2020—2021年湘教版七年级数学下册《因式分解及其应用》综合测试题及答案解析.docx
2020—2021年湘教版七年级数学下册《因式分解及其应用》综合测试题及答案解析.docx

新课标2017-2018学年湘教版七年级数学下册综合练习因式分解及其应用1.下列式子从左到右变形是因式分解的是( )A.a2+4a-21=a(a+4)-21 B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21 D.a2+4a-21=(a+2)2-252.下面分解因式正确的是( )A.x2+2x+1=x(x+2)+1 B.(x2-4)x=x3-4xC.ax+bx=(a+b)xD.m2-2mn+n2=(m+n)23.若代数式x2+ax可以因式分解,则常数a不可以取( )A.-1 B.0 C.1 D.24.下列各式不能用平方差公式因式分解的是( )A.-y2+1B.x2+(-y)2C.m2-n2D.-x2+(-y)25.下列多项式中,能用完全平方公式进行因式分解的是( )A.-a2-4ab+4b2B.a2+6ab-9b2C.a2+6a+9b2D.4(a-b)2+4(a-b)+16.若多项式ax2+bx+c可分解为(1-3x)2,那么a、b、c的值分别为( )A.-9,6,-1B.9,-6,1C.9,6,1D.9,6,-17.利用因式分解简便计算57×99+44×99-99正确的是( )A.99×(57+44)=9 999B.99×(57+44-1)=9 900C.99×(57+44+1)=10 098D.99×(57+44-99)=1988.(-12)2 015+(-12)2 016的结果是( )A.-12 B.12 C.(12)2 015D.-(1 2)2 0169.将3a2(x-y)-6ab(y-x)用提公因式法因式分解,应提出的公因式是__________.10.计算:32×3.14+3×(-9.42)=__________.11.因式分解:x2+3x(x-3)-9=__________.12.设a=192×918,b=8882-302,c=1 0532-7472,则数a,b,c 按从小到大的顺序排列,结果是__________<__________<__________.13.若x2+(m-3)x+4是完全平方式,则数m的值是__________.14.如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是____________________.15.58-1能被20至30之间的两个整数整除,那么这两个整数是__________.16.若a※b=a2-ab2,则x2※y所表示的代数式因式分解的结果是__________.17.因式分解:(1)4a2b2-12ab2+24ab3c; (2)4x(y-x)-y2;(3)x2-(y-1)2; (4)(a2+1)2-4a(a2+1)+4a2.18.用简便方法计算:(1)15×1012-992×15; (2)14×8.92-8.9×2.9×12+14×2.92.19.若|a+b-6|+(ab-4)2=0,求-a3b-2a2b2-ab3的值.20.已知a2+b2+8a-6b+25=0,求(a+b)2 014的值.21.春蕾中学正在新建一栋食堂,在施工过程中,需要浇制三种半径分别为0.21 m,0.35 m,0.44 m的钢筋圆环,每种圆环都需要20个,则所需钢筋共有多长?22.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax 的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像这样,先添一适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”因式分解:a2-6a+8;(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.参考答案1.B2.C3.B4.B5.D6.B7.B8.D9.3a(x-y) 10.011.(4x+3)(x-3) 12.a c b 13.7或-114.a2-b2=(a+b)(a-b) 15.26、24 16.x2(x+y)(x-y)17.(1)原式=4ab2(a-3+6bc).(2)原式=4xy-4x2-y2=-(2x-y)2.(3)原式=(x+y-1)(x-y+1).(4)原式=(a2+1-2a)2=(a-1)4.18.(1)原式=15×(1012-992)=15×200×2=6 000.(2)原式=14×(8.92-8.9×2.9×2+2.92)=14×(8.9-2.9)2=14×62=9.19.因为|a+b-6|+(ab-4)2=0,所以a+b-6=0,ab-4=0,即a+b=6,ab=4.又因为-a3b-2a2b2-ab3=-ab(a2+2ab+b2)=-ab(a+b)2,当a+b=6,ab=4时,原式=-ab(a+b)2=-4×6=-24.20.因为a2+b2+8a-6b+25=0,所以(a2+8a+16)+(b2-6b+9)=0,(a+4)2+(b-3)2=0.所以a=-4,b=3,(a+b)2 014=(-4+3)2 014=1.21.2π×0.21×20+2π×0.35×20+2π×0.44×20=2π×20×(0.21+0.35+0.44)=40π≈125.6(m).答:所需钢筋共有约125.6 m.22.(1)a2-6a+8=a2-6a+9-1=(a-3)2-1=(a-3+1)(a-3-1)=(a-2)(a-4). (2)①a2+b2=(a+b)2-2ab=52-2×6=13.②a4+b4 =(a2+b2)2-2a2b2=132-2×62=97.。
