,可知10a <,0d >,等差数列{}n a 为递增数列,当15n ≤时,0n a <,当16n ≥时,0n a >,所以当15n =时,n S 取得最小值,故D 选项正确. 故选:ACD.12.已知抛物线C :212y x =,点F 是抛物线C 的焦点,点P 是抛物线C 上的一点,点(4,3)M ,则下列说法正确的是( ) A .抛物线C 的准线方程为3x =-B .若7PF =,则△PMF 的面积为32C .|PF PM -|D .△PMF 的周长的最小值为7【答案】ACD【分析】根据抛物线的标准方程可得准线方程为3x =-,即可判断A ,根据抛物线定义得到4P x =,故P 点可能在第一象限也可能在第三象限,分情况计算三角形面积即可判断B ,利用三角形任意两边之差小于第三边结合三点一线的特殊情况即可得到()max ||||PF PM F M -∴=,计算即可判断C ,三角形PMF 的周长PM MF PF PM PF =++=+||||PM PF +的最小值,即得到周长最小值.【详解】212y x =,6p ∴=,()3,0F ∴,准线方程为3x =-,故A 正确; 根据抛物线定义得372P P pPF x x =+=+=,4P x =,()4,3M ,//PM y ∴轴,当4x =时,y =±若P 点在第一象限时,此时(4,P ,故433PM =-,PMF △的高为1,故()1343312322PMFS=⨯-⨯=-, 若点P 在第四象限,此时()4,43P -,故433PM =+,PMF △的高为1,故()1343312322PMFS=⨯+⨯=+,故B 错误; ||||PF PM MF -≤,()()()22max 433010||||M P F PF M ∴+--==-=,故C 正确;(连接FM ,并延长交于抛物线于点P ,此时即为||||PF PM -最大值的情况, 图对应如下)过点P 作PD ⊥准线,垂足为点D ,PMF △的周长1010PM MF PF PM PF PM PD =++=++若周长最小,则PM PD +长度和最小,显然当点,,P M D 位于同一条直线上时,PM MF +的和最小,此时7PM MF PD +==,故周长最小值为710D 正确. 故选:ACD.三、填空题13.在各项均为正数的等比数列{}n a 中,121916a a =,则28223log log a a +=___________. 【答案】4【分析】由条件,结合等比数列性质可得82316a a =,再对数运算性质求28223log log a a +即可.【详解】因为数列{}n a 为等比数列,所以3122198a a a a =, 又121916a a =,所以82316a a =, 所以2822328234log log log a a a a ==+, 故答案为:4.14.已知向量(2,4,)m a =,(1,,3)n b =-,若n m λ=,则 ||n m -=___________.【答案】【分析】根据n m λ=,列出1243b a λλλ-=⎧⎪=⎨⎪=⎩,分别求出,,a b λ,然后得到,m n ,进而计算,可求出||n m -的值.【详解】n m λ=,故1243b a λλλ-=⎧⎪=⎨⎪=⎩,解得1226b a λ⎧=-⎪⎪=-⎨⎪=-⎪⎩,故(2,4,6)m =-,(1,2,3)n =--,(3,6,9)n m -=--,则||(3)n m -=-=故答案为:15.在数列{}n a ,{}n b 中,112a =,3110a =,且11112(2)n n n n a a a -++=≥,记数列{bn }的前n 项和为Sn ,且122n n S +=-,则数列{}n n a b ⋅的最小值为___________.【答案】23【分析】可由题意构建1n a ⎧⎫⎨⎬⎩⎭为等差,求出n a 通项公式,{}n b 可由1n n S S --得出n b 的通项公式,再利用作差法求出新数列n n a b ⋅单调性即可求出最小值.【详解】由11112(2)n n nn a a a -++=≥可得111111n n n n a a a a +--=-,即数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设公差为d , 首项112a =,311121028d a a =-=-=,可得4d =,则12(1)442n n n a =+-⨯=-,即142n a n =-, 由122n n S +=-,可得当2n ≥时,11222n n nn n n b S S +-=-=-=,112b S ==,代入后符合2n n b =,即{}n b 的通项公式为2n n b =,设新数列{}n c ,242nn n n c a b n ==-,11122(23)24(1)242(21)(21)n n n n n n c c n n n n +-+--=-=+--+-,当10n n c c +->时,得 1.5n >,即2n ≥时,{}n c 是递增数列; 当10n n c c +-<时,得 1.5n <,即21c c <,综上所述223c =是最小值,即数列{}n n a b ⋅的最小值为23,故答案为:2316.已知双曲线2322100x y C a b a b -=>>:(,)的右焦点为F ,离心率为102,点A 是双曲线C 右支上的一点,O 为坐标原点,延长AO 交双曲线C 于另一点B ,且AF BF ⊥,延长AF 交双曲线C 于另一点Q ,则||||QF BQ =___________. 【答案】22【分析】在1Rt F AF △中,由勾股定理可求得||AF 、1||AF 用含有a 的代数式表示,在1Rt F AQ △中,由勾股定理可求得||QF 用含有a 的代数式表示,在Rt BFQ △中,由勾股定理可求得||BQ 可用含有a 的代数式表示,进而求得结果. 【详解】如图所示,∵22101c b e a a ==+ ,则2252c a = ,2232b a =,由双曲线的对称性知:OA OB =,1OF OF = , 又∵AF BF ⊥,∴四边形1AFBF 为矩形,设||0AF m => ,则由双曲线的定义知:1||2AF a m =+,在1Rt F AF △中,22211||||||F F AF AF =+,即:2224(2)c a m m =++ ,整理得:22230m am a +-=,即:()(3)0m a m a -+= , ∵0m >,∴m a = , ∴1||3AF a =设||0QF n => ,则由双曲线的定义知:1||2QF a n =+,在1Rt F AQ △中,22211||||||F Q AQ AF =+,即:222(2)(3)()a n a a n +=++,解得:3n a = ,即:||3QF a =, 又∵1||||3BF AF a ==,∴在Rt BFQ △中,||BQ ==∴||||2QF BQ =四、解答题17.已知等差数列{}n a 的前n 项和为258,224,100n S a a S +==. (1)求{an }的通项公式; (2)若+11n n n b a a =,求数列{n b }的前n 项和Tn . 【答案】(1)31n a n =- (2)2(32)n nT n =+【分析】(1)由等差数列的通项公式以及等差数列的前n 项和公式展开可求得结果; (2)由裂项相消求和可得结果.【详解】(1)设等差数列{}n a 的公差为d ,由题意知,1112()4248(81)81002a d a d a d +++=⎧⎪⎨⨯-+=⎪⎩解得:123a d =⎧⎨=⎩ ∴1(1)23(1)31n a a n d n n =+-=+-=-. 故{}n a 的通项公式为31n a n =-. (2)∵1111()(31)(32)33132n b n n n n ==--+-+111111111111()()()()325358381133132111111111 ()325588113132111 =()3232=2(32)n T n n n n n nn =⨯-+⨯-+⨯-++--+=⨯-+-+-++--+⨯-++即:{}n b 的前n 项和2(32)n nT n =+.18.已知圆22:10C x y mx ny ++++=,直线1:10l x y --=,2:20l x y -=,且直线1l 和2l 均平分圆C . (1)求圆C 的标准方程(2)0y a ++-=与圆C 相交于M ,N 两点,且120MCN ∠=,求实数a 的值. 【答案】(1)()()22214x y -+-= (2)1a =或3a =-【分析】(1)根据直线1l 和2l 均平分圆C ,可知两条直线都过圆心,通过联立求出两条直线的交点坐标,由此得到圆心坐标即可得到圆的标准方程.(2)根据120MCN ∠=,及MCN △为等腰三角形可得到30CMN ∠=,可得圆心到直线的距离sin d r CMN =∠,再根据点到直线的距离公式即可求出实数a 的值.【详解】(1)因为直线1l 和2l 均平分圆C ,所以直线1l 和2l 均过圆心C ,因为1020x y x y --=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,所以直线1l 和2l 的交点坐标为()2,1,所以圆心C 的坐标为()2,1,因为圆22:10C x y mx ny ++++=,所以圆心坐标为,22m n ⎛⎫-- ⎪⎝⎭,所以2212m n ⎧-=⎪⎪⎨⎪-=⎪⎩,解得42m n =-⎧⎨=-⎩,所以圆C 的方程为224210x y x y +--+=,即()()22214x y -+-=, 所以圆C 的标准方程为()()22214x y -+-=.(2)由(1)得圆C 的标准方程为()()22214x y -+-=,圆心()2,1C ,半径2r =,因为120MCN ∠=,且MCN △为等腰三角形,所以30CMN ∠=, 因为CM CN r ==,所以圆心C 到直线3230x y a ++-=的距离sin 2sin301d r CMN =∠==, 根据点到直线的距离公式()222312311231a a d ++-+===+, 即12a +=,解得1a =或3a =-, 所以实数a 的值为1a =或3a =-.19.如图,在四棱锥P —ABCD 中,四边形ABCD 是菱形.1202DAB PA AD ∠===,,22PC PD ==,点E 是棱PC 的中点.(1)证明:PC ⊥BD .(2)求平面P AB 与平面BDE 所成角的余弦值. 【答案】(1)证明见解析 3【分析】(1)首先根据线面垂直的判定定理证明PA ⊥平面ABCD ,然后建立空间直角坐标系,通过空间向量垂直的判定条件证明PC BD ⊥即可;(2)通过第(1)问的空间直角坐标系,根据二面角夹角公式进行求解即可. 【详解】(1)120DAB ∠=,四边形ABCD 为菱形, 60CAD ∴∠=,又60ADC ∠=,ACD ∴为等边三角形,2AD =,2AC CD ∴==,2PA =,22=PC222PA AC PC +=,PA AC ∴⊥, 222PA AD PD +=,PA AD ∴⊥,ACAD A =,AC ⊂平面ABCD ,AD ⊂平面ABCD ,PA ∴⊥平面ABCD .过点A 作AF BC ⊥,则PA AF ⊥,AF AD ⊥,PA AD ⊥,∴分别以AF ,AD ,AP 所在直线为x ,y ,z 轴如图建立空间直角坐标系.2AB =,cos603AF AB ∴=⋅=,1BF =,2BC =,1FC ∴=.)3,0,0F∴,()002P ,,,)3,1,0C,()3,1,0B-,()0,2,0D ,()3,1,2PC ∴=-,()3,3,0BD =-,(33130PC BD ⋅=-⨯=,PC BD ∴⊥.(2)()0,0,2P ,)3,1,0C,E 为PC 中点,31,12E ⎫∴⎪⎪⎝⎭,设平面PAB 的法向量为()1111,,n x y z =,()0,0,2PA =-,()3,1,0AB =-,1112030z x y -=⎧⎪∴⎨-=⎪⎩,()11,3,0n ∴=.设平面BDE 的法向量为()2222,,n x y z =,()3,3,0BD =-,33,122DE ⎛⎫=- ⎪ ⎪⎝⎭,222223303302x y y z ⎧-+=⎪∴⎨-+=⎪,()23,1,0n ∴=, 设平面PAB 与平面BDE 夹角为θ, 则121213313cos n n n n θ⋅⨯+⨯==⋅∴平面PAB 与平面BDE 320.已知抛物线C :22y px =(0p >)的焦点F 关于抛物线C 的准线的对称点为()9,0P -. (1)求抛物线C 的方程;(2)过点F 作倾斜角为θ的直线l ,交抛物线C 于A ,B 两点,O 为坐标原点,记OAB 的面积为S ,求证:18sin S θ=. 【答案】(1)212y x = (2)证明见解析【分析】(1)根据抛物线的简单几何性质得到抛物线的焦点坐标和准线方程,结合条件得到()19222p p ⎡⎤⨯+-=-⎢⎥⎣⎦,即可求解. (2)设直线:3l x my =+,且cos sin m θθ=(()0,πθ∈),()11,A x y ,()22,B x y ,联立抛物线的方程结合韦达定理计算得到12y y -,结合图形得到1212OFA OFB S S S OF y y =+=⨯⨯-△△,即可求证.【详解】(1)由题意得:抛物线C 的焦点,02p F ⎛⎫⎪⎝⎭,准线方程0l :2p x =-,因为焦点,02p F ⎛⎫⎪⎝⎭关于准线0:2p l x =-的对称点为()9,0P -,则()19222p p ⎡⎤⨯+-=-⎢⎥⎣⎦,解得:6p , 所以抛物线C 的方程为:212y x =. (2)由(1)知,焦点()3,0F ,如图:过点F 作倾斜角为θ的直线l ,交抛物线C 于A ,B 两点, ∴直线l 的倾斜角θ不为0,则()0,πθ∈,即sin 0θ>,则设直线:3l x my =+,且cos sin m θθ=(()0,πθ∈),()11,A x y ,()22,B x y , 联立2312x my y x=+⎧⎨=⎩,得:212360y my --=,由()2124360m ∆=+⨯>,得:12121236y y m y y +=⎧⎨=-⎩,则12y y -==又222cos 111sin sin m θθθ⎛⎫+=+= ⎪⎝⎭,所以121212sin y y θ-=(()0,πθ∈), 又1212111222OFA OFB S S S OF y OF y OF y y =+=⨯⨯+⨯⨯=⨯⨯-△△,即1121832sin sin S θθ=⨯⨯=. 综上:OAB 的面积18sin S θ=,得证. 【点睛】方法点睛:(1)解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为yx =,且过点(3,.(1)求双曲线C 的标准方程;(2)若双曲线C 的右焦点为F ,点()0,4P -,过点F 的直线l 交双曲线C 于,A B 两点,且PA PB =,求直线l 的方程.【答案】(1)2213x y -=(2)0y =,或1233y x =-或2y x =-+.【分析】(1)根据题意得22921b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,进而解方程即可得答案;(2)由题知()2,0F ,进而先讨论直线l 的斜率不存在不满足条件,再讨论l 的斜率存在,设方程为()2y k x =-,设()()1122,,,A x y B x y ,进而与双曲线方程联立得线段AB 中点为22262,1313k k E k k ⎛⎫-- ⎪--⎝⎭,再结合题意得PE AB ⊥,进而再分0k =和0k ≠两种情况讨论求解即可.【详解】(1)解:因为双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=,且过点(3,, 所以,22921b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,解得221,3b a ==所以,双曲线C 的标准方程为2213x y -=(2)解:由(1)知双曲线C 的右焦点为()2,0F ,当直线l 的斜率不存在时,方程为:2l x =,此时,2,A A ⎛⎛ ⎝⎭⎝⎭,PA PB =≠= 所以,直线l 的斜率存在,设方程为()2y k x =-,所以,联立方程()22213y k x x y ⎧=-⎪⎨-=⎪⎩得()222213121230k x k x k -+--= 所以()()422214441331212120k k k k ∆=----=+>,且2130k -≠,所以,k ≠设()()1122,,,A x y B x y ,则2212122212123,1313k k x x x x k k --+=-=-- 所以()3121222124441313k ky y k x x k k k k+=+-=--=---, 所以,线段AB 中点为22262,1313k k E k k ⎛⎫-- ⎪--⎝⎭, 因为PA PB =,所以,点()0,4P -在线段AB 的中垂线上, 所以PE AB ⊥,所以,当0k =时,线段AB 中点为()0,0E ,此时直线l 的方程为0y =,满足题意;当0k ≠时,22222222424122613,66313PEAB kk k k k k k k k k k k k -+-+--+--====----, 所以,222613PE AB k k k k k k -+-⋅=⋅=--,整理得23210k k +-=,解得13k =或1k =-,满足k ≠综上,直线l 的方程为0y =,或1233y x =-或2y x =-+.22.已知椭圆2222:1(0x y C a b a b +=>>0x y -=相切.(1)求椭圆C 的标准方程;(2)若直线l :1y kx =+与椭圆C 交于,A B 两点,点P 是y 轴上的一点,过点A 作直线PB 的垂线,垂足为M ,是否存在定点P ,使得PB PM ⋅为定值?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)22164x y += (2)存在,1(0,)4P【分析】(1)根据题意得,a b ==,由C与直线0x y --=相切,联立方程得22c =,即可解决;(2)1122(0,),(,),(,)P t A x y B x y ,结合韦达定理得PB PM PB PA ⋅=⋅222292(1)(312)23t t k k -+-+-=+,即可解决.【详解】(1)由题知,,c a b a ==, 所以椭圆C 为2222132x y c c+=,即2222360x y c +-=,因为C与直线0x y --=相切,所以22223600x y c x y ⎧+-=⎪⎨-=⎪⎩,消去y得22223(60x x c +-=,所以2253060x c -+-=,所以236045(306)0c ∆=-⨯⨯-=,得22c =,所以椭圆C 的标准方程为22164x y +=; (2)设1122(0,),(,),(,)P t A x y B x y ,由221641x y y kx ⎧+=⎪⎨⎪=+⎩,得22222(23)690,3636(23)144720,k x kx k k k ++-=∆=++=+> 所以12122269,2323k x x x x k k +=-=-++, 所以()PB PM PB PA AM PB PA PB AM PB PA ⋅=⋅+=⋅+⋅=⋅1122(,)(,)x y t x y t =-⋅-1212(1)(1)x x kx t kx t =++-+- 221212(1)(1)()(1)k x x k t x x t =++-++-222296(1)()(1)()(1)2323kk k t t k k=+-+-⋅-+-++ 222292(1)(312)23t t k k -+-+-=+,所以2231292(1)32t t --+-=,解得14t =, 所以存在点1(0,)4P ,使得PB PM ⋅为定值.。

