高速电气化铁路接触网施工工艺
高速电气化铁路接触网施工关键技术

高速电气化铁路接触网施工关键技术摘要:在电气化铁路的整个系统中,接触网是最容易出现问题的环节,因此,必须加强高速电气化铁路接触网施工技术,保证电气化铁路的正常运行。
本文就高速电气化铁路接触网施工技术现状和高速电气化铁路接触网施工关键技术进行了简要分析。
关键词:高速电气化;铁路接触网;施工技术引言我国在高速接触网施工组织、施工技术、管理、施工工艺、工机具及仪器仪表配置等方面尚经验不足,各发达国家已有多年的高速铁路接触网施工经验,其先进的施工组织、科学的施工工艺、适宜的工机具及仪器仪表确保了施工安全、工程质量和受电弓一接触网的良好运行。
一、高速电气化铁路接触网施工技术现状目前,国内从事电气化接触网工程施工的单位较多,其施工技术水平也参差不齐,从总体上看比国外同行的施工技术水平要低。
主要表现在以下几个方面:1、施工人员的综合素质亟待进一步提高。
虽然,电气化铁路接触网专业正凭借其环保、高速等优势成为铁路投资建设的热点领域,但是我们现场施工人员的综合素质,特别是接触网施工关键技术的综合运用能力并没有随着电气化铁路的大面积开工建设而取得显著提高和长期进步,除个别处于技术研发和行业先导单位的施工人员外,其余的施工人员仍在沿用传统方式进行施工,缺乏一定的工艺创新意识和施工工法的革新。
2、先进的施工技术装备没有得到广泛应用。
近年来,国外接触网施工技术装备不断推陈出新,许多国外同行业的施工单位借此对大型施工机械和技术测量设备进行了大面积的更新换装。
相比而言,我们国内由于资金和成本压力没有及时跟进换装,在用的施工技术装备相对处于落后状态,不能完全实现对工程实体质量的全过程控制。
3、利用信息化手段进行施工技术管理的能力不强。
当今,接触网专业的施工技术管理越来越离不开信息化的科技手段。
为了确保和提高接触网上部构配件和机电设备安装的精准度,需要将现场采集的大量数据通过计算机进行模拟演算,并根据计算机演算数据指导相关供应商或现场施工人员先行组织相关部分的预配预装,以此来提高现场劳动效率和安装工艺质量。
接触网施工工艺

5.1一般规定5.1.1接触网工程施工前应按设计文件对支柱杆位进行定测,并应符合下列规定:1 纵向测量应以正线钢轨为依据,从设计规定的起测点或1号、2号道岔开始。
杆位因地形、地物需调整跨距以避让时,跨距调整幅度为设计跨距的-2~+1m,调整后的距距不得大于设计允许最大跨距;2 站场横向测量中,同组软横跨支柱、硬横梁支柱中心的连线应与正线中心线垂直;3 隧道口的起测点,为隧道口顶部水平线与线路中心线的交点;对隧道悬挂点、定位点测量定位时,遇有隧道伸缩缝,不同断面接缝,石缝或明显渗水、漏水的地方应避开;悬挂点跨距可在+1~-2m的范围内调整,但调整后的跨距不得大于设计允许值。
4 桥支柱垂直线路中心线应吻合墩台中心线。
5.1.2基坑开挖前施工单位应进行基坑坑形设计,并按其施工。
坑形设计应包含拉线锚板坑。
基坑开挖后,地质情况与设计不符时,应及时与设计、监理联系,共同确认变更,施工应严格执行变更设计。
5.1.3混凝土搅拌和灌注以及直埋基础的回填应符合下列规定:1 严格掌握水灰比和配合比。
2 在厚大无筋或稀疏配筋的结构中灌注混凝土时,填入片石的数量,不应大于混凝土结构体积的25%。
3 混凝土各种配料的拌和要均匀,灌注混凝土时,宜连续进行,如必须间断,对不掺外加剂的混凝土间歇时间不宜超过2h。
基础的灌注应水平分层进行,逐层捣实。
杯形基础应连续浇制,一次成形。
4 基础回填土,每回填0.3m厚的土层夯实一次。
5 按设计规定横卧板和底板,横卧板应密贴支柱,不得有空隙及夹土。
5.1.4杯形基础连续浇筑,一次成形。