2020-2021学年湘教版七年级数学下册第3章因式分解单元综合能力提升训练(附答案)

2021年度湘教版七年级数学下册第3章因式分解单元综合能力提升训练(附答案)1.下列从左到右的变形是因式分解的是()A.(y﹣1)(y﹣2)=y2﹣3y+2B.a2﹣2ax+x2=a(a﹣2x)+x2C.x2+x+=(x+)2D.(x+3)(x﹣3)=x2﹣92.若长和宽分别是a,b的长方形的周长为10,面积为4,则a2b+ab2的值为()A.14B.16C.20D.403.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为()A.﹣1B.0C.3D.64.多项式2ax2﹣6axy中,应提取的公因式是.5.已知a﹣b=3,ab=﹣2,则a2b﹣ab2的值为.6.若长方形的长为a,宽为b,周长为16,面积为15,则a2b+ab2的值为.7.分解因式:9x2﹣6x+1=.8.分解因式:9x2﹣y2=.9.若多项式x2+2(m﹣2)x+25能用完全平方公式因式分解,则m的值为.10.把多项式x2﹣8x+16分解因式的结果为.11.把a3﹣4ab2分解因式,结果为.12.把多项式a3﹣4a2b+4ab2分解因式的结果是.13.分解因式:ab2﹣9a=.14.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.15.分解因式:a2(x﹣y)+b2(y﹣x)=.16.如果关于x的二次三项式x2﹣4x+m在实数范围内不能分解因式,那么m的取值范围是.17.因式分解:﹣28m3n2+42m2n3﹣14m2n=.18.在实数范围内分解因式:3x2﹣6y2=.19.已知x2﹣3x+1=0,则=.20.如果x﹣y=2,xy=3,则x2y﹣xy2=.21.分解因式:2m(m﹣n)2﹣8m2(n﹣m)22.分解因式:4xy2+4x2y+y3.23.把下列多项式因式分解(要写出必要的过程):(1)﹣x2y+6xy﹣9y;(2)9(x+2y)2﹣4(x﹣y)2;(3)1﹣x2﹣y2+2xy.24.观察下列因式分解的过程:(1)x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4)(2)a2﹣b2﹣c2+2bc=a2﹣(b2+c2﹣2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(1)请仿照上述分解因式的方法,把下列各式分解因式:①ad﹣ac﹣bd+bc②x2﹣y2﹣6x+9(2)请运用上述分解因式的方法,把多项式1+x+x(1+x)+x(1+x)2+…+x(1+x)n 分解因式.25.把下列各式分解因式:(1)2x2﹣5x﹣3(2)a2(x﹣2a)2﹣a(2a﹣x)3(3)(x2﹣3)2﹣4x2(4)a2﹣2a+b2﹣2b+2ab+1(5)(x﹣y)(x2+3xy+y2)﹣5xy(x﹣y)(6)(a﹣3b)2﹣4c2+12ab26.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay,x2+2xy+y2﹣1分组分解法:解:原式=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)解:原式=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7.27.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.28.如图,边长为a,b的矩形,它的周长为14,面积为10,求下列各式的值:(1)a2b+ab2;(2)a2+b2+ab.29.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x﹣y)+(x﹣y)2=;(2)因式分解:(x2﹣6x)(x2﹣6x+18)+81;(3)求证,若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.30.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图①可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.请解答下列问题:(1)写出由图②可以得到的数学等式;(2)利用(1)中得到的结论,解决下面问题:若a+b+c=6,a2+b2+c2=14,求ab+bc+ac的值;(3)可爱同学用图③中x个边长为a的正方形,y个宽为a,长为b的长方形,z个边长为b的正方形,拼出一个面积为(2a+b)(a+4b)的长方形,则x+y+z=.31.