2022-2023学年北京市第二十中学高二年级上册学期12月月考数学试题【含答案】

2022-2023学年北京市第二十中学高二年级上册学期12月月考数学试题【含答案】

2022-2023学年北京市第二十中学高二上学期12月月考数学试题一、单选题1.已知是虚数单位,,复数的共轭复数为( )i 12z i =-z A .B .12i +12i --C .D .12i -+12i-【答案】A【分析】根据共轭复数的定义求解.【详解】由共轭复数的定义知: 的共轭复数为: ;12i =-z 12i z =+故选:A.2.已知圆的圆心的横坐标为,则等于( )22:0C x y ax ++=C 1-a A .1B .2C .D .1-2-【答案】B【分析】由圆的一般方程得圆心坐标,从而得参数值.a 【详解】圆的标准方程为,,圆心为,22:0C x y ax ++=222()24a a x y ++=0a ≠(,0)2a C -∴,.12a-=-2a =故选:B .3.已知双曲线的一个焦点为,一个顶点为,则双曲线方程的标准方程为( )()5,0()3,0A .B .221169y x -=221259x y -=C .D .2262511x y -=221916x y -=【答案】D【分析】根据双曲线中的关系求解.,,a b c 【详解】由题可知,双曲线的焦点在轴上,所以可设方程为,x 22221x y a b -=且,所以,5,3c a ==22216b c a =-=所以双曲线方程为,221916x y -=故选:D.4.已知直线和圆有两个不同的交点,则实数的取值范围是( ):l y x m =+22:4C x y +=m A .B .()2,2-[]22-,C .D .(-⎡⎣-【答案】C,即得.2【详解】因为圆的圆心为,半径为2,22:4C x y +=()0,0又直线和圆有两个不同的交点,:l y x m =+22:4C x y +=,2解得m -<<即实数的取值范围是.m (-故选:C.5.已知双曲线的右顶点和抛物线的焦点重合,则的值为( )2221(0)3y x a a -=>28y x =a A .1B .2C .3D .4【答案】B【分析】求出抛物线的焦点坐标,再根据题意可求出的值.a 【详解】抛物线的焦点为,28y x =(2,0)因为双曲线的右顶点和抛物线的焦点重合,2221(0)3y x a a -=>28y x =所以,2a =故选:B6.“”是“直线与直线互相平行且不重合”的( )1a =260ax y +-=()()2110x a y a +++-=A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【分析】利用直线与直线平行化简求出,再由范围大小判断充分与必要条件.a【详解】若直线与直线互相平行且不重合,则,260ax y +-=()()2110x a y a +++-=()112a a +=⨯解得或,经检验,时,符合题意,时,两直线重合,故,所以“”是“1a =2-1a =2a =-1a =1a =”的充要条件.1a =故选:C7.已知双曲线的右焦点,则其离心率为22221(0,0)x y a b a b -=>>(),0Fc ( )A .2B .CD 12【答案】A【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【详解】双曲线(,)的右焦点到一条渐近线22221x y a b -=0a >0b>(),0Fc b y x a = 可得 ,即b ==22234c a c-=2c a =所以双曲线的离心率为: .2c e a ==故选:A.8.已知直线过抛物线的焦点,与抛物线交于,两点,与其准线交于点.若点是l 28y x =F A B C F 的中点,则线段的长为AC BC A .B .C .D .8331636【答案】C【分析】由题意结合抛物线的定义和性质首先求得直线AB 的方程,然后联立直线方程与抛物线方程可得点B 的坐标,进一步整理计算即可求得最终结果.【详解】如图,A 在准线上的射影为E ,B 在准线上的射影为H ,由抛物线y 2=8x ,得焦点F (2,0),∵点F 是的AC 中点,∴AE =2p =8,则AF =8,∴A 点横坐标为6,代入抛物线方程,可得.(6,AAF 所在直线方程为.AF k ∴==)2y x =-联立方程:可得:,)228y x y x ⎧=-⎪⎨=⎪⎩2320120x x -+=,则.264,3B B x x ∴==28233BF BH ==+=故.816833BC CF BF AF BF =-=-=-=故选C .【点睛】本题主要考查抛物线的标准方程,抛物线的几何性质及其应用等知识,意在考查学生的转化能力和计算求解能力.9.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若F 1PF 2为等腰直角 三角形,则椭圆的离心率是()A BC .D21【答案】D【解析】解法一:根据方程,令,求得的纵坐标,利用为等腰直角三角形可得x c =P 12F PF △的方程,消去后可得,从而可得离心率的方程,其解即为所求的离心率,,,a b c b 2220a ac c --=注意取舍.解法二:不妨设椭圆的焦距为1,利用等腰直角三角形的性质得到另外两边的长度,根据12F PF △椭圆的定义求得长轴的值,进而得到离心率.2a 【详解】解法一:不妨设椭圆的标准方程为,()222210x y a b a b +=>>半焦距为,左右焦点为,在第一象限,则.c 12,F F P ()2,0F c 在椭圆方程中,令,则,解得,故.x c =22221c y a b +=2P b y a =2,b P c a ⎛⎫ ⎪⎝⎭为直角三角形且,故即,12F PF △122F F P π∠=22b c a =2220a ac c --=故,解得2210e e +-=1e =-解法二:如图,不妨设,则,1221c F F ==21PF =1PF =于是,1221a PF PF =+=,212c c e a a ∴====故选:D.【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于的一个等式关系;而利,,a b c 用定义方法求离心率常常能起到快速解答的作用.10.已知椭圆的两个焦点分别为,短轴的两个端点分别为,点222:1(06x y G b b +=<12F F 、12B B 、在椭圆上,且满足.当变化时,给出下列三个命题:P G 1212PB PB PF PF +=+b ①点的轨迹关于轴对称;P y ②存在使得椭圆上满足条件的点仅有两个;b G P ③的最小值为2.OP其中,所有正确命题的序号是( )A .①B .①②C .①③D .②③【答案】C 【分析】由题可知同时也在以为焦点,长轴长为12PB PB +=P 12B B 、其椭圆方程为:,而点则是两椭圆交点,根据椭圆的几何性质即可对选222:1(066y x C b b +=<<-P 项进行判断.【详解】由题可知同时也在以为焦点,长轴长为1212=2PB PB PF PF +=+P12B B 、222:1(066y x C b b +=<<-对于①,将x 换为方程不变,则点的轨迹关于轴对称,故①正确;x -P y 对于②,由椭圆方程可知椭圆的长轴顶点,短轴长度小于的长轴顶点G ()C ,短轴长度小于与椭圆有4个交点,对应的点有4个,故②错误;(0,G C P 对于③,代数法:联立,即,即22222216166x y b y x b ⎧+=⎪⎪⎨⎪+=⎪-⎩()()22222222666666b x y b x b y b ⎧+=⎪⎨+-=-⎪⎩,两式相加可得,则()()22222222222222666666666b b b b x y b bb b x b y b ⎧⋅+=⋅⎪---⎨⎪+-=-⎩()()4422222266666636b b b x y b b b =+--+--+,当时,的最小值为4,()44442222422261221636722116636636622161236bb b b x y b b b b b b -+-++-+---=+=+-=23b =22x y +即当的最小值为2;OP几何法:如图所示因为椭圆与椭圆长轴确定,所以当点靠近坐标轴时(或,即其中一个椭圆更G C P 0b →b 接近圆时,此时会越接近,会越大;反之点远离坐标轴时,即两个椭圆离心率逐渐OPOPP接近时,越小,所以当,即时最小OP226b b =-23b =OP此时,,两式相加得,即的最小值为2,故③22:163x y G +=22:163y x C +=222222y x +⇒==OP 正确.故选:C二、填空题11.椭圆的长轴长为__________.2244x y +=【答案】4【分析】根据椭圆方程转化为标准方程确定,即可得长轴长.24a =【详解】解:椭圆,化为标准方程为,则,即2244x y +=2214x y +=24a =2a =所以椭圆的长轴长为.24a =故答案为:4.12.双曲线的渐近线方程为等于____________.2214x y -=【答案】12y x=±【解析】根据双曲线的方程,求得的值,进而求得双曲线的渐近线的方程.,a b 【详解】由题意,双曲线的焦点在上,且,2214x y -=y 1,2a b ==所以双曲线的渐近线的方程为.12a y x xb =±=±故答案为:.12y x=±13.已知椭圆()的左顶点为,上顶点为为坐标22221x y a b +=0a b >>A B O 原点),则该椭圆的离心率为__________.【分析】由椭圆的性质得出,进而得出离心率.,a c,,所以离心率为.a c ==c a ==三、双空题14.已知是虚数单位,复数满足,则的虚部为__________,__________.i z i 3i z ⋅=-z z =【答案】 3-【分析】根据复数的除法法则计算,然后根据复数的概念及复数模的计算公式即得.z 【详解】因为,i 3i z ⋅=-所以3i13i iz -==--所以的虚部为z 3-=故答案为:.3-15.如图,正方体的棱长为2,点在正方形的边界及其内部运动,平面区1111ABCD A B C D -P ABCD域由所有满足组成,则的面积是__________,四面体的体积的最大W 1A P P W 1P A BC -值是__________.【答案】 4π43【详解】由题意可知,满足是以1A P ≤P 1A 又因为点在正方形的边界及其内部运动,P ABCD 所以平面区域是以为圆心,1为半径的圆的,所以可知的面积是;W A 14W 4π设点到平面的距离为,1A PBC 2h =所以四面体的体积为,1P A BC -1233PBC PBC h S S ⋅⋅=⋅ 所以当点是的中点时,取得最大值为,四面体的体积最大值是.P AD PBC S 21P A BC -43四、解答题16.已知圆.22:2410C x y x y +--+=(1)求圆的圆心坐标和半径;C (2)直线交圆于两点,求的值.:1l y x =-C A B 、AB【答案】(1)圆心坐标,半径()1,2C 2r =(2)【分析】(1)首先将圆的一般方程配方整理成标准方程,根据圆的标准方程即可求得圆心坐标及半径;(2)首先求解圆心到直线的距离,然后直接根据圆的弦长公式进行求解即可.l d 【详解】(1)已知圆,22:2410C x y x y +--+=配方整理得:,()()22:124C x y -+-=故得圆的圆心为,半径.C ()1,2C 2r =(2)由(1)可知圆的圆心坐标为,半径,C ()1,2C 2r =则圆心到直线的距离,d则.AB ===17.如图,在四棱锥中,平面,底面为菱形,为的中点.P ABCD -PA ⊥ABCD ABCD E CD(1)求证:平面;BD ⊥PAC(2)若点是棱的中点,求证:平面.F AB CF PAE 【答案】(1)答案见解析(2)答案见解析【分析】由平面,且底面为菱形,即可得到平面内的两条相交直线,PA ⊥ABCD ABCD BD ⊥PAC 则可证得平面.BD ⊥PAC (2)由分别为中点,可得到,则问题即可得以证明.,E F //CF AE 【详解】(1)因为平面,平面,所以,又因为底面是菱PA ⊥ABCD BD ⊂ABCD PA BD ⊥ABCD 形,则,,平面,所以平面.BD AC ⊥PA AC A = ,PA AC ⊂PAC BD ⊥PAC (2)连接,如图所示:CF AE因为分别为的中点,则且,所以四边形为平行四边形,所以,E F ,CD AB //AF CE AF CE =AFCE ,平面,平面,所以平面.//AE CF AE ⊂PAE CF ⊄PAE //CF PAE 18.半径为3的圆过点,圆心在直线上且圆心在第一象限.C ()1,1A -C 2y x =(1)求圆的方程;C (2)过点作圆的切线,求切线的方程.()4,3C 【答案】(1)()()22129x y -+-=(2)或40x -=43250x y +-=【分析】(1)通过圆心在直线上,且在第一象限设出圆心的坐标,再利用圆上的点到圆心的距离等于半径求出圆心,进而可得圆的方程.(2)先判断出点在圆外,再通过切线斜率存在与不存在两种情况借助圆心到切线的距离等于半径求切线方程.【详解】(1)设圆心为,则,()(),20C a a a >3r ==解得,则圆的方程为.1a =C ()()22129x y -+-=故答案为:.()()22129x y -+-=(2)点在圆外,()4,3①切线斜率不存在时,切线方程为,圆心到直线的距离为,满足条件.4x =413d r =-==②切线斜率存在时,设切线,即,():34l y k x -=-430kx y k --+=则圆心到切线的距离,解得,3d 43k =-则切线的方程为:.43250x y +-=故答案为:或.40x -=43250x y +-=19.如图,在三棱柱中,四边形是边长为的正方形,.再从条件①、条111ABC A B C -11AA C C 43AB =件②、条件③中选择两个能解决下面问题的条件作为已知,并作答.(1)求证:平面;AB ⊥11AA C C (2)求直线与平面所成角的正弦值.BC 11A BC 条件①:;条件②:;条件③:平面平面.5BC =1AB AA ⊥ABC ⊥11AA C C 【答案】条件选择见解析;(1)证明见解析;(2).1225【分析】选择①②:(1)根据勾股定理可得,再由,利用线面垂直的判定定AB AC ⊥1AB AA ⊥理可得平面;选择①③:(1)根据勾股定理可得,再由面面垂直的性质定AB ⊥11AA C C AB AC ⊥理可得平面.AB ⊥11AA C C (2)以为原点建立空间直角坐标系,求出平面的一个法向量,根据A A xyz -11A BC sin |cos ,|BC n θ=<>【详解】解:选择①②:(1)因为,,,4AC =3AB =5BC =所以.AB AC ⊥又因为,,1AB AA ⊥1AC AA A =∩所以平面.AB ⊥11AA C C 选择①③:(1)因为,,,4AC =3AB =5BC =所以.AB AC ⊥又因为平面平面,ABC ⊥11AA C C 平面平面,ABC ⋂11AAC C AC =所以平面.AB ⊥11AA C C (2)由(1)知,.AB AC ⊥1AB AA ⊥因为四边形是正方形,所以.11AA C C 1AC AA ⊥如图,以为原点建立空间直角坐标系,A A xyz -则,,,(0,0,0)A (3,0,0)B (0,0,4)C ,,1(0,4,0)A 1(0,4,4)C ,,.1(3,4,0)A B =- 11(0,0,4)A C = (3,0,4)BC =- 设平面的一个法向量为,11A BC (,,)n x y z =则即1110,0,n A B n A C ⎧⋅=⎪⎨⋅=⎪⎩ 340,40.x y z -=⎧⎨=⎩令,则,,所以.3y =4x =0z =(4,3,0)n = 设直线与平面所成角为,BC 11A BC θ则.||12sin |cos ,|25||||BC n BC n BC n θ⋅=<>== 所以直线与平面所成角的正弦值为.BC 11A BC 1225【点睛】思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内;(2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.20.已知椭圆的长轴长为的直线与椭圆2222:1(0)x y G a b a b +=>>e =()2,0M -l 交于不同的两点.G ,A B(1)求椭圆的方程;G (2)若点关于轴的对称点为,求线段长度的取值范围.B x B 'AB '【答案】(1);2212x y +=(2).AB '∈【分析】(1)由题意得可求出,从而可求出椭圆的方程;2c a a =222b a c =-b (2)设,设直线的方程为,将直线方程代入椭圆方程化简,由1122(,),(,)A x y B x y l (2)y k x =+可得0∆>212k <简,再由可求出其范围.2102k ≤<【详解】(1)由题意得,2c a a =1a c ==所以,222211b a c =-=-=所以椭圆方程为;2212x y +=(2)设,1122(,),(,)A x y B x y 显然直线的斜率存在,设直线的方程为,l l (2)y k x =+由,得,22(2)12y k x x y =+⎧⎪⎨+=⎪⎩()k x k x k +++-=2222218820由,得,得,422644(21)(82)0k k k ∆=-+->2120k ->212k <所以,22121222882,2121k k x x x x k k --+==++因为,22(,)B x y '-因为,2222221212122222882816()()442121(21)k k k x x x x x x k k k ⎛⎫----=+-=-⋅= ⎪+++⎝⎭,212122284()442121k k y y k x x k k k k k -+=++=⋅+=++,=因为,所以,2102k ≤<21212k≤+<所以.AB '∈21.设是正整数集的一个非空子集,如果对于任意,都有或,则称为自A x A ∈1x A -∈1x A +∈A 邻集.记集合的所有子集中的自邻集的个数为.{}1,2,,n A n = (2,)n n N ≥∈n a (1)直接写出的所有自邻集;4A (2)若为偶数且,求证:的所有含个元素的子集中,自邻集的个数是偶数;n 6n ≥n A 5(3)若,求证:.4n ≥12n n a a -≤【答案】(1),,,,,;(2)证明见解析;(3)证明见{1,2,3,4}{1,2,3}{2,3,4}{1,2}{2,3}{3,4}解析.【分析】(1)每个自邻集中至少有两个元素,然后按相邻元素规则确定;(2)利用配对原则证明,对于集合的含有5个元素的自邻集,n A 12345{,,,,}B x x x x x =不妨设,构造集合,它们是不相等的集合,也是5个54321{1,1,1,1,1}C n x n x n x n x n x =+-+-+-+-+-元素的自邻集,这样可得证结论;(3)记自邻集中最大元素为的自邻集的个数为,.k k b 2,3,4,,k n = 当时,,,得.4n ≥1231n n a b b b --=+++ 231n n n a b b b b -=++++ 1n n n a a b -=+下面只要证明即可,对自邻集进行分类确定自邻集的个数:①含有这三个元素,1n n b a -≤2,1,n n n --②含有两个元素,不含有这个元素,且不只有,两个元素.③只含有这两,1n n -2n -n 1-n ,1n n -个元素,可得与的关系,完成证明.n b 1n a -【详解】解:(1).的子集中的自邻集有:4A ,,,,,.{1,2,3,4}{1,2,3}{2,3,4}{1,2}{2,3}{3,4}(2).对于集合的含有个元素的自邻集,n A 512345{,,,,}B x x x x x =不妨设.12345x x x x x <<<<因为对于任意,都有或,.i x B ∈1i x B -∈1i x B +∈1,2,3,4,5i =所以,,或.211x x =+451x x =-321x x =+341x x =-对于集合,54321{1,1,1,1,1}C n x n x n x n x n x =+-+-+-+-+-因为,所以,.123451x x x x x n <<<<≤≤11i n x n +-≤≤1,2,3,4,5i =且.5432111111n x n x n x n x n x +-<+-<+-<+-<+-所以.n C A ⊆因为,,或.121x x +=541x x -=321x x =+341x x =-所以,,211(1)1n x n x +-=+--451(1)1n x n x +-=+-+或.341(1)1n x n x +-=+-+321(1)1n x n x +-=+--所以,对于任意,都有1i n x C +-∈或,.(1)1i n x C +-+∈(1)1i n x C +--∈1,2,3,4,5i =所以集合也是自邻集.C 因为当n 为偶数时,,331x n x ≠+-所以.B C ≠所以,对于集合任意一个含有个元素的自邻集,在上述对应方法下会n A 5存在一个不同的含有个元素的自邻集与其对应.5所以,的含有个元素的自邻集的个数为偶数.n A 5(3)记自邻集中最大元素为的自邻集的个数为,.k k b 2,3,4,,k n = 当时,,.4n ≥1231n n a b b b --=+++ 231n n n a b b b b -=++++显然.1n n n a a b -=+下面证明.1n n b a -≤①自邻集中含,,这三个元素.2n -n 1-n 记去掉这个自邻集中的元素后的集合为,因为,所以n D 2,1n n D --∈D仍然是自邻集,且集合中的最大元素是,所以含这三个D n 1-2,1,n n n --元素的自邻集的个数为.1n b -②自邻集中含有,这两个元素,不含,且不只有,两个n 1-n 2n -n 1-n 元素.记自邻集中除,之外的最大元素为,则.n n 1-m 23m n -≤≤每个自邻集去掉,这两个元素后,仍然为自邻集,n 1-n 此时的自邻集的最大元素为,可将此时的自邻集分为类:m 4n -含最大数为的集合个数为.22b 含最大数为的集合个数为.33b含最大数为的集合个数为.3n -3n b -则这样的集合共有个.233n b b b -+++ ③自邻集只含,两个元素,这样的自邻集只有1个.n 1-n 综上可得23311n n n b b b b b --=+++++ 23312n n n b b b b b ---+++++ ≤.1n a -=所以,1n n b a -≤所以当时,.4n ≥12n n a a -≤【点睛】关键点点睛:本题考查集合的新定义,解题关键是理解新定义,并能利用新定义求解.特别是对新定义自邻集的个数的记数:记自邻集中最大元素为的自邻集的个数为,.然k k b 2,3,4,,k n = 后求得与的关系.n a n b .。