同一组硬横跨的两个基础,先浇筑完一个,再以该基础基准,检查、校核相对应的另一个基坑位置,确认无误后再浇筑。
5.1.5 承力索、接触线宜采用恒张力架设,承力索张力2~3kN,接触线张力3~4 kN。
新建接触网在架设后应进行超拉或其他措施以克服新线蠕变引起的初伸长。
超拉完毕后,方可进行悬挂安装。
5.1.6支柱装配计算,用原始数据的测量应在附加悬挂架设完成后进行。
电气化铁路隧道接触网预埋槽道施工安装工艺课件

预埋槽道的设计和施工能够减少接触网的维护工作量,降低维护成本。
预埋槽道的重要性
保障列车运行安全
预埋槽道作为接触网的基础设施,其质量和稳定性直接关系到列车的运行安全 。
提高电气化铁路运营效率
预埋槽道能够确保接触网的稳定运行,从而提高电气化铁路的运营效率。
02
预埋槽道施工工艺流程
施工前的准备
质量检测与验收标准
总结词
质量检测与验收是保障质量的必要环节。
详细描述
安装完成后,应按照相关的质量检测与验收标准对预埋槽道进行全面的检测,确保其满足设计要求和使用性能, 对于不合格的部分应及时整改。
04
安全注意事项与环境保 护
施工安全措施
制定详细的安全操作规程
在施工前应制定详细的安全操作规程,包括作业流程、安全技术 要求和应急处理措施等,确保施工人员了解并遵守。
测量定位与放线
01
02
03
确定基准点
根据施工图纸和相关规范 ,确定接触网预埋槽道的 基准点和位置。
测量定位
使用全站仪等测量设备, 对基准点进行测量和定位 ,确保位置准确无误。
放线
根据基准点的位置,在隧 道壁上放出预埋槽道的位 置线,为后续的安装固定 提供依据。
预埋槽道的加工与运
加工制作
根据设计图纸和相关规范,对预 埋槽道进行加工制作,确保其尺
寸、形状和性能符合要求。
质量检测
对加工完成的预埋槽道进行质量检 测,确保其质量和性能符合要求。
包装运输
将预埋槽道进行适当的包装,以防 止其在运输过程中受到损坏;确保 在运输过程中遵守相关规定,避免 发生安全事故。
预埋槽道的安装固定
安装前的准备
接触网施工工艺流程(1).docx

一施工准备开工初期,根据站前工程施工实际进度,结合建设单位总体施组方案编制接触网工程实施性施工组织设计,报监理工程师和建设单位审批。
会同站前施工部门对轨道的线路中线桩、水准基点桩、岔心桩、曲线桩、轨道里程标等线路资料进行交底,按照交桩测量的有关要求安排现场复测,并做好测量记录。
对复测中出现的问题,主动联系有关单位处理。
调查大型材料和机械设备的进场路线,并按规定办理相关手续。
二施工测量1.施工定测依据设计提供的起测点或正线岔心及大型建筑物为测量起点,按照接触网平面图支柱跨距沿钢轨测量定位(曲线地段沿外轨测量),在轨腰上做出标记,并埋设副桩。
接触网纵向测量采用钢尺人工拉链测量跨距,测量过程中如因桥涵、钢轨、避车台、跨越电力线等障碍物影响杆位时,合理调整跨距,调整后的跨距不得大于设计允许最大跨距。
高挡墙、护坡及特殊地质地段,测量时充分利用线路专业预留的接触网坑位,避免开挖时对站前已完工程形成损坏。
对沿线平行和横跨的高低压电力线路弱电通信线路等干扰情况做好详细记录。
2.交桩测量通现场交桩内部计算中线测量测量找支柱副设置副桩水准测量于线路内部整理横向位过中线出每一桩相对中心的置,通过对水准测量数据的整理计算,计算出每一副桩的高程。
最终计算出每一支柱相对于副桩的埋深、限界。
测量精度要求达到:跨距量误差1/2000 。
中线测允许闭合差:在直线转点的左右方向偏差不大于置镜点长度的 1/20000,最大不超过20mm ;曲线横向闭合差:曲线长度500m 以内为30mm,超过500m 时不大于50mm 。