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为242平方厘米,大长方形纸板的周长为78厘米,求图中空白部分的面积.参考答案1.解:A、(y﹣1)(y﹣2)=y2﹣3y+2,是整式的乘法,不属于因式分解,故此选项不符合题意;B、a2﹣2ax+x2=a(a﹣2x)+x2,右边不是几个整式的积的形式,不属于因式分解,故此选项不符合题意;C、x2+x+=(x+)2,右边是几个整式的积的形式,属于因式分解,故此选项符合题意;D、(x+3)(x﹣3)=x2﹣9,是整式的乘法,不属于因式分解,故此选项不符合题意.故选:C.2.解:∵长和宽分别是a,b的长方形的周长为10,面积为4,∴2(a+b)=10,ab=4,∴a+b=5,则a2b+ab2=ab(a+b)=20.故选:C.3.解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.4.解:∵2ax2﹣6axy=2ax(x﹣3y),∴应提取的公因式是2ax.故答案是:2ax.5.解:a2b﹣ab2=ab(a﹣b)=﹣2×3=﹣6,故答案为:﹣6.6.解:由题意得:a+b=8,ab=15,则原式=ab(a+b)=120,故答案为:1207.解:原式=(3x﹣1)2,故答案为:(3x﹣1)28.解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).9.解:∵多项式x2+2(m﹣2)x+25能用完全平方公式因式分解,∴2(m﹣2)=±10,解得:m=7或﹣3,故答案为:7或﹣310.解:x2﹣8x+16=(x﹣4)2.故答案为:(x﹣4)2.11.解:原式=a(a2﹣4b2)=a(a+2b)(a﹣2b),故答案为:a(a+2b)(a﹣2b)12.解:a3﹣4a2b+4ab2=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案为:a(a﹣2b)2.13.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).14.解:由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.故答案为:9.15.解:a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).16.关于x的二次三项式x2﹣4x+m在实数范围内不能分解因式,就是对应的二次方程x2﹣4x+m=0无实数根,∴△=(﹣4)2﹣4m=16﹣4m<0,∴m>4.故答案为:m>4.17.解:(1)﹣28m3n2+42m2n3﹣14m2n=﹣14m2n(2mn﹣n2+1);18.解:原式=3(x2﹣2y2)=3(x+y)(x﹣y),故答案为3(x+y)(x﹣y).19.解:∵x2﹣3x+1=0,∴x+=3,∴===,故答案为.20.解:∵x﹣y=2,xy=3,∴x2y﹣xy2=xy(x﹣y)=3×2=6.故答案为:6.21.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).22.解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.23.解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).24.(1)①原式=(ad﹣ac)﹣(bd﹣bc)=a(d﹣c)﹣b(d﹣c)=(d﹣c)(a﹣b)②原式=(x2﹣6x+9)﹣y2=(x﹣3)2﹣y2=(x﹣3+y)(x﹣3﹣y)(2)原式=1+x+x(1+x)+x(1+x)2+…+x(1+x)n=(1+x)+x(1+x)+x(1+x)2+…+x(1+x)n=(1+x)[1+x+x(1+x)+x(1+x)2+…+x(1+x)n﹣1]=(1+x)(1+x)n=(1+x)n+125.解:(1)2x2﹣5x﹣3,=(x﹣3)(2x+1);(2)a2(x﹣2a)2﹣a(2a﹣x)3,=a(x﹣2a)2(2a+x﹣2a),=ax(x﹣2a)2;(3)(x2﹣3)2﹣4x2,=(x2﹣3)2﹣(2x)2,=(x2﹣2x﹣3)(x2+2x﹣3),=(x﹣3)(x+1)(x﹣1)(x+3);(4)a2﹣2a+b2﹣2b+2ab+1,=(a2+2ab+b2)﹣(2a+2b)+1,=(a+b)2﹣2(a+b)+1,=(a+b﹣1)2;(5)(x﹣y)(x2+3xy+y2)﹣5xy(x﹣y),=(x﹣y)(x2+3xy+y2﹣5xy),=(x﹣y)3;(6)(a﹣3b)2﹣4c2+12ab,=a2﹣6ab+9b2﹣4c2+12ab,=(a2+6ab+9b2)﹣(2c)2,=(a+3b﹣2c)(a+3b+2c).26.解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x2﹣6x+9﹣16)=(x﹣3)2﹣16=(x﹣3﹣4)(x﹣3+4)=(x﹣7)(x+1).27.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)28.