2021-2022年高二12月月考 数学 含答案

2021-2022年高二12月月考 数学 含答案

2021年高二12月月考 数学 含答案一、选择题(共12个小题,每小题5分,共60分)1.命题“如果,那么”的逆否命题是 ( )A .如果,那么B .如果,那么C .如果,那么D .如果,那么 2.已知则是的 ( )A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件 3.已知向量的夹角为 ( )A.0°B.45°C.90D.180°4.已知方程表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .m <2 B .1<m <2 C .m <-1或1<m < D .m <-1或1<m <25.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若∠,则双曲线的离心率等于 ( )A .B .C .D . 6. 已知的值分别为与则若μλμλλ,//),2,12,6(),2,0,1(b a b a -=+= ( ) A.B.5,2C.D.-5,-27.若 是椭圆的两个焦点,为椭圆上一点,且,则Δ的面积为 ( )A .B .C .D . 8.在同一坐标系中,方程与的曲线大致是( )9.已知圆锥曲线的离心率e 为方程的两根,则满足条件的圆锥曲线的条数为 ( )A .1B .2C .3D .410.已知双曲线的离心率为2,有一个焦点恰好是抛物线的焦点,则此双曲线的渐近线方程是( )A. B. C. D.11.椭圆上有n个不同的点:P1 ,P2 ,…,P n , 椭圆的右焦点为F,数列{|P n F|}是公差大于的等差数列, 则n的最大值是()A.198 B.199 C.200 D.20112.若椭圆的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5:3两段,则此椭圆的离心率为()A. B.C.D.二、填空题(共4个小题,每小题5分,共20分)13.“末位数字是0或5的整数能被5整除”的否定形式是;否命题是 .14.在平行六面体中,M为AC与BD的交点,若,则= 。

河北省唐山市开滦二中2013-2014学年高二12月月考 数学(文)试题 Word版含答案

河北省唐山市开滦二中2013-2014学年高二12月月考 数学(文)试题 Word版含答案

命题人:罗丹说明:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第(1)页至第(2)页,第Ⅱ卷第(3)页至第(6)页。

2、本试卷共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)注意事项:1、答第Ⅰ卷前,考生务必将自己的准考证号、科目填涂在答题卡上。

2、每小题选出答案后,用2B 铅笔把答题卡上对应的题目标号涂黑。

答在试卷上无效。

3、考试结束后,监考人员将试卷答题卡和机读卡一并收回。

1共焦点且过点(2,1)Q 的双曲线方程是( )A 2轴上,则k 的取值范围是( )A.3>kB.3.已知中心在原点,焦点在x )A .2y x =± B 4.k 为何值时,直线y=kx+2和椭圆632x 22=+y 有两个交点 ( )A .k< .k ≤ 5.若椭圆221x y m n +=(m >n >0)和双曲线221x y a b-=(a >b >0)有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. m -aB. 1()2m a -C. m 2-a 26.已知F 1、F 2M 为双曲线上的点,若MF 1⊥MF 2,∠MF 2F 1 = 60°,则双曲线的离心率为 ( )A .BC 7.长方体ABCD —A 1B 1 C 1D 1,2AB =,2AD =,则点D 到平面1ACD 的距离是( )A .28.从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的正切值为( )A.09.给出如下四个命题①若“p 且q ”为假命题,则p 、q 均为假命题②命题“若0,00xy x y ===则或”的否命题为“若0,00xy x y ≠≠≠则 且” ③“任意11,2≥+∈∀x R x ”的否定是“存在11,2≤+∈∃x R x ” ④在∆ABC 中,“B A >”是“B A sin sin >”的充要条件 其中正确..的命题的个数是( )A. 4 B. 3 C. 2 D. 1 10.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为( )A C D 11. 已知圆的方程为,08622=--+y x y x 设该圆中过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是( )A BD 12.已知点()1,0A -、()1,0B ,()00,P x y 是直线2y x =+上任意一点,以A 、B 为焦点的椭圆过点P .记椭圆离心率e 关于0x 的函数为()0e x ,那么下列结论正确的是 ( ) A .e 与0x 一一对应 B .函数()0e x 无最小值,有最大值 C .函数()0e x 是增函数 D .函数()0e x 有最小值,无最大值第Ⅱ卷(非选择题,共90分)二 填空题(每题5分,共20分)13为 .14.圆22x y 2x 4y 30+++-=上到直线4x-3y=2__________ 个。