水准测量允许闭合差±30Lmm,其中L的取值单位为km,且前后置镜距离应相等,距离差不大于4m。
三基坑开挖根据设计图确定坑的类型、限界、坑形和深度,坑口的线路侧加设防止道渣滑落的档板和铺设防污染的彩条布。
遇水沟需移时,需保证原有水沟截面和畅通,护坡培土、砌石达到新建铁路设计标准。
争取当日开挖、当日立杆,对当天立不上杆,有危及行车安全的基坑应回填,防止塌方影响行车。
高速铁路接触网施工技术(简版)

2、一次到位的接触悬挂施工技术
腕臂和定位器安装 腕臂安装采用四化一到位的施工方法。 接触网施工的基准点轨面标高、线路中心 线和超高是保证支柱装配质量的关键。 定位装置是弓网受流的关键部件,其安装 质量直接影响接触网的安全运行。其定位 支座的安装高度、拉出值、限位间隙和定 位器斜率或定位器允许抬升量是定位装置 施工安装关键的四要素。
线别 正 线 承力索 接触线 型 号 PH-150mm2 2000Kgf PH-Ag150mm2 GT-CS110mm2 2000Kgf 3300Kgf 3000Kgf 30 分 额定张力 超拉张力 超拉时间
3、接触网检测
德国和西班牙在接触网工程竣工后,先进行临时验 收。临时验收期间要用安装有静态检测设备的车辆 连续测量接触线的静态位置及静态抬升量。 临时验收后,接触网送电开通试运行,一般不超过3 个月。试运行期间,接触网检测车对接触网进行动 态特性检测。其参数主要含有接触线动态几何尺寸、 动态弓网接触压力等。 试运行结束后对接触网工程进行正式验收。
± 30 ± 30 1 .5 ± 50 <20 ±5 0~+100 0 ~ 0 .5 % H + 1 m /-2 m ± 60 无 ± 3º 0~50
0~+50
0 ~ 0 .5 % H + 1 m /-2 m 无 无 ± 3º 0~50
(2 )
0 .3 ° ± 500 ± 150 ± 100 ± 5º ± 50 ± 250
1
法国地中 海线
25kN
12km/h
1.0t
设计咨询
15 kN
10km/h
5~6kN
西门子公 司设计咨 询 BB 意大 利分公司 BB 马德 里分公司 日本建设 公团
接触网施工工艺要求

接触⽹施⼯⼯艺要求160KM/h接触⽹施⼯⼯艺要求5.1基础、锚板及埋⼊杆5.1.1基础适⽤范围腕臂柱:⼀般采⽤传统带横卧板的整体直埋式基础;新建双绕地段采⽤混凝⼟灌注的整体直埋式基础,并设有横卧板;个别地质条件差、基坑深挖困难时采⽤浅埋式杯形基础。
软横跨⽀柱:钢柱采⽤现浇混凝⼟基础,混凝⼟⽀柱采⽤带横卧板的整体直埋式基础。
硬横跨⽀柱:环形等径混凝⼟⽀柱或钢管柱采⽤现浇杯形基础;格构式钢柱采⽤现浇混凝⼟基础。
拉线基础:接触悬挂及中⼼锚结下锚均采⽤钢筋混凝⼟柱式基础,附加悬挂下锚采⽤传统的锚板式基础。
5.1.2杯型基础测量硬横跨杯型基础中线定位应采⽤经纬仪测量,硬横跨杯型基础顶⾯⾼度和杯底深度应采⽤⽔准仪测量。
基础侧⾯限界应采⽤丁字尺测量,其他长度尺⼨可⽤钢卷尺测量。
测量精度以毫⽶计。
5.1.3杯型基础的基坑开挖基坑开挖时,严格控制坑型尺⼨,尽量减少对原路基结构的影响;同时与设备管理单位共同确认地下埋设物,严禁损伤破坏。
基坑开挖产⽣的弃⼟不得污染道床和环境。
基坑位置与既有⽔沟发⽣冲突时,应按设计要求先改移⽔沟再施⼯,挖出的弃⼟严禁堵塞⽔沟。
5.1.4杯型基础浇制基础内模形状应符合设计要求。
内模底盘、定位杆、基坑三者的中⼼线应在同⼀铅垂线上。
钢筋⽹必须保证设计规定的混凝⼟保护层厚度。
内模放置前,其外表⾯宜涂抹脱模剂。
基础浇制完成后,杯⼝直径应符合设计规定,施⼯偏差为+50/0mm。
杯深应符合设计规定,施⼯偏差为+300/0mm。
但根据地形要求,基础露出地⾯的⾼度尽量保持⼀致。