解:(1)∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.(2)a2+b2=(a+b)2﹣2ab=72﹣2×10=29,∴a2+b2+ab=29+10=39.29.解:(1)1+2(x﹣y)+(x﹣y)2=(x﹣y+1)2;(2)令A=x2﹣6x,则原式变为A(A+18)+81=A2+18A+81=(A+9)2,故(x2﹣6x)(x2﹣6x+18)+81=(A+9)2;(3)(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2,∵n为正整数,∴n2+3n+1也为正整数,∴代数式(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.30.解:(1)观察图形可得:大正方形的边长为:a+b+c,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=6,a2+b2+c2=14,∴62=14+2(ab+ac+bc),∴ab+ac+bc=(36﹣14)÷2=11.(3)由题意得:(2a+b)(a+4b)=xa2+yab+zb2,∴2a2+8ab+ab+4b2=xa2+yab+zb2,∴2a2+9ab+4b2=xa2+yab+zb2,∴x=2,y=9,z=4,∴x+y+z=2+9+4=15.故答案为:15.31.解:(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为(a+2b)(2a+b);故答案为:(a+2b)(2a+b);(2)由已知得:,化简得∴(a+b)2﹣2ab=121,∴ab=24,5ab=120.∴空白部分的面积为120平方厘米.。
2020-2021学年湘教版七年级数学下册 第3章因式分解 章末综合能力提升训练

2021年湘教版七年级数学下册《第3章因式分解》章末综合能力提升训练(附答案)1.下列从左到右的变形是因式分解的是()A.(y﹣1)(y﹣2)=y2﹣3y+2B.a2﹣2ax+x2=a(a﹣2x)+x2C.x2+x+=(x+)2D.(x+3)(x﹣3)=x2﹣92.下列从左到右的变形中,是分解因式的是()A.a2﹣4a+5=a(a﹣4)+5B.a2﹣b2=(a﹣b)2C.a2﹣9b2=(a+3b)(a﹣3b)D.(a+b)2=a2+2ab+b23.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为()A.﹣1B.0C.3D.64.下列各组中,没有公因式的一组是()A.ax﹣bx与by﹣ay B.6xy﹣8x2y与﹣4x+3C.ab﹣ac与ab﹣bc D.(a﹣b)3与(b﹣a)2y5.计算248﹣26的结果更接近()A.248B.247C.242D.2406.已知x﹣y=,xy=,则xy2﹣x2y的值是()A.﹣B.1C.D.7.若多项式x2﹣ax+4能因式分解为(x﹣m)2,则a的值是()A.±4B.±2C.4D.﹣48.下列因式分解正确的是()A.x2﹣x+2=x(x﹣1)+2B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.2x2﹣2=2(x+1)(x﹣1)9.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)10.把多项式4ab2﹣16ac2分解因式的结果是.11.在实数范围内分解因式:x4y4﹣4x4=.12.多项式4xy2+12xyz的公因式是.13.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.14.分解因式4x2y3+8x3y2﹣12x4y的公因式是.15.多次式36x+24x3y﹣12xy中各项的公因式是.16.分解因式y3﹣2y2+y=.17.分解因式:y+y2+xy+xy2=.18.分解因式:3m3﹣18m2n+27mn2=.19.如果把多项式x2﹣8x+m分解因式得(x﹣10)(x+n),那么m=,n=.20.若多项式x2﹣px+q(p、q是常数)分解因式后,有一个因式是x+3,则3p+q的值为.21.若多项式x3+x+m含有因式x2﹣x+2,则m的值是.22.如果3x2+px+q=(3x+4)(x﹣2),那么p=23.因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x﹣2),王勇看错了b的值,分解的结果是(x+2)(x﹣3),那么x2+ax+b因式分解正确的结果是.24.2021×20242024﹣2024×20212021=.25.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.26.分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x);(3)(a2+b2)2﹣4a2b2;(4)a3(x﹣y)+ab2(y﹣x).27.先分解因式,再求值:已知a+b=2,,求a3b+2a2b2+ab3的值.28.