2022-2023学年吉林省四平市第一高二年级上册学期12月月考数学试题【含答案】

2022-2023学年吉林省四平市第一高二年级上册学期12月月考数学试题【含答案】

2022-2023学年吉林省四平市第一高级中学高二上学期12月月考数学试题一、单选题1.从6名员工中选出3人分别从事教育、培训、管理三项不同的工作,则选派方案共有( ) A .60种 B .80种 C .100种 D .120种【答案】D【分析】利用排列的定义直接列式求解.【详解】从6名员工中选出3人分别从事教育、培训、管理三项不同的工作,则选派方案共36654120A (种).故选:D .2.下列问题是排列问题的是( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2022个不同的点,且任意三点不共线,连接任意两点可以构成多少条线段?C .集合{}123,,,,n a a a a ⋅⋅⋅的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法? 【答案】D【分析】根据排列的定义逐个选项辨析即可.【详解】A 中握手次数的计算与次序无关,不是排列问题; B 中线段的条数计算与点的次序无关,不是排列问题; C 中子集的个数与该集合中元素的次序无关,不是排列问题;D 中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是2种不同的选法,因此是排列问题. 故选:D3.计算:7733A =A ( ) A .44AB .47AC .47CD .37A【答案】B【分析】根据排列数公式计算即可【详解】747733A 7!7!===A A 3!(7-4)!故选 :B4.78915⨯⨯⨯⋅⋅⋅⨯可表示为( )A .915AB .815AC .915CD .815C【答案】A【分析】由排列数公式判断即可【详解】因为是78915⨯⨯⨯⋅⋅⋅⨯连续9个数和相乘, 所以91578915A ⨯⨯⨯⋅⋅⋅⨯=, 故选:A5.为了丰富学生的课余生活,某学校开设了篮球、书法、美术、吉他、舞蹈、击剑共六门活动课程,甲、乙、丙3名同学从中各自任选一门活动课程参加,则这3名学生所选活动课程不全相同的选法有( ) A .120种 B .150种 C .210种 D .216种【答案】C【分析】用甲、乙、丙3名同学从中各自任选一门活动课程参加的方法数,减去3名学生所选活动课程全部相同的方法数,从而求得正确答案. 【详解】依题意,每名同学都有6种选择方法,所以这3名学生所选活动课程不全相同的选法有366210-=种. 故选:C6.将4张座位编号分别为1,2,3,4的电影票全部分给三人,每人至少1张.如果分给同一人的2张电影票具有连续的编号,那么不同的分法种数是( ) A .24 B .18 C .12 D .6【答案】B【分析】首先将2张一份的电影票编号连续,列出所有可能的分法,再将三份电影票分给三个人,按照分步乘法计数原理计算可得;【详解】解:将4张电影票分成三份,其中2张一份的电影票编号连续,则有12,3,4;1,23,4;1,2,34三种分法,然后将三份电影票分给三个人,有33A 6=种分法,所以不同的分法种数为1863=⨯.故选:B .7.若一个三位正整数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从1,2,3,4,5这5个数字中任取3个数字,组成没有重复数字的三位数,其中“伞数”共有( )个. A .60 B .35 C .20 D .53【答案】C【分析】根据的“伞数”定义,十位数只能是3,4,5,然后分3类,分别求得“伞数”的个数再求和, 【详解】由题意得:十位数只能是3,4,5,当十位数是3时,个位和百位只能是1,2,“伞数”共有22A 2=个;当十位数是4时,个位和百位只能是1,2,3,“伞数”共有23A 6=个;当十位数是5时,个位和百位只能是1,2,3,4,“伞数”共有24A 12=个;所以“伞数”共有20个, 故选:C.8.不等式288A 6A x x -<⨯的解集为( )A .[]28,B .()7,12C .{712,}xx x N <<∈∣ D .{}8 【答案】D【分析】根据排列数的性质和计算公式化简求其解即可.【详解】因为288A 6A x x -<⨯,所以88!6(8)!(10)!x x <⨯--!,所以(10)(9)6x x --<,所以(7)(12)0x x --<,又28x ≤≤,x ∈N , 所以8x =,所以不等式288A 6A x x -<⨯的解集为{}8,故选:D.9.若3265A !A m =,则m =( )A .6B .5C .4D .3【答案】D【分析】根据排列数与阶乘的公式求解即可【详解】由3265A !A m =,则!6m =,故3m =.故选:D10.将4名新老师安排到,,A B C 三所学校去任教,每所学校至少一人,则不同的安排方案的种数是( ) A .54 B .36 C .24 D .18【答案】B【分析】分类讨论,,A B C 分别有两名新教师的情况,进而计算出4名新教师安排到,,A B C 三所学校去任教每所学校至少一人的所有情况,【详解】将4名新教师安排到,,A B C 三所学校去任教,每所学校至少一人,分配方案是:1,1,2,A 学校有两名新老师:2142C C 12=;B 学校有两名新老师:2142C C 12=;C 学校有两名新老师:2142C C 12=所以共有2142363C C =种情况,故选:B.11.用数字0,1,2,3,4,5组成没有重复数字且大于的六位数的个数为( ) A .478 B .479 C .480 D .481【答案】B【分析】可从反面入手,考虑比小,即首位是1的情况【详解】用数字0,1,2,3,4,5组成的没有重复数字的六位数的个数为555A 600=. 以1为十万位的没有重复数字的六位数的个数为55A 120=,由于是以2为十万位的没有重复数字的六位数中最小的一个, 所以没有重复数字且大于的六位数的个数为6001201479--=. 故选:B12.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.为传承和弘扬中华优秀传统文化,某校国学社团开展“六艺”讲座活动,每艺安排一次讲座,共讲六次.讲座次序要求“礼”在第一次,“数”不在最后,“射”和“御”两次相邻,则“六艺”讲座不同的次序共有( ) A .48种 B .36种C .24种D .20种【答案】B【分析】由题意,将“射”和“御”捆绑看作一个元素与“乐”和“书”进行全排列,再将“射”和“御”交换位置,最后安排“数”, 根据分步计数原理即可求解.【详解】解:因为“礼”在第一次,所以只需安排后面五次讲座的次序即可,又“数”不在最后,“射”和“御”两次相邻,所以先将“射”和“御”捆绑看作一个元素与“乐”和“书”进行全排列有33A 种排法,再将“射”和“御”交换位置有22A 种排法,最后安排“数”有13A 种排法,所以根据分步计数原理共有321323A A A 36=种排法,故选:B.13.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图由四个全等的直角三角形和一个正方形构成.现用5种不同的颜色对这四个直角三角形和一个正方形区域涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .300D .420【答案】D【分析】将五个区域表示为①②③④⑤,先考虑区域①②③,再分情况考虑区域④⑤,由分步乘法计数原理求解即可.【详解】如图,将五个区域表示为①②③④⑤,对于区域①②③,三个区域两两相邻,有35A 60=种;对于区域④⑤,若①与⑤颜色相同,则④有3种情况,若①与⑤颜色不同,则⑤有2种情况,④有2种情况,此时区域④⑤的情况有3227+⨯=种情况;则一共有607420⨯=种情况 故选:D .14.给如图所示的5块区域A ,B ,C ,D ,E 涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( )A .120种B .720种C .840种D .960种【答案】D【分析】依次给区域,,,,A B D C E 涂色,求出每一步的种数,由乘法分步原理即得解.【详解】解:A 有5种颜色可选,B 有4种颜色可选,D 有3种颜色可选,C 有4种颜色可选,E 有4种颜色可选,故共有5×4×3×4×4=960种不同的涂色方法. 故选:D .二、多选题15.已知23301A A 2!4m+=-,则m 的可能取值是( ) A .0 B .1 C .2 D .3【答案】CD【分析】将题设中的方程化为3A 6m=,从而可求m 的可能取值.【详解】因为23301A A 2!4m+=-,所以31A 6142m -⨯+=,所以3A 6m =,其中,3N m m ∈≤,而 01233333A 1,A 3,A 6A ====,所以m 的值可能是2或3. 故选:CD .16.下列等式正确的是( ) A .()111A Am m nn n +++=B .()1!A 1!m n n n m -=--C .()()!21n n n n =--!D .11A A m mnn n m+=- 【答案】ACD【分析】根据阶乘和排列数的运算公式,进行推理与判断选项中的运算是否正确即可.【详解】对于A ,(1)A mn n +=()()()()111!!(1)A !11!m n n n n n m n m ++++⋅==-⎡⎤+-+⎣⎦,选项A 正确;对于B ,()()1!!A 1!1!m n n n n m n m -==-+⎡⎤--⎣⎦,所以选项B 错误; 对于C ,()()()()()12!!2!11n n n n n n n n n -⋅-==---,选项C 正确;对于D ,111A m nn m n m +=--•()()!!A !1!m n n n n m n m ==-⎡⎤-+⎣⎦,选项D 正确. 故选:ACD .17.(多选)某校以大课程观为理论基础,以关键能力和核心素养的课程化为突破口,深入探索普通高中创新人才培养的校本化课程体系.本学期共开设了八大类校本课程,具体为学科拓展(X )、体艺特长(T )、实践创新(S )、生涯规划(C )、国际视野(I )、公民素养(G )、大学先修(D )、PBL 项目课程(P ),假期里决定继续开设这八大类课程,每天开设一类且不重复,连续开设八天,则( )A .某学生从中选两类,共有28A 种选法B .课程“X ”“T ”排在不相邻两天,共有6267A A 种排法C .课程中“S ”“C ”“T ”排在相邻三天,且“C ”只能排在“S ”与“T ”的中间,共有720种排法D .课程“T ”不排在第一天,课程“G ”不排在最后一天,共有()71167666A A A A +种排法【答案】BD【分析】A 选项,属于组合问题,故为28C 种;B 选项,采用插空法求解;C 选项,采用捆绑法求解;D 选项,使用分类加法计数原理进行所求解.【详解】对于A ,某学生从中选两类,如选“X ”“T ”与选“T ”“X ”是一种选法,没有顺序之分,所以28A 种选法计算重复,故A 错误;对于B ,课程“X ”“T ”排在不相邻两天,先将剩余六类课程全排列,产生7个空隙,再将课程“X ”“T ”插空,共有6267A A 种排法,故B 正确;对于C ,课程“S ”,“C ”,“T ”排在相邻三天,且“C ”只能排在“S ”与“T ”的中间,采用捆绑法,共有6262A A 1440=种排法,故C 错误;对于D ,课程“T ”不排在第一天,课程“G ”不排在最后一天,则分两类情况:①课程“G ”排在第一天,②课程“G ”排在除第一天和最后一天之外的某一天,则共有()71167666A A A A +种排法,故D 正确.故选:BD .三、填空题18.方程421A 18A x x +=,的解为x =_______.【答案】5【分析】由排列数公式直接得到关于x 的方程,解出x 的值,再代入检验得到答案. 【详解】因为421A 18A x x +=,则14,2x x +≥≥且*x ∈N ,则3x ≥且*x ∈N所以()()()()112181x x x x x x +--=-,即()()1218x x +-=,解得5x =或4x =-(舍去). 故答案为: 519.某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,而不改变原来的节目顺序,则不同的安排方式有________种. 【答案】720【分析】根据分步乘法计数原理求得正确答案.【详解】原来7个节目,形成8个空位,安排一位老校友;8个节目,形成9个空位,安排一位老校友; 9个节目,形成10个空位,安排一位老校友.所以不同的安排方式有8910720⨯⨯=种. 故答案为:72020.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种___________.(以数字作答)【答案】72【分析】本题考查分类加法计数原理和分步乘法计数原理,按照颜色的种数进行分为3种颜色和四种颜色依次讨论即可.【详解】按照使用颜色的种类分类,第一类:使用了4种颜色,2,4同色,或3,5同色,则共有1424C A 48=(种),第二类:使用了三种颜色,2,4同色且3,5同色,则共有34A 24=(种)所以共有48+24=72(种) 故答案为:7221.冬奥会首金诞生于短道速滑男女混合接力赛,赛后4位运动员依次接受采访,曲春雨要求不第1个接受采访,武大靖在任子威后接受采访(可以不相邻),则采访安排方式有__________种. 【答案】9【分析】先考虑曲春雨,再结合倍缩法解决定序问题考虑剩下的3位选手,最后由分步计数原理求解即可.【详解】先考虑曲春雨,有3种采访安排,再考虑剩下的3位选手,武大靖在任子威后,有3322A 3A =种,按照分步计数原理共有339⨯=种. 故答案为:9.22.正整数484有个不同的正约数___________. 【答案】9【分析】先将484分解质因数,484的约数由质因数的乘积组成,使用分步乘法计数原理,可求出484正约数的个数.【详解】22484221111211=⨯⨯⨯=⨯设d 为484的正约数,则211i j d =⨯,(i =0,1,2,j =0,1,2) 例如:0i =,0j =时,00211=11=1d =⨯⨯是484的约数,1i =,2j =时,12211=2121=242d =⨯⨯是484的约数,2i =,2j =时,22211=4121=484d =⨯⨯是484的约数,因此,484的正约数个数,即d 的不同取值个数,第一步确定i 的值,有3种可能,第二步确定j 的值,有3种可能,因此d 的取值共有339⨯=种. 故答案为:9.23.用0,1,2,3,4,5,6七个数共可以组成______个没有重复数字的三位数. 【答案】180【分析】根据分类加法原理和分步乘法原理即可求解.【详解】选0时,0不能在首位,故有1226C A 60=个,不选0时,有36A 120=个,根据分类加法原理,共有60120180+=个, 故答案为:180.24.将1,2,3,4,5,6,7,8八个数字排成一排,满足相邻两项以及头尾两项的差均不大于2,则这样的排列方式共有_______种.(用数字作答) 【答案】16【分析】根据题意可将该排列问题看成一个圆环上有1,2,3,4,5,6,7,8八个数字使其满足题意要求进行摆放,有两种情形,然后再将此圆环分别从某一个数字处剪开排成一列,一个作为头一个作为尾,由此即可求出结果.【详解】根据题意可将该排列问题看成一个圆环上有1,2,3,4,5,6,7,8八个数字使其满足题意要求进行摆放,有两种情形,如下图所示:然后再将此圆环分别从某一个数字处剪开排成一列,一个作为头一个作为尾,则每一个圆环有8种剪开方式情况,故满足题意的有2816⨯=种. 故答案为:16.四、解答题25.3张卡片正、反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,则可以得到多少个不同的三位数?【答案】333A 248⨯=故可以得到48个不同的三位数【分析】通过分步乘法计数原理即可得到结果 【详解】“组成三位数”这件事,分两步完成:第一步:确定排在百位、十位、个位上的卡片,即3个元素的一个全排列,即33A ;第二步:分别确定百位、十位、个位上的数字,各有2种选法,即32.根据分步乘法计数原理,可以得到333A 248⨯=个不同的三位数.26.现有8个人(5男3女)站成一排.(1)其中甲必须站在排头有多少种不同排法?(2)女生必须排在一起,共有多少种不同的排法?(3)其中甲、乙两人不能排在两端有多少种不同的排法?(4)其中甲在乙的左边有多少种不同的排法?(5)甲、乙不能排在前3位,有多少种不同排法?(6)女生两旁必须有男生,有多少种不同排法?【答案】(1)5040(2)4320(3)21600(4)20160(5)14400(6)2880【分析】(1)分两步,先考虑甲必须站在排头的特殊要求,用特殊元素优先法可解;(2)女生必须排在一起,用捆绑法求解;(3)甲、乙两人不能排在两端,用插空法求解;(4)甲在乙的左边,可采用倍缩法求解;(5)甲、乙不能排在前3位,用特殊元素或特殊位置优先法可解;(6)女生两旁必须有男生,用插空法求解.【详解】(1)根据题意,甲必须站在排头,有1种情况,将剩下的7人全排列,有77A 种情况,则甲必须站在排头有77A 5040=种排法; (2)根据题意,先将3名女生看成一个整体,考虑三人之间的顺序,有33A 种情况,将这个整体与5名男生全排列,有66A 种情况,则女生必须排在一起的排法有3636A A 4320=种; (3)根据题意,将甲、乙两人安排在中间6个位置,有26A 种情况,将剩下的6人全排列,有66A 种情况,则甲、乙两人不能排在两端有2666A A 21600=种排法;(4)根据题意,将8人全排列,有88A 种情况,其中甲在乙的左边与甲在乙的右边的情况数目相同,则甲在乙的左边有881A 201602=种不同的排法; (5)根据题意,将甲、乙两人安排在后面的5个位置,有25A 种情况, 将剩下的6人全排列,有66A 种情况,甲、乙不能排在前3位,有2656A A 14400=种不同排法;(6)根据题意,将5名男生全排列,有55A 种情况,排好后除去2端有4个空位可选,在4个空位中任选3个,安排3名女生,有34A 种情况,则女生两旁必须有男生,有5354A A 2880=种不同排法.。

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题(含解析)

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题(含解析)