区间、旅客站台范围外基础⾯⾼出地⾯为100~400mm。
旅客站台范围内、货物站台基础⾯⾼出站台⾯为100mm,施⼯偏差为±20mm。
但根据地形要求,基础露出地⾯的⾼度尽量保持⼀致。
5.1.5钢柱硬横跨基础质量检验同⼀组硬横跨两个基础的螺栓中⼼连线应垂直下⾏正线。
每个基础地脚螺栓组相对该组硬横跨两个基础的螺栓中⼼连线的整体扭转不超过±0.25?。
高速铁路接触网施工技术

2.其他施工允许偏差 支柱侧面限界 ±50 拉出值 Re200型和Re250型(mm): ±50 Re330型(mm) :±30 3.验收 1)临时验收 2)试运行和性能验收 3)最终正式验收 4)保证期
10.3.2日本、法国铁路接触网的施工验收标准
日本和法国在时速≤270km/h的动态验收指标表
1)附加悬挂架设 应尽可能先架设附加悬挂,然后测量支柱有 关参数。 采用机械放线 2)支持装置的计算,预配和安装。 腕臂由专门预配小组在沈阳中心仓库预配 3)多线路ห้องสมุดไป่ตู้臂 多线路腕臂代替定位式软横跨
4)棘轮补窗偿装置与预配
5)弹性吊索安装 6)承力索,接触线架设及其中心锚结安装 7)载流式整体吊弦的预配及安装 8)定位装置安装 9)大气温度对接触网施工的影响 10)电力脂与接触网施工的影响 11)动态检测与静态检测
日 本 静态接触压 力(N) 54~64
法 80
国
最小接触压 20 力(N) 最大接触压 190-200 力(N)
30
190-200
(二)施工作业标准化。 施工作业标准化的关键是理论培训,尤其是关键工序和 特殊工序的现场实际操作培训。 (三)施工机具专业化,施工计算电脑化及施工检测科学化 接触网下部工程应主要配备如下施工机具:液压抓斗式 挖土机。打桩机(设计采用桩基础是),带液压吊臂和卡 箍的汽车吊(设计采用混泥土圆杆式),轨道式安装列车 (简称安列),混泥土搅拌及运输汽车,电动振捣机,空 压机,螺杆式钻机,载重汽车,电锯(用于切割混泥土杆) 等等。
上部工程:带液压升降和旋转平台的接触网安装作业车,能实现恒 张力放线的架线车组,带库房式(材料,工具)的安装作业车,带 液压式升降斗枢的轨行车辆,腕臂预配专用制作工具及作业台载流 式整体吊弦专用制作台,链条式手板葫芦,金线器,带刹车装置的 梯车电动压接钳,手动液压钳,短线钳,扭矩扳手梅花扳手(吊板 手)弹性吊弦安装专用拉力计,铜接触线煨弯器,铜铝过渡护套压 接钳等等。 检测仪器仪表主要应配备:数字式拉力计,经纬仪,水平仪,水平 尺,拉出值光学测量仪,伸缩式侧高杆,测量十字架(伸缩式), 检测车,吊弦间距量测量仪等等。 腕臂和吊弦计算软件 (四)施工组织合理化: 1)大循环,小流水。 2)严密的施工计划 3)现代化的物流管理。
接触网施工工法

中铁十七局电气化工程有限公司红淖三项目部路基段接触网改进施工工法1前言:中铁十七局电气化工程有限公司,新建铁路新疆红柳河至淖毛湖铁路工程S11标段全长164公里,全线共5274个路基段接触网基础。
地处我国西北戈壁滩地区,主要地理形势为戈壁与荒滩。
该地区常年干燥少雨,路基由砂石和少量黄土块组成,由于当地特殊原因造成现场施工难度大大提升,出现基坑塌方,施工用水困难,基础养护困难,结合我分部实际情况,决定改进施工工法,在铺架单位前完成接触网基础的施工,同时,在施工中找到难点,进行改进方案,对进度和质量都有很大提高。
2工法特点:2.1由于设计原因,基层表层无法施工,所以结合我分部实际情况,改变了施工顺序,在施工基床表层前施工接触网基础,从而节约了工期。
2.2利用自制的精调系统,大大加快了接触网基础施工效率,也保证了接触网基础的精度要求。