分解因式:(1)4x2﹣3y(4x﹣3y)(2)利用因式分解进行简便计算:20212﹣2022×202029.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足c2a2﹣c2b2=a4﹣b4,试判断△ABC的形状.解:∵c2a2﹣c2b2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)﹣﹣(A)∴c2=a2+b2﹣﹣(B)∴△ABC是直角三角形﹣﹣(C)问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)从错误的那一步起写出正确完整过程.参考答案1.解:A、(y﹣1)(y﹣2)=y2﹣3y+2,是整式的乘法,不属于因式分解,故此选项不符合题意;B、a2﹣2ax+x2=a(a﹣2x)+x2,右边不是几个整式的积的形式,不属于因式分解,故此选项不符合题意;C、x2+x+=(x+)2,右边是几个整式的积的形式,属于因式分解,故此选项符合题意;D、(x+3)(x﹣3)=x2﹣9,是整式的乘法,不属于因式分解,故此选项不符合题意.故选:C.2.解:A、结果不是整式的积的形式,故本选项不符合题意;B、根据平方差公式可知a2﹣b2=(a﹣b)(a+b),故本选项不符合题意;C、从左到右的变形,是分解因式,故本选项符合题意;D、从左到右的变形中,是整式的乘法,故本选项不符合题意.故选:C.3.解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.4.解:A、ax﹣bx=x(a﹣b),by﹣ay=﹣y(a﹣b),有公因式(a﹣b),故本选项不符合题意;B、6xy﹣8x2y=﹣2xy(4x﹣3),﹣4x+3=﹣(4x﹣3),有公因式(4x﹣3),故本选项不符合题意;C、ab﹣ac=a(b﹣c),ab﹣bc=b(a﹣c),没有公因式,故本选项符合题意;D、(a﹣b)3x与(b﹣a)2y有公因式(a﹣b)2,故本选项不符合题意.故选:C.5.解:248﹣26=26(242﹣1)≈26×242=248,故选:A.6.解:∵x﹣y=,xy=,∴xy2﹣x2y=﹣xy(x﹣y)=﹣×=﹣.故选:A.7.解:因为多项式x2﹣ax+4能因式分解为(x﹣m)2,所以m=±2.当m=2时,a=4;当m=﹣2时,a=﹣4.故选:A.8.解:A选项中,多项式x2﹣x+2在实数范围内不能因式分解;选项B,C中的等式不成立;选项D中,2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),正确.故选:D.9.解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.10.解:4ab2﹣16ac2=4a(b2﹣4c2)=4a(b+2c)(b﹣2c).故答案是:4a(b+2c)(b﹣2c).11.解:x4y4﹣4x4=x4(y4﹣4)=x4(y2+2)(y2﹣2)=x4(y2+2)(y+)(y﹣),故答案为:x4(y2+2)(y+)(y﹣).12.解:多项式4xy2+12xyz的公因式是4xy,故答案为:4xy.13.解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.14.解:分解因式4x2y3+8x3y2﹣12x4y的公因式是4x2y.故答案为:4x2y.15.解:多项式36x+24x3y﹣12xy中各项的公因式是12x,故答案为:12x.16.解:y3﹣2y2+y,=y(y2﹣2y+1),=y(y﹣1)2.故答案为:y(y﹣1)2.17.解:y+y2+xy+xy2=(y+y2)+(xy+xy2)=y(1+y)+xy(1+y)=(1+y)(y+xy)=y(1+y)(1+x).故答案为:y(1+y)(1+x).18.解:3m3﹣18m2n+27mn2,=3m(m2﹣6mn+9n2),=3m(m﹣3n)2.故答案为:3m(m﹣3n)2.19.解:根据题意得:x2﹣8x+m=(x﹣10)(x+n)=x2+(n﹣10)x﹣10n∴n﹣10=﹣8,﹣10n=m解得m=﹣20,n=2;故应填﹣20,2.20.解:设另一个因式为x+a,则x2﹣px+q=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,由此可得,由①得:a=﹣p﹣3③,把③代入②得:﹣3p﹣9=q,3p+q=﹣9,故答案为:﹣9.21.解:∵多项式x3+x+m含有因式x2﹣x+2,∴设另一个因式是x+a,则(x2﹣x+2)(x+a)=x3+x+m,∵(x2﹣x+2)(x+a)=x3+ax2﹣x2﹣ax+2x+2a=x3+(a﹣1)x2+(﹣a+2)x+2a,∴a﹣1=0,2a=m,解得:a=1,m=2,故答案为:2.22.解:∵(3x+4)(x﹣2)=3x2﹣2x﹣8,3x2+px+q=(3x+4)(x﹣2),∴p=﹣2.故答案为:﹣2.23.解:因式分解x2+ax+b时,∵李明看错了a的值,分解的结果是(x+6)(x﹣2),∴b=6×(﹣2)=﹣12,又∵王勇看错了b的值,分解的结果为(x+2)(x﹣3),∴a=﹣3+2=﹣1,∴原二次三项式为x2﹣x﹣12,因此,x2﹣x﹣12=(x﹣4)(x+3),故答案为:(x﹣4)(x+3).24.