2023-2024学年青海省西宁市城西区高二上册12月月考数学模拟试题一、单选题1.设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】C【分析】先求出共轭复数再判断结果.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .本题考点为共轭复数,为基础题目.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点,若BE =1xAA +y AB +z AD,则().A .x =1,12y =,12z =-B .x =1,12y =-,12z =C .12x =,y =1,12z =-D .12x =-,y =1,12z =【正确答案】B【分析】利用空间向量的加减及数乘运算法则进行计算,解决空间向量基本定理问题.【详解】由题意得:()11111111112BE BB B A A E AA AB A B A D =++=-++1111112222AA AB AB AD AA AB AD =-++=-+ ,所以111,,22x y z ==-=故选:B3.设非零向量a ,b满足a b a b +=- ,则A .a ⊥bB .=a bC .a ∥bD .a b> 【正确答案】A【详解】由a b a b +=- 平方得222222a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅= ,则a b ⊥ ,故选A.本题主要考查了向量垂直的数量积表示,属于基础题.4.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为.A .1415B .115C .29D.【正确答案】A【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求(P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,所以232101(15C P A C =,因此114()1()=11515P A P A =--=,故本题选A.本题考查了求对立事件的概率问题,考查了运算能力.5.已知向量()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,则有().A .23a c b=- B .a b c+= C .()b a c⊥- D .a b b c c a⋅=⋅=⋅ 【正确答案】C【分析】对于A ,利用向量的线性运算的坐标表示即可求解;对于B ,利用向量的摸的坐标表示即可求解;对于C ,利用向量的线性运算的坐标表示及向量垂直的坐标表示即可求解;对于D ,利用向量的数量积的坐标运算即可求解.【详解】对于A ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以242,0,33b ⎛⎫= ⎪⎝⎭ ,2140,1,33c b ⎛⎫-=- ⎪⎝⎭ ,所以23a c b ≠- ,故A 不正确;对于B ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =-,所以1,a ==b == ,c == ,所以a b c +≠ ,故B 不正确;对于C ,因为()0,1,0a = ,()2,1,3c =- ,所以()2,0,3a c -=-,又()3,0,2b = ,所以()()3200320b a c ⋅-=⨯-+⨯+⨯= ,即()b ac ⊥-,故C 正确.对于D ,因为()0,1,0a = ,()3,0,2b = ,()2,1,3c =- ,所以0310020a b ⋅=⨯+⨯+⨯=,()3201230b c ⋅=⨯+⨯+⨯-= ,()2011301c a ⋅=⨯+⨯+-⨯= ,所以a b b c c a ⋅=⋅≠⋅,故D 不正确.故选:C.6.已知sin cos αα-=α∈(0,π),则tan α=A .-1B .2C .2D .1【正确答案】A 【详解】sin cos αα-=()0,απ∈,12sin cos 2αα∴-=,即sin 21α=-,故34πα=1tan α∴=-故选A 7.曲线2122y x =+在点51,2⎛⎫- ⎪⎝⎭处的切线的倾斜角为()A .34πB .4πC .23πD .3π【正确答案】A【分析】根据导数的几何意义得到点51,2⎛⎫- ⎪⎝⎭处切线的斜率,再根据斜率求倾斜角即可.【详解】=y x ',所以在点51,2⎛⎫- ⎪⎝⎭处的切线的斜率为-1,倾斜角为34π.故选:A.8.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=【正确答案】A【详解】与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A9.四面体OABC 中,OA a = ,OB b = ,OC c =,点M 在线段OC 上,且2OM MC =,N 为BA 中点,则MN为()A .121232a b c-+ B .211322a b c-++C .112223a b c+-r r r D .221332a b c++ 【正确答案】C【分析】利用空间向量的线性运算及空间向量基本定理,结合图像即可得解.【详解】解:根据题意可得,()2111232223MN MO ON OC OA OB a b c =+=-++=+-.故选:C.10.椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为B ,F 为其左焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的取值范围为()A.,12⎤⎢⎥⎣⎦B.⎣⎦C.⎫⎪⎪⎣⎭D.⎣⎦【正确答案】B【分析】确定四边形1AFBF为矩形,得到1π4e α=⎛⎫+ ⎪⎝⎭,根据三角函数的性质得到离心率范围.【详解】设椭圆右焦点为1F ,连接1AF ,1BF ,AF BF ⊥,则四边形1AFBF 为矩形,则12sin 2cos 2AF AF AF BF c c a αα+=+=+=,故11πsin cos 4e ααα=+⎛⎫+ ⎪⎝⎭,ππ124α⎡⎤∈⎢⎥⎣⎦,,则ππ32π,4α⎡⎤+∈⎢⎥⎣⎦,πsin ,142α⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,23e ∈⎣⎦.故选:B.11.已知a<0,若直线1:210l ax y +-=与直线()2:140l x a y +++=平行,则它们之间的距离为()A.4B.2CD4【正确答案】A【分析】根据平行关系确定参数,结合平行线之间的距离公式即可得出.【详解】解:直线1:210l ax y +-=与直线()2:140l x a y +++=平行,()120a a ∴+-=,解得2a =-或1a =,又a<0,所以2a =-,当2a =-时,直线1:2210l x y -+=与直线2:2280l x y -+=距离为4=.故选:A12.若圆221x y +=上总存在两个点到点(,1)a 的距离为2,则实数a 的取值范围是()A .(-⋃B .(-C .(1,0)(0,1)-D .(1,1)-【正确答案】A【分析】将问题转化为圆22()(1)4x a y -+-=与221x y +=相交,从而可得2121-<+,进而可求出实数a 的取值范围.【详解】到点(,1)a 的距离为2的点在圆22()(1)4x a y -+-=上,所以问题等价于圆22()(1)4x a y -+-=上总存在两个点也在圆221x y +=上,即两圆相交,故2121-<+,解得0a -<<或0a <<所以实数a 的取值范围为(-⋃,故选:A .二、填空题13.已知椭圆2214x y +=,过11,2P ⎛⎫ ⎪⎝⎭点作直线l 交椭圆C 于A ,B 两点,且点P 是AB 的中点,则直线l 的方程是__________.【正确答案】220x y +-=【分析】设1(A x ,1)y ,2(B x ,2)y ,利用“点差法”、线段中点坐标公式、斜率计算公式即可得出.【详解】解:设1(A x ,1)y ,2(B x ,2)y ,则221144x y +=,222244x y +=,12121212((4)0)))((x x x x y y y y ∴+-++-=.1(1,)2P 恰为线段AB 的中点,即有122x x +=,121y y +=,1212()2()0x x y y ∴-+-=,∴直线AB 的斜率为121212y y k x x -==--,∴直线AB 的方程为11(1)22y x -=--,即220x y +-=.由于P 在椭圆内,故成立.故220x y +-=.14.过点()1,2且与圆221x y +=相切的直线的方程是______.【正确答案】1x =或3450x y -+=【分析】当直线斜率不存在时,可得直线:1l x =,分析可得直线与圆相切,满足题意,当直线斜率存在时,设斜率为k ,可得直线l的方程,由题意可得圆心到直线的距离1d r ==,即可求得k 值,综合即可得答案.【详解】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故1x =或3450x y -+=15.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF △的周长是___.【正确答案】16根据椭圆的定义求解.【详解】由椭圆的定义知12122,2,BF BF a AF AF a ⎧+=⎪⎨+=⎪⎩所以22||416AB AF BF a ++==.故16.16.已知P 为圆22(1)1x y ++=上任意一点,A ,B 为直线3470x y +-=上的两个动点,且||2AB =,则PAB 面积的最大值是___________.【正确答案】3【分析】直接利用直线和圆的位置关系,利用点到直线的距离公式和三角形的面积公式的应用求出结果.【详解】解:根据圆的方程,圆心(1,0)-到直线3470x y +-=的距离2d =,所以圆上的点P 到直线的最大距离213max d =+=,此时最大面积13232PAB S =⨯⨯=△.故3.三、解答题17.已知直线12:310,:(2)0l ax y l x a y a ++=+-+=.(1)若12l l ⊥,求实数a 的值;(2)当12l l //时,求直线1l 与2l 之间的距离.【正确答案】(1)32a =;(2【分析】(1)由垂直可得两直线系数关系,即可得关于实数a 的方程.(2)由平行可得两直线系数关系,即可得关于实数a 的方程,进而可求出两直线的方程,结合直线的距离公式即可求出直线1l 与2l 之间的距离.【详解】(1)由12l l ⊥知3(2)0a a +-=,解得32a =.(2)当12l l //时,有(2)303(2)0a a a a --=⎧⎨--≠⎩,解得3a =.此时12:3310,:30l x y l x y ++=++=,即233:90x y l ++=,则直线1l 与2l 之间的距离d =本题考查了由两直线平行求参数,考查了由两直线垂直求参数的值,属于基础题.18.在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,且.(1)求角B 的大小;(2)若b=3,sinC=2sinA ,求a ,c 的值【正确答案】(1)B =60°(2)a c ==【详解】(1)由正弦定理得【考点定位】本题主要考察三角形中的三角函数,由正余弦定理化简求值是真理19.如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别为1AD 、1CD 中点.(1)求证:EF BD ⊥;(2)求两异面直线BD 与1CD 所成角的大小.【正确答案】(1)见解析(2)3π【分析】(1)利用向量乘积为0证明即可;(2)利用向量法求异面直线所成的角.【详解】(1)如图,建立空间直角坐标系D xyz -则(0,0,0),(2,2,0),(1,0,1),(0,1,1)D BEF (1,1,0),(2,2,0)EF BD =-=--因为2200EF BD ⋅=-+=所以EF BD ⊥,即EF BD⊥(2)11(0,2,0),(0,0,2),(0,2,2)C D CD =-1111cos ,2||BD CD BD CD BD CD ⋅==设异面直线BD 与1CD 所成角为θ,则0,2πθ⎛⎤∈ ⎥⎝⎦所以3πθ=,即异面直线BD 与1CD 所成角的大小为3π20.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2BC =2CC 1=2,点E 是DC的中点.(1)求点D 到平面AD 1E 的距离;(2)求证:平面AD 1E ⊥平面EBB 1.【正确答案】(2)证明过程见解析.【分析】(1)建立空间直角坐标系,求出平面1D AE 的法向量,利用点到平面距离公式求出答案;(2)利用空间向量的数量积为0证明出1,EA EB EA BB ⊥⊥,从而证明出线面垂直,进而证明出面面垂直.【详解】(1)以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,则()()()()()()110,0,0,1,0,0,0,1,0,0,0,1,1,2,0,1,2,1D A E D B B ,设平面1D AE 的法向量为(),,m x y z = ,则()()()()1,,1,0,10,,1,1,00m D A x y z x z m EA x y z x y ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩,令1x =得:1,1y z ==,所以()1,1,1m = ,则点D 到平面AD 1E 的距离为DA m d m⋅= ;(2)()()11,1,0,0,0,1EB BB == ,所以()()1,1,01,1,0110EA EB ⋅=-⋅=-= ,()()11,1,00,0,10EA BB ⋅=-⋅= ,所以1,EA EB EA BB ⊥⊥,因为1EB BB B =,1,EB BB ⊂平面1EBB ,所以EA ⊥平面1EBB ,因为EA ⊂平面1D AE ,所以平面1D AE ⊥平面1EBB .21.某企业为了了解职工对某部门的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示):(1)求频率分布直方图中a 的值;(2)估计该企业的职工对该部门评分的中位数与平均值;(3)从评分在[)40,60的受访职工中,随机抽取2人,求此2人评分都在[)40,50的概率.【正确答案】(1)0.006a =;(2)中位数为5357,均值为76.2;(3)110【分析】(1)根据频率和为1可求频率分布直方图中a 的值;(2)根据组中值可求平均值,根据前3组、前4组的频率和可求中位数.(3)利用古典概型的概率计算公式可求概率.【详解】(1)由直方图可得(0.0040.0180.02220.028)101a +++⨯+⨯=,故0.006a =.(2)由直方图可得平均数为(0.004450.006550.018950.022650.022850.02875)1076.2⨯+⨯+⨯+⨯+⨯+⨯⨯=.前3组的频率和为0.0040.0060.022)100.32++⨯=,前3组的频率和为0.0040.0060.0220.028)100.6+++⨯=,故中位数在[)70,80,设中位数为x ,则700.320.280.510x -+⨯=,故5357x =.故中位数为5357.(3)评分在[)40,60的受访职工的人数为()0.0040.00610505+⨯⨯=,其中评分在[)40,50的受访职工的人数为2,记为,a b在[)50,60的受访职工人数为3,记为,,A B C ,从5人任取2人,所有的基本事件如下:{}{}{}{}{}{}{}{}{}{},,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,基本事件的总数为10,而2人评分都在[)40,50的基本事件为{},a b ,故2人评分都在[)40,50的概率为110.22.如图,已知椭圆2222:1(0)x y C a b a b +=>>的左、右顶点分别是,A B ,且经过点1,2⎛⎫- ⎪ ⎪⎝⎭,直线:1l x ty =-恒过定点F 且交椭圆于,D E 两点,F 为OA 的中点.(1)求椭圆C 的标准方程;(2)记BDE △的面积为S ,求S 的最大值.【正确答案】(1)2214x y +=(2)2【分析】(1)由直线过定点坐标求得a ,再由椭圆所过点的坐标求得b 得椭圆方程;(2)设()()1122,,,E x y D x y ,直线l 方程与椭圆方程联立消元后应用韦达定理得12122223,44t y y y y t t +==-++,计算弦长DE ,再求得B 到直线l 的距离,从而求得三角形面积,由函数的性质求得最大值.【详解】(1)由题意可得,直线:1l x ty =-恒过定点(1,0)F -,因为F 为OA 的中点,所以||2OA =,即2a =.因为椭圆C经过点1,⎛ ⎝⎭,所以2222112b ⎛ ⎝⎭+=,解得1b =,所以椭圆C 的方程为2214x y +=.(2)设()()1122,,,E x y D x y .由22441x y x ty ⎧+=⎨=-⎩得()224230,0t y ty +--=∆>恒成立,则12122223,44t y y y y t t +==-++,则||ED ===又因为点B 到直线l 的距离d =所以11||22S ED d =⨯⨯==令m =26611m m m m==++,因为1y m m=+,m 时,2110y m'=->,1y m m =+在)m ∈+∞上单调递增,所以当m时,min 13m m ⎛⎫+= ⎪⎝⎭时,故max 2S =.即S的最大值为方法点睛:本题求椭圆的标准方程,直线与椭圆相交中三角形面积问题,计算量较大,属于难题.解题方法一般是设出交点坐标,由(设出)直线方程与椭圆方程联立方程组消元后应用韦达定理,然后由弦长公式求得弦长,再求得三角形的另一顶点到此直线的距离,从而求得三角形的面积,最后利用函数的性质,基本不等式等求得最值.。