2.33使用范围4工艺原理5施工工艺流程及操作要点6材料与设备7质量控制8安全措施10效益分析11应用实例1施工工艺1.1施工工艺流程1.2 基础施工1、测量放线用全站仪放出基坑平面位置和尺寸、放出十字中心线,并用白灰洒出基坑边线。
2、基坑开挖由于本标段路基特殊不能用机械开挖,只能用人工挖至底面标高。
挂好十字中心线对基坑外形尺寸进行人工清理。
然后技术人员用全站仪、水准仪、钢卷尺检查基坑的平面位置、深度、外形尺寸,检查合格后人工对基坑外形进行修整,修整完毕后人工清除所有基坑内松动的路基填料。
人工处理完成后,对基础内松动土进行清除,将挖出的填料移至路肩位置,整形压实堆放。
基坑成型并检查合格后对不能及时进行下一道工序施工的对基坑四周进行防护,做好明显标示,基坑周围放置反光筒,并用五彩警戒线围护。
3、钢筋制作及安装和预埋螺栓安装钢筋笼在厂区内进行加工制作,钢筋下料及钢筋笼形状、尺寸符合设计及规范要求。
制作完成的钢筋笼,经技术人员检查和监理检验合格后方可使用。
将钢筋场地预制好笼的钢筋运至并安放在检验合格的基坑内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
84
大准电气化铁路动态无功补偿( SVC) 的应用
肖国栋( 神华准能大准铁路公司 供电段, 内蒙古 鄂尔多斯 010300 )
要: 电力牵引负荷功率因数低, 在系统中产生无功功率随牵引负荷增大而增大的现象。 因而, 运 量提高, 无功功率也随之增大。无功、 负序和谐波是运量较大线路的牵引供电系统对电力系统产生不利影 摘 响的重要指标。在牵引变电所采用动态无功补偿装置 , 将有效地补偿无功, 提高功率因数; 降低负序; 降低 母线压损, 提高网压水平; 降低牵引变压器功率损失和网损 , 提高牵引变压器的容量利用率, 由此提高运输 供电的能力。 关键词: 动态无功补偿; 组成; 原理; 应用
收稿日期: 2011 - 11 - 02
性无功的基本原理 u 为交流电压。Th1、 Th2 为两个反 如图 1 所示, 控制这两个晶闸管在一定范围内导通, 并联晶闸管, i 和 u 的基本波形。 则可控制电抗器流过的电流 i,
可调控电抗器相( TCR) 产生连续变化 感性无功的基本原理 α 为 Th1 和 Th2 的触发角, 则有: i = ( cosα - cosωt) i 的基波电流有效值为: i = ( 2 π - 2 α + sin2 α ) 式中: v 为相电压有效值; ωl 为电抗器的基波电抗( ω) 。 因此, 可以通过控制电抗器上串联的两只反并 联晶闸管的触发角 α 来控制电抗器吸收的无功功 率的值。 1. 3 恒无功控制、 保证功率因数及电压波动 SVC 连接到系统中, 电容器提供固定容性无功 通过具有完好线性特征的补偿电抗器的 功率 qc, 电流决定了从补偿电抗器输出的感性无功值 qtcr, 感性无功与容性无功相抵消, 只要 qn ( 系统 ) = qv ( 负载) - qc + qtcr = 恒定值 ( 或 0 ) , 功率因数就能 , 。 保持恒定 电压几乎不波动 图1
电气化铁路用电安全对策与建议
导读:电气化铁路弓网故障分析,电气化铁路弓网应用,电气化铁路弓网轨关系的思考,电 气化铁路用电安全对策与建议, 电气化铁路接触网电分相的改进措施, 电气化铁路外绝缘处 理及节能分析。
中国学术期刊文辑(2013)
目 录