解:2021×20242024﹣2024×20212021=2021×2024×10001﹣2024×2021×10001=(2021×2024)(10001﹣10001)=0.故答案为0.25.解:∵2a﹣3b=﹣1,∴4a2﹣6ab+3b=2a(2a﹣3b)+3b=2a×(﹣1)+3b=﹣2a+3b=﹣(2a﹣3b)=﹣(﹣1)=1故答案为126.解:(1)﹣3a2+6ab﹣3b2=﹣3(a2﹣2ab+b2)=﹣3(a﹣b)2;(2)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x ﹣y)(3a+2b)(3a﹣2b);(3)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(4)a3(x﹣y)+ab2(y﹣x)=a3(x﹣y)﹣ab2(x﹣y)=a(x﹣y)(a2﹣b2)=a(x ﹣y)(a+b)(a﹣b).27.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2∵a+b=2,,∴原式==18.28.解:(1)4x2﹣3y(4x﹣3y)=4x2﹣12xy+9y2=(2x)2﹣12xy+(3y)2=(2x﹣3y)2;(2)20212﹣2022×2020=20212﹣(2021+1)(2021﹣1)=20212﹣(20212﹣1)=201212﹣20212+1=129.解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)∴(a2﹣b2)[c2﹣(a2+b2)]=0∴a2﹣b2=0或c2﹣(a2+b2)=0∴a=±b(﹣b舍去)或c2=a2+b2,∴△ABC是等腰三角形或直角三角形。
2020—2021年湘教版七年级数学下册《因式分解》单元测试题及参考答案二.doc

新课标2017-2018学年湘教版七年级数学下册单元综合检测(三)第3章(45分钟100分)一、选择题(每小题4分,共28分)1.下列从左到右的变形,哪一个是因式分解( )A.(a+b)(a-b)=a2-b2B.x2-y2+4y-4=(x+y)(x-y)+4(y-1)C.(a+b)2-2(a+b)+1=(a+b-1)2D.x2+5x+4=x错误!未找到引用源。
2.若(m+n)3-mn(m+n)=(m+n)·A,则A表示的多项式是( )A.m2+n2B.m2-mn+n2C.m2-3mn+n2D.m2+mn+n23.下列各式不能用平方差公式因式分解的是( )A.-x2+y2B.x2-(-y)2C.-m2-n2D.4m2-错误!未找到引用源。
n24.(2013·西双版纳州中考)因式分解x3-2x2+x正确的是( )A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)25.把代数式3x3-6x2y+3xy2因式分解,结果正确的是( )A.x(3x+y)(x-3y)B.3x(x2-2xy+y2)C.x(3x-y)2D.3x(x-y)26.若x-y=5,xy=6,则x2y-xy2的值为( )A.30B.35C.1D.以上都不对7.满足m2+n2+2m-6n+10=0的是( )A.m=1,n=3B.m=1,n=-3C.m=-1,n=-3D.m=-1,n=3二、填空题(每小题5分,共25分)8.(2013·绵阳中考)因式分解:x2y4-x4y2= .9.(2013·菏泽中考)因式分解:3a2-12ab+12b2= .10.若x+y+z=2,x2-(y+z)2=6,则x-y-z= .11.(2013·威海中考)因式分解:-3x2+2x-错误!未找到引用源。
= .12.(2013·杭州中考)32×3.14+3×(-9.42)= .三、解答题(共47分)13.(10分)因式分解:(1)25x2-16y2.(2)(a-b)(x-y)-(b-a)(x+y).(3)a2-4ab+4b2.(4)4+12(x-y)+9(x-y)2.14.(12分)利用因式分解进行计算:(1)3.46×14.7+0.54×14.7-29.4.(2)9×1.22-16×1.42.15.(12分)观察猜想:如图,大长方形是由四个小长方形拼成的,根据此图可得x2+(p+q)x+pq=x2+px+qx+pq=(x+p)(x+q).事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+p)(x+q).于是我们可利用上面的方法进行多项式的因式分解.例:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:(1)x2+7x+12.(2)x4-13x2+36.16.(13分)先请阅读下列题目和解答过程:“已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状. 解:因为a2c2-b2c2=a4-b4①,所以c2(a2-b2)=(a2+b2)(a2-b2)②,所以c2=a2+b2③,所以△ABC是直角三角形④.”