2022-2023学年湖北省武汉市华中师范大学第一附属中学高二上册学期12月月考数学试题【含答案】

2022-2023学年湖北省武汉市华中师范大学第一附属中学高二上册学期12月月考数学试题【含答案】

2022-2023学年湖北省武汉市华中师范大学第一附属中学高二上学期12月月考数学试题一、单选题1.如图,在平行六面体中,是与的交点,若,1111ABCD A B C D -M 11A C 11B D AB a=,,且,则等于( )AD b = 1AA c =MB xa yb zc =++ x y z ++A .B .C .D .112-01-【答案】D【分析】以为一组基底可表示出,从而求得的值,进而得到结果.{},,a b cMB ,,x y z 【详解】()1111111111222MB MB B B D B AA DB AA AB AD AA =+=-=-=--,111112222AB AD AA a b c =--=--,,,.12x ∴=12y =-1z =-1x y z ∴++=-故选:D.2.已知向量共面,则实数的值是( )()()()2,1,3,1,3,2,1,,1a b c t =-=-=-t A .1B .C .2D .1-2-【答案】C【分析】根据空间共面向量定理,结合已知向量的坐标,待定系数,求解即可.【详解】因为共面,所以存在,使得,,,a b c ,x y ∈R c xa yb =+整理得,解得.()()1,,12,3,32t x y x y x y -=--++1,1,2x y t =-==故选:C.3.已知的三个顶点分别为,,,则边上的中线长为ABC ()5,3,2A ()1,1,3B -()1,3,5C --BC( )A .B .C .D .【答案】B【分析】求得的中点坐标,利用两点间的距离公式即可求得答案.BC 【详解】由题意,,,可得的中点坐标为,()5,3,2A ()1,1,3B -()1,3,5C --BC ()0,2,4D -所以边上的中线长为,BC AD ==故选:B.4.已知椭圆:的左、右焦点分别为,,过的直线交椭圆C 于A ,B 两点,若C 2212x y +=1F 2F 2F l的方程是( )1ABF l A .或B .或1133y x =-1133y x =-33y x =-33y x =-C .或D .或1122y x =-1122y x =-22y x =-22y x=-【答案】D【分析】由内切圆的周长可以求出内切圆的半径,结合椭圆定义,可以求出的面积,1ABF 1ABF 设直线的方程为,与椭圆方程联立,可以将的面积以表示,以面积建立l 1x my =+1ABF m 1ABF 方程,即可解出,求出直线的方程.m l 【详解】设内切圆的圆心为,半径为,1ABF M r,∴,2πr=r =111ABF MAB MAF MBF S S S S =++ 11111222AB r AF r BF r =++()1112AB AF BF r =++由椭圆的定义知,114AB AF BF a ++==∴1ABF S = ()1112AB AF BF r =++12=⨯=∵由已知,,,()11,0F -()21,0F 易知直线的斜率不为,∴设直线的方程为:,l 0l 1x my =+,消去,化简,得,22121x y x my ⎧+=⎪⎨⎪=+⎩x ,()222210my my ++-=,()222442880m m m ∆=++=+>设,,()11,A x y ()22,B x y 则,,12222my y m +=-+122102y y m =-<+112121211221122ABF AFF BF F S S S F F y F F y =+=+ 121212=-F F y y122=⨯===解得,∴,214m =12m =±∴直线的方程为:,即或.l 112x y =±+22y x =-22y x =-故选:D.【点睛】本题解题关键在的面积,以两种形式将三角形表示出来,即可求出直线方程.1ABF 1ABF 5.已知抛物线的焦点为F ,点M 在抛物线C 的准线l 上,线段与y 轴交于2:2(0)C y px p =>MF 点A ,与抛物线C 交于点B ,若,则( )||3||3MA AB ==p =A .1B .2C .3D .4【答案】C【分析】由题知点A 为的中点,结合已知得,过点B 作,由MF ||6,||2,||4MF BF BM ===BQ l ⊥抛物线的定义即可求解.【详解】设l 与x 轴的交点为H ,由O 为中点,知点A 为的中点,FH MF 因为,所以.||3||3MA AB ==||6,||2,||4MF BF BM ===过点B 作,垂足为Q ,则由抛物线的定义可知,BQ l ⊥||||2BQ BF ==所以,则,所以.||2||BM BQ =||2||6MF FH ==||3p FH ==故选:C6.已知为抛物线的焦点,点在抛物线上,为的重心,则F 2y x =,,A B C F ABC ( )AF BF CF ++=A .B .C .D .121322【答案】C【分析】由抛物线方程确定焦点坐标,根据抛物线焦半径公式和重心的坐标表示可直接求得结果.F 【详解】由抛物线方程知:;1,04F ⎛⎫ ⎪⎝⎭设,,,()11,A x y ()22,B x y ()33,C x y 则;()12312311134444AF BF CF x x x x x x ++=+++++=+++为的重心,,则,F ABC 123134x x x ++∴=12334x x x ++=.333442AF BF CF ∴++=+=故选:C.7.已知直线上动点,过点向圆引切线,则切线长的最小值是( ):40l x y +-=P P 221x y +=A B C .D .1-【答案】A【分析】根据切线长,半径以及圆心到点的距离的关系,求得圆心到直线的距离,再求切线长距P 离的最小值即可.【详解】圆,其圆心为,半径,则到直线的距离221x y +=()0,0O 1r =O l d==设切线长为,则,若最小,则取得最小值,显然最小值为m 22211m OP OP =-=-mOP d =故m ==故选:A.8.在正三角形中,为中点,为三角形内一动点,且满足,则最小值ABC M BC P2PA PM =PAPB为( )A .BCD 1【答案】D【分析】以为坐标原点建立平面直角坐标系,设边长为,由向量坐标运算可表示出点M ABC 2P 轨迹,利用两点间距离公式可得;当时,可求得;当222241PA PM PB PB=12x =-2PAPB =时,令的几何意义,利用直线与圆的位置关系可求得的范围,进而得到12x ≠-t =t t 最小值;综合两种情况可得结果.【详解】以为坐标原点,正方向为轴,可建立如图所示平面直角坐标系,M ,MC MA,x y 不妨设正三角形的边长为,则,,,ABC 2(A ()0,0M ()1,0B -设,则,,(),P xy (222PA x y =+222PMx y =+,,2PA PM = 224PA PM ∴=,即;(222244x y xy∴+=+2210x y y +-=点轨迹为:,P∴()22403x y y ⎛+=> ⎝;()()()222222222222224444212111x y x y PA PM x PB PB x y x x y x y ++=====++++++++1=当时,,;12x =-224PA PB =2PA PB ∴=当时,令,则表示与连线的斜率,12x≠-t =t (),P x y 12⎛- ⎝设直线与圆相切,12y k x ⎛⎫=+ ⎪⎝⎭2243x y ⎛+=⎝则圆心到直线距离,解得:d k =k =,),t ⎛∴∈-∞+∞ ⎝ 则当取得最小值,t =22PA PB 34min PA PB ⎛⎫∴= ⎪⎝⎭综上所述:.PAPB 故选:D.二、多选题9.已知圆:,直线:,点在直线上运动,直线,分别与M ()2222x y ++=l 20x y +-=P l PA PB 圆相切于点.则下列说法正确的是( )M ,A B A .四边形的面积的最小值为PAMBB .最小时,弦PA AB C .最小时,弦所在直线方程为PAAB 10x y +-=D .直线过定点AB 31,22⎛⎫- ⎪⎝⎭【答案】AD 【分析】利用AB ;设,,1222PAM S S PA r ==⨯⋅= ()11,A x y ()22,B x y ,利用两条切线方程联立得到直线关于的方程,求出最小时点坐标代入00(,)P x y AB 00(,)P xy PAP即可判断C ;由含参直线方程过定点的求法计算D 即可.【详解】由圆的方程知:圆心,半径()2,0M-r =对于AB ,四边形的面积PAMB 1222PAM S S PA r ==⨯⋅=则当最小时,四边形的面积最小,PAPAMB 点到直线的距离,所以,Ml dmin PA ==此时A 正确;min S =又,所以此时,B错误;111222PAMS PA r PM AB =⋅=⋅ =对于C ,设,,,()11,A x y ()22,B x y 00(,)P x y 则过作圆的切线,切线方程为:,A ()()11222x x y y +++=过作圆的切线,切线方程为:,B ()()22222x x y y +++=又为两切线交点,所以,P 10102020(2)(2)2(2)(2)2x x y y x x y y +++=⎧⎨+++=⎩则两点坐标满足方程:,,A B ()()00222x x y y +++=即方程为:;AB ()()00222x x y y +++=当最小时,,所以直线方程为:,PAPM l ⊥PM 2y x =+由得,即,220y x x y =+⎧⎨+-=⎩02x y =⎧⎨=⎩()0,2P所以方程为:,即,C 错误AB ()2222x y ++=10x y ++=对于D ,由C 知:方程为:;AB ()()00222x x y y +++=又,即,0020x y +-=002y x =-所以方程可整理为:,AB ()022220x y x x y -++++=由得,所以过定点,D 正确.202220x y x y -+=⎧⎨++=⎩3212x y ⎧=-⎪⎪⎨⎪=⎪⎩AB 31,22⎛⎫- ⎪⎝⎭故选:AD 10.已知正方体,棱长为1,分别为棱的中点,则( )1111ABCD A B C D -,E F 1,AB CC A .直线与直线共面B .1AD EF 1A E AF⊥C .直线与直线的所成角为D .三棱锥的体积为1A E BF 60︒1C ADF -112【答案】BD【分析】如图,以为原点,以所在直线分别为建立空间直角坐标系,对于A ,D 1,,DA DC DD ,,x y z 利用面面平行性质结合平行公理分析判断,对于B ,通过计算进行判断,对于C ,利用向1A E AF⋅量的夹角公式求解,对于D ,利用求解.11C ADF A C DFV V --=【详解】如图,以为原点,以所在直线分别为建立空间直角坐标系,则D 1,,DA DC DD ,,x y z ,,(0,0,0),(1,0,0),(1,1,0),(0,1,0)D A B C 1111(0,0,1),(1,0,1),(1,1,1),(0,1,1)D A B C ,111,,0,0,1,22E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭对于A ,假设直线与直线共面,因为平面∥平面,平面平面1AD EF 11ABB A 11DCC D 1AEFD ,平面平面,11ABB A AE =11DCC D 111ABB A D F =所以∥,AE 1D F 因为∥,所以∥,矛盾,所以直线与直线不共面,所以A 错误;AE 11C D 11C D 1D F 1AD EF 对于B ,因为,11101,1,1,22A E AF ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,,所以,所以,所以,所以B 正确,1110022A E AF ⋅=+-= 1A E AF ⊥ 1A E AF ⊥对于C ,设直线与直线的所成角为,因为,1A E BF θ11101,1,0,22A E BF ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,,所以,121cos cos ,52A E θ==≠ 所以,所以C 错误,60θ≠︒对于D ,因为平面,AD ⊥11DCC D 所以,所以D 正确,1111111111332212C ADF A C DF C DF V V S AD --==⋅=⨯⨯⨯⨯=故选:BD.11.如图,正方体的棱长为2,E 是的中点,则( )1111ABCD A B C D -1DDA .11B C BD ⊥B .点E 到直线的距离为1BC C .直线与平面所成的角的正弦值为1B E 11B C C 23D .点到平面的距离为1C 1B CE 23【答案】AC【分析】以点为原点,建立空间直角坐标系,利用向量法逐一判断分析各个选项即可.A 【详解】如图以点为原点,建立空间直角坐标系,A 则,()()()()()()1112,0,0,2,2,0,0,2,1,2,0,2,0,2,2,2,2,2B C E B D C ,()()110,2,2,2,2,2B C BD =-=-则,所以,故A 正确;110440B C BD ⋅=+-=11B C BD ⊥,则()12,2,1B E =--111111cos ,B E BC B E B C B E B C ⋅===所以,1sin CB E ∠=所以点E 到直线的距离为B 错误;1B C 11sin B E CB E ∠=因为平面,所以即为平面的一条法向量,11C D ⊥11B C C ()112,0,0D C =11B C C 则直线与平面所成的角的正弦值为,故C 正确;1B E 11B C C 11111111142cos ,233D C BE D C B E D C B E ⋅===⨯ ()10,0,2CC =设平面的法向量为,1B CE (),,n x y z =则有,可取,11220220n B C y z n B E x y z ⎧⋅=-=⎪⎨⋅=-+-=⎪⎩()1,2,2n =则点到平面的距离为,故D 错误.1C 1BCE 143CC n n⋅=故选:AC.12.已知点F 为椭圆C :,的左焦点,过原点O 的直线l 交椭圆于P ,Q 两22221x y a b +=()0a b >>点,点M 是椭圆上异于P ,Q 的一点,直线MP ,MQ 的斜率分别为,,椭圆的离心率为e ,1k 2k 若,,则( )2PF QF=23PFQ π∠=A .B .C .D.e =e =12916k k =-1223k k =-【答案】BD【分析】设出右焦点,根据椭圆定义结合对称性以及余弦定理得到关系,则离心率可求,设F ',a c 出坐标,利用点差法可求得的表示,结合关系可求解出的值.,P M 12k k ⋅,a c 12k k 【详解】连接,根据椭圆对称性可知四边形为平行四边形,则,且由PF QF '',PFQF '||QF PF=',可得,120PFQ ︒∠=60FPF '︒∠=所以,则.||32PF PF PF a''+==24,||33PF a PF a '==由余弦定理可得,22222164421(2)||2||cos 60299332c PF PF PF PF a a a a ''︒=+-⋅=+-⨯⋅⋅化简得,故,所以2213c a =213e =e =设,则,()()0011,,,M x y P x y ()010111120101,y y y y Q x y k k x x x x -+--==-+,,所以,又,相减可得因为,220101011222010101y y y y y y k k x x x x x x -+-=⋅=-+-22220011222211x y x y a b a b +=+=,2220122201y y b x x a -=--2213c a =所以,,所以.22213a b a -=2223a b ∴=1223k k =-故选:BD.【点睛】解答本题的关键在于合理运用焦点三角形的知识以及点差法设而不求的思想去计算;椭圆是一个对称图形,任何过原点的直线(不与焦点所在轴重合)与椭圆相交于两点,这两点与椭圆的焦点构成的四边形为平行四边形.三、填空题13.已知抛物线,直线与抛物线交于,两点,与圆:2:8M x y =:2l y kx =+A D 交于,两点(,在第一象限),则的最小值为_______.22:430N x y y +-+=B C A B ||2||AC BD +【答案】9+9【分析】分别在,时,结合抛物线的性质证明,结合图象可得0k =0k ≠111||||2AF DF +=,再利用基本不等式求其最小值.||2||||2||3AC BD AF DF +=++【详解】因为抛物线M 的方程为,28x y =所以抛物线M 的焦点为,准线,(0,2)F =2y -则直线过抛物线的焦点F ,2y kx =+当时,联立与可得,0k =2y =28x y =4x =±所以,则;||||4AF DF ==111||||2AF DF +=当时,如图,0k ≠过作轴于K ,设抛物线的准线交y 轴于E ,A AK y ⊥则,||||||EK EF FK =+||cos ||p AF AFK AF =+∠=得,||1cos pAF AFK =-∠则,11cos ||AFKAF p -∠=同理可得,11cos ||AFK DF p +∠=所以,1121||||2AF DF p +==化圆N :为,则圆N 的圆心为F ,半径为1,22430x y y +-+=22(2)1x y +-=||2||AC BD +=||12(||1)AF DF +++||2||3AF DF =++2(||2||)AF DF =+113||||AF DF ⎛⎫⨯++ ⎪⎝⎭||2||233||||AF DF DF AF ⎛⎫=+++ ⎪⎝⎭,当且仅当且时等号成立,233⎛≥++⎝9=+||||AF DF =111||||2AF DF +=即,2DF =2AF =+所以的最小值为.||2||AC BD+9+故答案为:9+14.已知曲线C 的方程为,则下列说法中:221+-=x y xy ①曲线C 关于原点中心对称;②曲线C 关于直线对称;y x =-③若动点P 、Q 都在曲线C 上,则线段的最大值为PQ④曲线C 的面积小于3.所有正确的序号是__________________.【分析】对于①②:根据对称理解运算即可判断;对于③④:根据椭圆定义可知曲线C 为椭圆,结合椭圆性质分析即可求解.【详解】对①:∵曲线C 的上任一点关于原点的对称点为,(),A x y (),A x y '--则,即在曲线C 上,()()()()22221x y x y x y xy -+----=+-=A '∴曲线C 关于原点中心对称,①正确;对②:∵曲线C 的上任一点关于直线的对称点为,(),B x y y x =-(),B y x '--则,即在曲线C 上,()()()()22221y x y x x y xy -+----=+-=B '∴曲线C 关于直线对称,②正确;y x =-∵,则,221+-=x y xy ()()2243x y x y -++=∴,即,()24x y +≤22x y -≤+≤又∵,即,221+-=x y xy ()213x y xy +-======,()x y +⎤=⎦,()x y =++⎤⎦则曲线C 的上任一点到的距离之和为:(),P x y ,M N ⎛ ⎝()()x y x y ⎤⎤=⎦⎦++∴曲线C 表示以为焦点且的椭圆,则,,M N a c ==b ==对③:则线段的最大值为③正确;PQ2a =对④:则曲线C 的面积,④错误;3S ab π==>15.已知、分别在直线与直线上,且,点,P Q 1:10l x y -+=2:10l x y --=1PQ l ⊥()4,4A -,则的最小值为___________.()4,0B AP PQ QB++【分析】利用线段的等量关系进行转化,找到最小值即为所求.AP QB+【详解】由直线与作直线垂直于,如图,1l 2l ()4,0B l 1:10l x y -+=则直线的方程为:,将沿着直线个单位到点,有,l 4y x =-+()4,0B l B '()3,1B '连接交直线于点P ,过P 作于Q ,连接BQ ,有,即四边形AB '1l2⊥PQ l //,||||BB PQ BB PQ ''=为平行四边形,BB PQ '则,即有,显然是直线上的点与点距离和的最||||PB BQ '=||AP QB AP PB AB ''+=+=AB '1l ,A B '小值,因此的最小值,即的最小值,而,AP QB+AP PB '+AB '=所以的最小值为AP PQ QB++【点睛】思路点睛:(1)合理的利用假设可以探究取值的范围,严谨的思维是验证的必要过程.(2)转化与划归思想是解决距离最值问题中一种有效的途径.(3)数形结合使得问题更加具体和形象,从而使得方法清晰与明朗.16.在正三棱柱中,,,D ,E 分别为棱,的中点,F 是线段111ABC A B C -2AB =14AA =1AA 11A B 上的一点,且,则点到平面的距离为______.1BC 12FC BF =C DEF【分析】根据题意建立空间直角坐标系,利用向量的数量积运算求出平面的法向量与,再DEF CD利用空间向量法即可求得点到平面的距离.C DEF 【详解】记的中点为,连结,过作,如图,AC O BO O 1//OG AA 根据题意,易知两两垂直,以为原点,为轴,建立空间直角坐标系,,,OB OC OG O ,,OB OC OG ,,x y z则))()()()()111,4,0,1,0,0,1,4,0,1,0,0,1,4,BB C C A A --故,,,()10,1,2,,42D E ⎫--⎪⎪⎭())1,2,0,0,2,2DE DA AB ⎫==-=⎪⎪⎭()14BC =因为,所以,12FC BF =())()10,0,243DF DA AB BF =++=-++42,33⎫=-⎪⎪⎭设平面的一个法向量为,则,即,DEF (),,n x y z = 00DE n DF n ⎧⋅=⎪⎨⋅=⎪⎩120242033x y z y z ++=+-=令,则,故,x =-5,1y z ==()n =-又,()0,2,2CD =-所以点到平面.CDEF..四、解答题17.如图,在三棱柱中,为111ABC A B C -112,AB AC BC AA A C =====1A B =M 的中点,点是上一点,且.11B C N 11C A 113C N NA =(1)求点A 到平面的距离;1A BC (2)求平面与平面所成平面角的余弦值.1BCC AMN【答案】【分析】(1)取的中点,连接,以为原点,分别为轴,为轴,建AC O 1,BO A O O ,OB OC ,x y Oz z 立空间直角坐标系,再利用空间向量法求解即可.