一、理论篇 大准电气化铁路动态无功补偿 SVC 的应用 1 带回流线直供全并联供电在山区电气化铁路的应用 4 电气化铁路变压器日常维护及其处理方法刘贵 9 电气化铁路电加热式道岔融雪系统的电源设计 11 电气化铁路工程中接触网方案的设计及实践研究王瑞红 14 电气化铁路弓网故障的分析与预防 15 电气化铁路接触网成像检测系统在高铁上的运用 17 电气化铁路接触网成像检测系统在高铁上的运用赵俊彦 20 电气化铁路接触网上拔力的研究 23 电气化铁路接触网性能的改进与应用 25 电气化铁路牵引变电所回流装置存在的缺陷与改进方案探讨 26 电气化铁路牵引变电所微机变压器差动保护装置的应用 31 电气化铁路牵引供电设备跳闸案例分析 33 电气化铁路牵引供电设备跳闸查找方法 35 二、发展篇 电气化铁路同相供电变流器系统完成型式试验罗文广 37 电气化铁路同相供电试验系统模拟牵引负载方案研究 38 电气化铁路用 AT 箱式所的设计及分析 43 电气化铁路用 AT 箱式所的设计及分析单晖 47 复线电气化铁路直供牵引网载流能力的计算 51 复线电气化铁路直供牵引网载流能力的计算楚振宇 56 高速电气化铁路接触网平面设计问题研究张卫东 61 高速电气化铁路接触网施工工艺 63 高速电气化铁路新型电能质量补偿系统 65 高速电气化铁路综合故障测距分析 75 基于仿射不变矩的电气化铁路绝缘子片间夹杂异物检测 77 计及电气化铁路两相交流供电系统不省略的输电网实用故障计算方法比较研究 交流电气化铁路对路外管道干扰影响及防护 90 交流电气化铁路机车运行对广播电视辐射干扰的测量方法和防护间距 94 浅谈电气化铁路接触网的维护与检修卢文忠 100 浅谈电气化铁路接触网横腹式支柱的数字化整正 102 青藏高原首条电气化铁路兰青铁路设计标准综述 105 曲靖电网 110 千伏电气化铁路用电谐波危害分析 108 提高电气化铁路牵引变压器可靠性研究鲁玮 1 110 提高电气化铁路牵引变压器可靠性研究鲁玮 2 114 新建电气化铁路下穿桥梁净空高度探讨孙梓博 118 新型电气化铁路接触网融冰方案的主要电磁特性研究 122
doi: 10. 3969 / j. issn. 1008 - 0155. 2012. 04. 017 中图分类号: F272. 5 ; U223. 53 文献标志码: C 文章编号: 1008 - 0155 ( 2012 ) 04 - 0043 - 03
随着大准铁路煤炭外运能力的不断加大 , 万吨 列的开通, 电气化牵引网的供电负荷逐年增加 。在 跳闸等现象, 严重 实际运营中常发生主变过负荷、 影响铁路的正常的正常运输。 通过大量的测试及 研究, 得知引起上述现象的主要原因是随着负荷增 无功电流引起系统、 牵引变压器、 接触网电压损 加, 失增加导致牵引网末端电压严重降低 , 不能达到机 车正常工作所需的最低电压。为满足运输的要求, 必须提高牵引供电能力。经过多方面论证, 最终选 ( SVC ) 。 择了静止型无功补偿装置 下简称 本装置 能够快速调节无功功率、 提高功率因数、 降低无功 运行可靠, 可实现无级补偿、 分相调节, 分相 电流, 有较好的抑制不对称负荷的能力, 可以作为 控制, 提升接触网电压主要技术手段。 大准铁路供电段 现有樊家、 大红城、 窑沟、 点岱沟四座牵引变电所安 装了由株洲变流技术国家工程研究中心研制的电气 化铁路高压晶闸管阀的静止型动态无功补偿装置。 1 TCR + FC 型 SVC 系统的组成及控制原理 1. 1 系统组成 TCR + FC 型 SVC 系 统 一 般 由 TCR、 滤波器 ( FC ) 及控制系统组成。通过控制与电抗器串联的 两个反并联晶闸的导通角, 既可以向系统输送感性 又可以向系统输送容性无功电流 。该补 无功电流, 灵活性大, 而且可 偿器响应时间快( 小于半周波 ) , 以连续调节无功输出, 缺点是产生谐波, 但加上滤 波装置则可以克服。 1. 2 可调控电抗器相 ( TCR ) 产生连续变化感