请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因.(3)写出正确的解答过程.答案解析1.【解析】选C.A,B中最后结果不是乘积的形式,不属于因式分解;C中(a+b)2-2(a+b)+1=(a+b-1)2,是运用完全平方公式进行的因式分解;D中不是在整式范围内进行的分解,不属于因式分解.2.【解析】选 D.因为(m+n)3-mn(m+n)=(m+n)·[(m+n)2-mn]=(m+n)·(m2+2mn+n2-mn)= (m+n)·(m2+mn+n2)=(m+n)·A,所以A表示的多项式是m2+mn+n2.3.【解析】选C.A中-x2+y2,两平方项符号相反,可以用平方差公式,正确;B 中x2-(-y)2=x2-y2,两平方项符号相反,可以用平方差公式,正确;C中-m2-n2=-(m2+n2),两平方项符号相同,故本选项错误;D中4m2-错误!未找到引用源。
2020-2021学年七年级数学湘教版下册《第3章因式分解》章末综合优生辅导训练(附答案)

2020-2021年度湘教版七年级数学下册《第3章因式分解》章末综合优生辅导训练(附答案)1.下列等式变形中属于因式分解的是()A.a(a+2)=a2+2a B.a2﹣b2=(a+b)(a﹣b)C.m2+m+3=m(m+1)+3D.a2+6a+3=(a+3)2﹣62.下列因式分解变形正确的是()A.2a2﹣4a=2(a2﹣2a)B.a2﹣2a+1=(a﹣1)2C.﹣a2+4=(a+2)(a﹣2)D.a2﹣5a﹣6=(a﹣2)(a﹣3)3.已知xy=3,x﹣y=﹣2,则代数式x2y﹣xy2的值是()A.6B.﹣1C.﹣5D.﹣64.若x2+5x+m=(x+n)2,则m,n的值分别为()A.m=,n=B.m=,n=5C.m=25,n=5D.m=5,n=5.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab26.多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+97.若a2+2ab+b2﹣c2=10,a+b+c=5,则a+b﹣c的值是()A.2B.5C.20D.98.若x2+mx+9=(x﹣3)2,则m=()A.6B.﹣6C.3D.﹣39.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)10.我们所学的多项式因分解的方法主要有:①提公因式法;②平方差公式法;③完全平方公式法.现将多项式(x﹣y)3+4(y﹣x)进行因式分解,使用的方法有()A.①②B.①③C.②③D.①②③11.计算(﹣2)100+(﹣2)99的结果为()A.﹣299B.299C.﹣2D.212.以下关于x的二次三项式在实数范围内不能够因式分解的是()A.x2﹣3x+2B.3x2﹣x+1C.2x2﹣9x﹣1D.x2﹣4x+213.下列各式能用完全平方公式分解因式的有()①4x2﹣4xy﹣y2;②﹣1﹣a﹣;③m2n2+4﹣4mn;④a2﹣2ab+4b2;⑤x2﹣8x+9A.1个B.2个C.3个D.4个14.下列不可利用x2+(p+q)x+pq=(x+p)(x+q)分解因式的是()A.x2﹣3x+2B.x2+3x+2C.x2﹣2x﹣3D.x2+2x+315.因式(m+2n)(m﹣2n)是下列哪个多项式分解因式的结果()A.m2+4n2B.﹣m2+4n2C.m2﹣4n2D.﹣m2﹣4n2 16.分解因式:(1)2a3﹣8a2+8a;(2)a2(x﹣y)+4(y﹣x);(3)x2﹣x﹣12.17.因式分解:(1)4xy2﹣4x2y﹣y3;(2)9a2(x﹣y)+4b2(y﹣x).18.分解因式:(1)3a(x﹣y)﹣2b(y﹣x);(2)4ab2﹣4b3﹣a2b.19.分解因式:(1)(m+n)2﹣4m(m+n)+4m2 (2)a3b﹣ab;(3)x2+2x﹣320.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.21.因式分解:(1)9x3y﹣xy3;(2)(a﹣b)(3a+b)2+(a+3b)2(b﹣a).22.分解因式:a4+4b2c2﹣a2b2﹣4a2c2.23.将下列各式因式分解:(1)a4﹣16;(2)﹣mp2+4mp﹣4m;(3)(x﹣3)x2+9(3﹣x);(4)(m2+2m)2﹣2(m2+2m)+1.24.(1)因式分解:3x2﹣12xy+12y2.(2)计算:20202﹣2019×2021.25.已知a,b.c为三角形ABC的三边,且满足a2+2b2+c2﹣2b(a+c)=0,试判断三角形ABC的形状.26.阅读例题,解答问题:例题:已知二次三项式x2+4x+m有一个因式是(x+1),求另一个因式及m的值.解:设另一个因式为(x+n),得x2+4x+m=(x+1)(x+n),则x2+4x+m=x2+(n+1)x+n,∴,解得.∴另一个因式(x+3),m的值为3.问题:已知二次三项式2x2+x+k有一个因式是(2x﹣3),求另一个因式及k的值.27.数形结合是解决数学问题的重要思想方法,借助图形可以对很多数学问题进行直观推导和解释.如图1,有足够多的A类、C类正方形卡片和B类长方形卡片.