(2)利用空间向量法求解即可.【详解】(1)取的中点,连接,如图所示:AC O 1,BO A O因为112,AB AC BC AA A C ====所以,,OB AC ⊥1A O AC ⊥所以.OB ==11A O ==以为原点,分别为轴,为轴,建立空间直角坐标系,O ,OB OC ,x y Oz z ,,,设,()0,1,0A-)B()0,1,0C ()1,0,A x z 则,,11A O==1A B == x =12z =即.112A ⎛⎫⎪ ⎪⎝⎭,,112A B ⎫=-⎪⎭ ()BC =设平面的法向量为,1A BC ()111,,m x y z =则,令,即.111111020m A B z m BC y ⎧⋅=-=⎪⎨⎪⋅=+=⎩1x =113,9y z ==)m =,设点A 到平面的距离为,()0,2,0AC =1A BCd 则AC m d m⋅===(2),,()BC=1112CC AA ⎛⎫== ⎪ ⎪⎝⎭ 设平面的法向量为,1BCC ()222,,x n y z =则,令,解得,2212220102n BC y n CC y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩ 2x =223,3y z ==-即.)3n =-设,则,,()1333,,C x yz 113331,2A C x y z ⎛⎫=- ⎪ ⎪⎝⎭ ()0,2,0AC= 因为,解得.11A C AC = 112,2C ⎛⎫⎪ ⎪⎝⎭设,则,,()1444,,B x yz 114441,2A B x y z ⎛⎫=- ⎪ ⎪⎝⎭ )AB = 因为,解得.11A B AB = 112B ⎫⎪⎪⎭因为点为的中点,所以,.M 11B C 310,,22M ⎛⎫ ⎪⎝⎭510,,22AM ⎛⎫= ⎪⎝⎭.()11111111310,2,0,42422AN AA A N AA A C ⎛⎫⎛⎫=+=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 设平面的法向量为,AMN ()555,,p x y z =则,令,解得,555553102251022p AN x y z p AM y z ⎧⋅=++=⎪⎪⎨⎪⋅=+=⎪⎩ 51y=555x z ==-即.5p ⎛⎫=- ⎪ ⎪⎝⎭,cos ,n p n p n p⋅===⋅因为平面与平面所成平面角为锐角,1BCC AMN 所以平面与平面1BCC AMN 18.如图,直四棱柱ABCD–A 1B 1C 1D1的底面是菱形,AA1=4,AB =2,∠BAD =60°,E ,M,N 分别是BC ,BB1,A1D 的中点.(1)证明:MN ∥平面C1DE ;(2)求点C 到平面C1DE 的距离.【答案】(1)见解析;(2【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,11//A D B C//ME NDMNDE进而证得,根据线面平行判定定理可证得结论;//MN DE (2)根据题意求得三棱锥的体积,再求出的面积,利用求得点C1C CDE -1C DE ∆11C CDE C C DE V V --=到平面的距离,得到结果.1C DE【详解】(1)连接,ME 1B C,分别为,中点 为的中位线M E 1BB BC ME ∴1B BC ∆且1//ME B C ∴112ME B C =又为中点,且 且N 1A D 11//A D B C 1//ND B C ∴112ND B C = 四边形为平行四边形//ME ND ∴∴MNDE ,又平面,平面//MN DE ∴MN ⊄1C DE DE ⊂1C DE平面//MN ∴1C DE(2)在菱形中,为中点,所以,ABCD E BC DE BC ⊥根据题意有,,DE =1C E =因为棱柱为直棱柱,所以有平面,DE ⊥11BCC B所以,所以,1DE EC ⊥112DEC S ∆=设点C 到平面的距离为,1C DE d根据题意有,则有,11C CDEC C DEV V --=1111143232d ⨯=⨯⨯解得d ==所以点C 到平面.1C DE【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.19.如图,在长方体中,点分别在棱上,且,.1111ABCD A B C D -,E F 11,DD BB 12DE ED =12BF FB =(1)证明:点在平面内;1C AEF (2)若,,,求二面角的正弦值.2AB =1AD =13AA =1A EF A --【答案】(1)证明见解析;(2.【分析】(1)方法一:连接、,证明出四边形为平行四边形,进而可证得点在平1C E 1C F 1AEC F 1C 面内;AEF (2)方法一:以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐1C 11C D 11C B 1C C x y z 标系,利用空间向量法可计算出二面角的余弦值,进而可求得二面角1C xyz -1A EF A --的正弦值.1A EF A --【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱上取点,使得,连接、、、,如图1所示.1CC G 112C G CG=DG FG 1C E 1C F在长方体中,,所以四边形为平行四边形,则1111ABCD A B C D -//,BF CG BF CG =BCGF ,而,所以,所以四边形为平行四//,BC FG BC FG =,//BC AD BC AD =//,AD FG AD FG =DAFG 边形,即有,同理可证四边形为平行四边形,,,因此点//AF DG 1DEC G 1//C E DG ∴1//C E AF ∴在平面内.1C AEF [方法二]:空间向量共线定理以分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示.11111,,C D C B C C 设,则.11111,,3C D a C B b C C c ===1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c 所以.故.所以,点在平面内.1(,0,2),(,0,2)C E a c FA a c == 1C E FA =1AF C E ∥1C AEF [方法三]:平面向量基本定理同方法二建系,并得,1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c 所以.111(,0,2),(0,,),(,,3)C E a c C F b c C A a b c === 故.所以点在平面内.111C A C E C F =+1C AEF [方法四]:根据题意,如图3,设.11111,2,3A D a A B b A A c ===在平面内,因为,所以.11A B BA 12BF FB =1111133B F B B A A ==延长交于G ,AF 11A B 平面,AF ⊂AEF 平面.11A B ⊂1111D C B A ,11,G AF G A B ∈∈所以平面平面①.∈G ,AEF G ∈1111D C B A 延长交于H ,同理平面平面②.AE 11A D H ∈,AEF H ∈1111D C B A 由①②得,平面平面.AEF ⋂1111A B C D GH =连接,根据相似三角形知识可得.11,,GH GC HC 11,2GB b D H a ==在中,11Rt C B G 1C G =同理,在中,11Rt C D H 1C H =如图4,在中,1Rt A GH GH =所以,即G ,,H 三点共线.11GH C G C H =+1C 因为平面,所以平面,得证.GH ÌAEF 1C ⊂AEF [方法五]:如图5,连接,则四边形为平行四边形,设与相交于点O ,则O 为11,,DF EB DB 1DEB F 1DB EF 的中点.联结,由长方体知识知,体对角线交于一点,且为它们的中点,即1,EF DB 1AC ,则经过点O ,故点在平面内.11AC B D O = 1AC 1C AEF(2)[方法一]【最优解】:坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐1C 11C D 11C B 1C C x y z 标系,如图2.1C xyz -则、、、,()2,1,3A ()12,1,0A ()2,0,2E ()0,1,1F ,,,,()0,1,1AE =--()2,0,2AF =--()10,1,2A E =-()12,0,1A F =-设平面的一个法向量为,AEF ()111,,m x y z =由,得取,得,则,00m AE m AF ⎧⋅=⎨⋅=⎩11110220y z x z --=⎧⎨--=⎩11z =-111x y ==()1,1,1m =- 设平面的一个法向量为,1A EF ()222,,n x y z =由,得,取,得,,则,1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩ 22222020y z x z -+=⎧⎨-+=⎩22z =21x =24y =()1,4,2n =cos ,m n m n m n⋅<>===⋅设二面角的平面角为,则,1A EF A --θcossin θ∴==因此,二面角1A EF A --[方法二]:定义法在中,,即,所以.在AEF △AE AF EF ====222AE EF AF +=AE EF ⊥中,,如图6,设的中点分别为M ,N ,连接,则1A EF 11A E A F ==,EF AF 11,,A M MN A N,所以为二面角的平面角.1,A M EF MN EF ⊥⊥1A MN ∠1A EF A --在中,1A MN11MN A MA N ====所以,则1cosA MN ∠==1sin A MN ∠==[方法三]:向量法由题意得11AE AF A F A E EF =====由于,所以.222AE EF AF +=AE EF ⊥如图7,在平面内作,垂足为G ,1A EF 1A G EF ⊥则与的夹角即为二面角的大小.EA 1GA1A EF A --由,得.11AA AE EG GA =++ 22221111222AA AE EG GA AE EG EG GAAE GA =++++⋅⋅+⋅ 其中,,解得,1EG AG ==11AE GA ⋅=1cos ,AE GA 〉〈=所以二面角.1A EF A --[方法四]:三面角公式由题易得,11EA FA FEEA FA =====所以.2221111cos 2EA EA AA AEA EA EA +-∠===⋅.222cos 0,sin 12EA EF AF AEF AEF EA EF +-∠===∠=⋅22211111cos 2EA EF A F A EF A EF EA EF +-∠===∠=⋅设为二面角的平面角,由二面角的三个面角公式,得θ1A EF A --,所以111cos cos cos cos sin sin AEA AEF A EF AEF A EF θ∠-∠⋅∠===∠⋅∠sin θ=【整体点评】(1)方法一:通过证明直线,根据平面的基本事实二的推论即可证出,思路1//C E AF 直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出.(2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出.20.已知双曲线C :与x 轴的正半轴交于点M ,动直线l 与双曲线C 交于A ,B 两点,221x my -=当l 过双曲线C 的右焦点且垂直于x 轴时,,O 为坐标原点.54OA OB ⋅=(1)求双曲线C的方程;(2)若,求点M 到直线l 距离的最大值.90AMB ∠=︒【答案】(1);2221x y -=(2)2【分析】(1)由双曲线方程求得右焦点,则可求出l 过双曲线C 的右焦点且垂直于x 2F ⎫⎪⎪⎭轴时的A ,B 两点坐标,由及数量积的坐标运算即可解出m ,得到双曲线方程;54OA OB ⋅=(2)由得,分别讨论直线斜率存在、不存在的情况,当斜率不存在时,90AMB ∠=︒0MA MB ⋅=设,直接求出交点,结合数量积运算可解出,即可得点M 到直线l 距离;当斜率存在时,x x =0x 设,联立双曲线方程,结合韦达定理及数量积运算可得与b 的关系,即可结合点线距离y kx b =+k 公式进一步讨论距离范围.【详解】(1)由曲线为双曲线得,双曲线标准形式为,故,0m >2211y x m -=222111,,1a b c m m ===+右焦点,,2F ⎫⎪⎪⎭()1,0M 当,故,x=1ym =±11,A B m m ⎫⎫-⎪⎪⎪⎪⎭⎭由得,54OA OB ⋅=()2211512024m m m m +-=⇒-=⇒=故双曲线C 的方程为;2221x y -=(2)由得,90AMB ∠=︒0MA MB ⋅=i.当直线斜率不存在时,设为,联立得,故当才有两个交点,此0x x =2221x y -=2212x y -=01x >时,,解得00,,A x B x ⎛⎛ ⎝⎝()()()2200001101302M x A B x x M x ---=⇒--⋅==或(舍).03x =01x =故点M 到直线l 距离为2;ii.当直线斜率存在时,设为,联立得,y kx b =+2221x y -=()222124210kxkbx b ----=故当(*)才有两个交点,()()()222222211202Δ44122102210k k kb k b b k ⎧⎧-≠≠⎪⎪⇒⎨⎨=----->⎪⎪⎩-+>⎩设,则,()()1122,,,A x y B x y 2121222421,1212kb b x x x x k k ++==---故,即,()()1212110x M x B y A y M -⋅=-+=()()()2212121110k x x kb x x b ++-+++=即 ,整理得,得或.()()2222221411101212b kbk kb b k k +-++-++=--()()30k b k b ++=3b k =-b k =-①当时,直线l 为过与M 重合,不合题意;b k =-()1y k x =-()1,0②当时,代入(*)可得时有两个交点,3b k =-212k ≠∴点M 到直线l .2=<综上,点M 到直线l 距离的最大值为2.【点睛】关键点点睛:(1)根据直线与圆锥曲线的交点个数,注意讨论个数成立的条件;(2)结合韦达定理可以表示,即可进一步求出直线系数间的关系.MA MB ⋅21.已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:M ,N ,F 三点MN 222(0)x y b x +=>共线的充要条件是||MN =【答案】(1);(2)证明见解析.2213x y +=【分析】(1)由离心率公式可得,即可得解;a =2b (2充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合():,0MN y kx b kb =+<221b k =+,即可得解.=1k =±【详解】(1)由题意,椭圆半焦距c =c e a ==a =又,所以椭圆方程为;2221b a c =-=2213x y +=(2)由(1)得,曲线为,221(0)x y x +=>当直线的斜率不存在时,直线,不合题意;MN :1MN x =当直线的斜率存在时,设,MN ()()1122,,,M xy N x y 必要性:若M ,N ,F 三点共线,可设直线即,(:MN y k x =0kxy -=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y xx y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅=,=所以必要性成立;充分性:设直线即,():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得,2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以,2121222633,1313kbb x x x x k k-+=-⋅=++==化简得,所以,()22310k -=1k =±所以,所以直线,1k b=⎧⎪⎨=⎪⎩1k b =-⎧⎪⎨=⎪⎩:MN y x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立;MN F 所以M ,N ,F三点共线的充要条件是||MN =【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.22.在平面直角坐标系中,椭圆C 过点,焦点,圆O 的直径为xOy 1)212(F F .12F F (1)求椭圆C及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于两点.若l 的方程.,A B OAB【答案】(1),;(2)①;②2214x y +=223x y +=y =+【分析】(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a ,b ,即得椭圆方程;(2)方法一:①先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标;②先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.【详解】(1)因为椭圆C 的焦点为,()12,F F 可设椭圆C 的方程为.又点在椭圆C 上,22221(0)x y a b a b +=>>12⎫⎪⎭所以,解得2222311,43,ab a b ⎧+=⎪⎨⎪-=⎩224,1,a b ⎧=⎨=⎩因此,椭圆C 的方程为.2214x y +=因为圆O 的直径为,所以其方程为.12F F 223x y +=(2)[方法一]:【通性通法】代数法硬算①设直线l 与圆O 相切于,则,()0000,(0,0)P x y x y >>22003x y +=所以直线l 的方程为,即.()0000x y x x y y =--+0003x y x y y =-+由,消去y ,得(*),22000143x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩()222200004243640x y x x x y +-+-=因为直线l 与椭圆C 有且只有一个公共点,所以.()()()()22222200000024443644820x x y y y x ∆=--+-=-=因为,所以,因此,点P 的坐标为.00,0x y >001x y ==②因为三角形OAB,所以,从而.12AB OP ⋅=AB=设,由(*)得()()1122,,,A x y B x y 1,2x =所以.()()2221212AB x x y y =-+-()()222000222200048214y x x y x y -⎛⎫=+⋅⎪⎝⎭+因为,所以,即,22003x y +=()()22022016232491x AB x -==+42002451000x x -+=解得舍去),则,因此P 的坐标为.22005(202x x ==2012y =综上,直线l 的方程为.y =+[方法二]: 圆的参数方程的应用设P 点坐标为.π),0,2ααα⎛⎫∈ ⎪⎝⎭因为原点到直线,所以与圆O 切于点P 的cos sinx y αα+=d r===直线l 的方程为cossin x y αα+=由消去y ,得.22cos sin 1,4x y x yαα⎧+=⎪⎨+=⎪⎩()()22213cos )124sin 0x x ααα+-+-=①因为直线l 与椭圆相切,所以.()()22Δ16cos 23cos 20αα=-⋅--=因为,所以,故.π0,2α⎛⎫∈⎪⎝⎭cos (0,1)α∈cos α=sin α=所以,P 点坐标为.②因为直线O 相切,所以中边,因为的:cos sin lx y αα+=OABAB r =OAB ,所以.||AB =设,由①知()()1122,,,A x y B x y 22121222124sin 84cos 13cos 13cos x x x x αααα-++===++,||AB===即,64218cos153cos235cos1000ααα-+-=即.()()()2226cos5cos13cos200ααα---=因为,所以,故,所以π0,2α⎛⎫∈ ⎪⎝⎭cos(0,1)α∈25cos6α=cosαα==所以直线l的方程为y=+[方法三]:直线参数方程与圆的参数方程的应用设P点坐标为,则与圆O切于点P的直线l的参数方程为:π),0,2ααα⎛⎫∈ ⎪⎝⎭(t为参数),πcos2πsin2x ty tαααα⎧⎛⎫=++⎪⎪⎪⎝⎭⎨⎛⎫⎪=++⎪⎪⎝⎭⎩即(t为参数).sincosx ty tαααα⎧=-⎪⎨=+⎪⎩代入,得关于t的一元二次方程.2214xy+=()()22213cos cos)89cos0t tαααα+++-=①因为直线l与椭圆相切,所以,,()()222Δcos)413cos89cos0αααα=-+-=因为,所以,故.π0,2α⎛⎫∈ ⎪⎝⎭cos(0,1)α∈cosα=sinα=所以,P点坐标为.②同方法二,略.【整体点评】(2)方法一:①直接利用直线与圆的位置关系,直线与椭圆的位置关系代数法硬算,即可解出点的坐标;②根据三角形面积公式,利用弦长公式可求出点的坐标,是该题的通性通P P法;方法二:①利用圆的参数方程设出点,进而表示出直线方程,根据直线与椭圆)αα的位置关系解出点的坐标;②根据三角形面积公式,利用弦长公式可求出点的坐标;P P方法三:①利用圆的参数方程设出点,将直线的参数方程表示出来,根据直线)ααP P与椭圆的位置关系解出点的坐标;②根据三角形面积公式,利用弦长公式可求出点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南宁三中2020~2021学年度上学期高二月考(三)文科数学试题一、单选题,共12题,每题5分,共60分。

请把答案填涂到答题卡相应位置。

1.已知集合()22,194x y A x y ⎧⎫⎪⎪=+=⎨⎬⎪⎪⎩⎭,(){},B x y y x ==,则A B 中有几个元素( )A .1B .2C .3D .42.焦点坐标为()()0,3,0,3-,长轴长为10,则此椭圆的标准方程为( )A .22110091x y +=B .2100y 2191x +=C .2212516y x +=D .2212516x y +=3.“2πϕ=”是“cos 0ϕ=”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球C .恰有一个红球与恰有二个红球D .至少有一个红球与至少有一个白球5.若曲线22x y 12k 2k+=-+表示椭圆,则k 的取值范围是( )A .k 2>B .k 2<-C .2k 2-<<D .2k 0-<<或0k 2<<6.若点P 在椭圆2212x y +=上,1F 、2F 分别是椭圆的两焦点,且1290F PF ∠=,则12F PF ∆的面积是( )A .12B 3C .1D .27.某种饮料每箱6听,其中2听不合格,随机从中抽出2听,检测到不合格的概率为( )A .25B .35C .815D .1158.在平面直角坐标系xOy 中,P 是椭圆22143y x +=上的一个动点,点(1,1),(0,1)A B -,则|PA |+|PB |的最大值为( ) A .2B .3C .4D .59.在面积为S 的ABC ∆内部任取一点P ,则PBC ∆面积大于4S的概率为( )A .14B .34C .49D .91610.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上点的任意一点,则OP FP ⋅ 的最大值为( )A .5B .6C .7D .811.过椭圆22221(0)x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( )A B .13C .12D 12.已知点(),P x y 是椭圆22194x y +=上任意一点,则点P 到直线l :5y x =+的最大距离为( )A .2B .2C .D .二、填空题,共4题,每题5分,共20分。

请在答题卡相应位置上作答。

13.点M (x ,y)6+=,点M 的轨迹方程为__________.14.如图表所示,生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)之间的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中m 的值为________.15.椭圆221mx ny +=与直线1y x -=交于M N ,两点,若原点O 与线段MN 的中点P 连线的斜率为2,则m n的值是________. 16.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点,B F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[,]64ππα∈,则该椭圆的离心率e 的取值范围是__________.三、解答题,共6题,共70分。

请在答题卡相应位置上作答,应写出必要的解题过程。

17.(本题满分10分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85. (1)计算甲班7位学生成绩的方差2s ;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班、乙班各一人的概率.18.(本题满分12分)在ABC ∆中,222sin A sin C sin B 2sinAsinC +=+. (I )求B ∠的大小;(II 2cos A C +的最大值.19.(本题满分12分)设数列{}n a 的前n 项和为n S ,已知122,8a a ==,()11452n n n S S S n +-+=≥.(1)求数列{}n a 的通项公式; (2)若()12og 1l n n n b a +=-,求数列{}n b 的前2n 项和2n T 。

20. (本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为42()0,1H 。

(1)求椭圆C 的方程;(2)设不经过点()0,1H 的直线2y x t =+与椭圆C 相交于两点,M N ,若直线HM 与HN 的斜率之和为1,求实数t 的值.21.(本题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=,PD ⊥ 平面ABCD ,2PD AD ==,点E 、F 分别为AB 和PD 的中点.(1)求证:直线//AF 平面PEC ; (2)求点A 到平面PEC 的距离.22.(本题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12,F F ,离心率为12,过1F 的直线l 与椭圆C 交于,M N 两点,且2MNF ∆的周长为8. (1)求椭圆C 的方程;(2)直线m 过点(1,0)-,且与椭圆C 交于,P Q 两点,求2PQF ∆面积的最大值.南宁三中2020~2021学年度上学期高二月考(三)文科数学试题答案1.B 由题,联立22194x y y x +==⎧⎪⎨⎪⎩,消去y 得213360x -=,则413360∆=⨯⨯>,即椭圆22194x y +=与直线y x =有两个交点,所以A B 中有2个元素,故选:B 2.C 因为长轴长为10,故长半轴长5a =,因为半焦距3c =,故4b =,又焦点在y 轴上,所以椭圆的标准方程为2212516y x += ,故选C3.A 当cos 0ϕ=时,2k πϕπ=+,故“2πϕ=”是“cos 0ϕ=”的充分不必要条件.4.C 从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A 中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B 中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D 中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C 中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.5.D 由题设可得202022k k k k ->⎧⎪+>⎨⎪-≠+⎩,解得22,0k k -<<≠,故选D .6.C 设12,PF m PF n ==,利用椭圆的定义和勾股定理有:22222244m n a m n c ⎧+==⎪⎨+==⎪⎩,则:222122()()4,mn m n m n F PF =+-+=∆的面积112S mn ==.本题选择C 选项.7.B 设6听饮料中的2听不合格饮料为a 、b ,其余4听合格饮料为A 、B 、C 、D ,从中任取2听的所有可能事件为:AB 、AC 、AD 、Aa 、Ab 、BC 、BD 、Ba 、Bb 、CD 、Ca 、Cb 、Da 、Db 、ab 共15种,其中有不合格饮料的所以可能事件为:Aa 、Ab 、Ba 、Bb 、Ca 、Cb 、Da 、Db 、ab 共9种,则检测到不合格的概率93155P ==,故选:B.8.D ∵椭圆方程为22143y x +=,∴焦点坐标为()0,1B -和()0,1B ',连接PB AB ''、,根据椭圆的定义,得24PB PB a +'==,可得4PB PB =-',因此PA PB PA +=+(4)4()PB PA PB -'=+-'.441 5.PA PB AB PA PB AB -''∴++'=+=,当且仅当点P 在AB '延长线上时,等号成立.综上所述,可得PA PB +的最大值为5.本题选择D 选项.9.D 记事件{}4SA PBC =∆的面积超过,基本事件是三角形ABC 的面积,(如图)事件A 的几何度量为图中阴影部分的面积(//DE BC 并且:3:4AD AB =),因为阴影部分的面积是整个三角形面积的239()416=,所以9()=16P A =阴影部分三角形面积,故选D .10.B 由椭圆方程得F (-1,0),设P (x 0,y 0),则OP FP ⋅=(x 0,y 0)·(x 0+1,y 0)=20x +x 0+20y ,∵P 为椭圆上一点,∴204x +203y =1.∴OP FP ⋅=20x +x 0+320(1)4x -=204x +x 0+3=14(x 0+2)2+2.∵-2≤x 0≤2.∴OP FP ⋅的最大值在x 0=2时取得,且最大值等于6. 11.D 设P 在x 轴上方,P x c =-,代入椭圆方程得2P b y a=,1260,F PF ∠=121F F ∴=222222,20,c ac ac ∴=∴=+-=220e e +-=∴=,故选D 12.A 设直线y x m =+与椭圆相切,由22194x y y x m ⎧+=⎪⎨⎪=+⎩得2213189360x mx m ++-=,∴22(18)413(936)0m m ∆=-⨯-=,m =y x =y x =-l距离较规远的是y x =-∴所求最大距离为2d ==.故选:A.13.22198x y += M 到(-1,0)与(1,0)的距离之和为6,又(-1,0),(1,0)两点间的距离为2,所以其轨迹是以(-1,0),(1,0)为焦点的椭圆,c =1,a =3,b 2=8.故点M 的轨迹方程为22198x y +=。

14.3 样本中心点(),x y 过线性回归方程,由表格知3456942x +++==,代入方程可得 3.5y =,则有()12.54 4.54y m =+++,可得3m =.故本题应填3. 15.设()()1122,,,M x y N x y ,则22221122=1,=1mx ny mx ny ++相减化简得12121212y y x x m x x n y y -+=-⋅-+,设()00,P x y ,则00y x ,因为1201202,2,x x x y y y +=+=000022MN m x m x k n y n y ∴=-⋅=-⋅,即1m n -=-m n ∴.161] 已知椭圆22221(0)x y a b a b +=>> 上一点A 关于原点的对称点为点B ,F为其右焦点,设椭圆的左焦点为N ,连接,,,AF AN BF BF ,所以四边形AFBN 为长方形,根据椭圆的定义2AF AN a +=,且ABF α∠=,则ANF α∠=,所以22cos 2sin a c c αα=+,又由离心率的公式得2112sin cos )4c e a πααα===++,由[,]64ππα∈,则51242πππα≤+≤,所以11)4πα≤≤+,即椭圆的离心率的取值范围是1]2. 17.(1)∵甲班学生的平均分是85,∴92968080857978857x +++++++=.∴5x =.则甲班7位学生成绩的方差为22222221[(6)(7)(5)0711]407s =-+-+-+++=.(2)甲班成绩在90分以上的学生有两名,分别记为,A B ,乙班成绩在90以上的学生有三名,分别记为,,C D E .从这五名学生中任意抽取两名学生共有10种情况:(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E .其中两人均来自甲班(或乙班)共有4种情况:(,)A B ,(,)D C ,(,)E D ,(,)C E . 记“甲班、乙班各一人”为事件M ,则43()1105P M =-=, 所以,从成绩在90分以上的学生中随机抽取两名学生,甲班、乙班各一人的概率为35. 18. (Ⅰ)∵在△ABC 中,由正弦定理可得a 2+c 2=b 2ac .∴a 2+c 2-b 2ac ,∴cosB=222a c b 2ac 2+-=,又B ()0,π∈∴B=π4 (Ⅱ)由(I )得:C=3π4-A ,(3π4-A)(A+π4),∵A∈(0,3π4),∴A+π4∈(π4,π),故当A+π4=π2时,sin(A+π4)取最大值1+cosC的最大值为1.19.(1)∵当2n≥时,1145n n nS S S+-+=,∴()114n n n nS S S S+--=-. ∴14n na a+=.∵12a=,28a=,∴214a a=. ∴数列{}n a是以12a=为首项,公比为4的等比数列.∴121242n nna--=⋅=.(2)由(1)得()()()()11121221log1log2121n n nnn nb a n+++-=-=-=--,当2n k=时,()()21243412k kb b k k-+=---=-∴()()()()()21357434122nT n n n n⎡⎤=-+-++---=⨯-=-⎣⎦.20.【详解】(1)C的方程2219xy+=(2)设M(x1,y1),N(x2,y2).联立22219y x txy=+⎧⎪⎨+=⎪⎩,消去y,得2237369(1)0x tx t++-=.由22(36)4379(1)0t∆=-⨯⨯->,可得t<<.又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,1t∴≠±,则t<<且1t≠±,212123699,3737t tx x x x-∴+=-=,由()()121212121241114411HM HNx x t x xy y tk kx x x x t+-+--+=+==-=+,解得3t=,t∴的值为3.21. (1)取PC的中点Q,连结EQ、FQ,由题意,//FQ DC且12FQ CD=,//AE CD且12AE CD=,故//AE FQ 且AE FQ =,所以,四边形AEQF 为平行四边形,所以,//AF EQ , 又EQ ⊂平面PEC ,AF ⊄平面PEC ,所以,//AF 平面PEC . (2)设点A 到平面PEC 的距离为d .由题意知在EBC ∆中,222cos EC EB BC EB BC EBC =+-⋅⋅∠11421272=++⨯⨯⨯= 在PDE ∆中227PE PD DE =+=PDC ∆中2222PC PD CD =+=故EQ PC ⊥,5EQ AF ==1225102PEC S ∆=⨯=13132AEC S ∆=⨯=所以由A PEC P AEC V V --=11310233d =,解得30d =. 22. (1)由题意知, 48a =,则2a =,由椭圆离心率12c e a ==,则1c =,23b =, 则椭圆C 的方程22143x y +=.(2)由题意知直线m 的斜率不为0,设直线m 的方程为1x ky =-,()11,P x y ,()22,Q x y , 则221143x ky x y =-⎧⎪⎨+=⎪⎩ ()2243690k y ky ⇒+--= 122122634934k y y k y y k ⎧+=⎪⎪+⇒⎨⎪=-⎪+⎩, 所以()2222121212121222211163612142222343434PQF k k S F F y y F F y y y k k k ∆+⎛⎫=-=+-=⨯+= ⎪+++⎝⎭()2222121212121222211163612142222343434PQF k k S F y y F y y y y k k k ∆+⎛⎫=-=+-=⨯+= ⎪+++⎝⎭)2222122216361214223434k k y y k k +⎛⎫-=⨯+= ⎪++⎝⎭令21k t +=,则1t ≥,所以()22121213143PQF t S t t t∆==-++,知识决定格局,格局影响命运 而13y t t =+在[)1,+∞上单调递增,则13t t +的最小值为4,所以212313PQF S t t∆=≤+, 当1t =时取等号,即当0k =时,2PQF ∆的面积最大值为3.。

相关文档
最新文档