用若干张A类、B类、C类卡片可以拼出如图2的长方形,通过计算面积可以解释因式分解:2a2+3ab+b2=(2a+b)(a+b).(1)若解释因式分解3a2+4ab+b2=(a+b)(3a+b),需取A类、B类、C类卡片若干张(三种卡片都要取到),拼成一个长方形,请画出相应的图形;(2)若取A类、B类、C类卡片若干张(三种卡片都要取到),拼成一个长方形,使其面积为5a2+mab+b2,则m的值为,将此多项式分解因式为.(3)有3张A类,4张B类,5张C类卡片.从中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(无空隙、无重叠地拼接),则拼成的正方形的边长最长为.28.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴,解得:n=﹣7,m=﹣21,∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值;(2)已知二次三项式3x2+4ax+1有一个因式是(x+a),求另一个因式以及a的值.29.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.例如:x2﹣2xy+y2﹣4=(x2﹣2xy+y2)﹣4=(x﹣y)2﹣22=(x﹣y﹣2)(x﹣y+2).②拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.例如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1﹣2)(x+1+2)=(x﹣1)(x+3)③十字相乘法:十字相乘法能用于二次三项式的分解因式.分解步骤:1.分解二次项,所得结果分别写在十字十字交叉线的左上角和左下角;2.分解常数项,所得结果分别写在十字交叉线的右上角和右下角;3.交叉相乘,求代数和,使其等于一次项;4.观察得出原二次三项式的两个因式,并表示出分解结果.这种分解方法叫作十字相乘法.例如:x2+6x﹣7分析:观察得出:两个因式分别为(x+7)与(x﹣1)解:原式=(x+7)(x﹣1)(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x2+4x﹣y2+1②(拆项法)x2﹣6x+8③x2﹣5x+6=.(2)已知:a、b、c为△ABC的三条边,a2+b2+c2﹣4a﹣4b﹣6c+17=0,求△ABC的周长.30.我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x﹣7=x2+[7+(﹣1)]x+7×(﹣1)=(x+7)[x+(﹣1)]=(x+7)(x﹣1).但小白在学习中发现,对于x2+6x﹣7还可以使用以下方法分解因式.x2+6x﹣7=x2+6x+9﹣7﹣9=(x+3)2﹣16=(x+3)2﹣42=(x+3+4)(x+3﹣4)=(x+7)(x﹣1).这种在二次三项式x2+6x﹣7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2﹣8x+7分解因式;(2)填空:x2﹣10xy+9y2=x2﹣10xy++9y2﹣=(x﹣5y)2﹣16y2=(x﹣5y)2﹣()2=[(x﹣5y)+][(x﹣5y)﹣]=(x﹣y)(x﹣);(3)请用两种不同方法分解因式x2+12mx﹣13m2.31.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay,x2+2xy+y2﹣1分组分解法:解:原式=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)解:原式=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7.32.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(1+x)+x(1+x)2+…+x(1+x)2020,则需应用上述方法次,结果是.(3)分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)n(必须写出解答过程).33.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图①可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.请解答下列问题:(1)写出由图②可以得到的数学等式;(2)利用(1)中得到的结论,解决下面问题:若a+b+c=6,a2+b2+c2=14,求ab+bc+ac 的值;(3)可爱同学用图③中x个边长为a的正方形,y个宽为a,长为b的长方形,z个边长为b的正方形,拼出一个面积为(2a+b)(a+4b)的长方形,则x+y+z=.34.【例题讲解】因式分解:x3﹣1.∵x3﹣1为三次二项式,若能因式分解,则可以分解成一个一次二项式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,∴x3﹣1=x3+(a﹣1)x2+(b﹣a)x﹣b恒成立.∴等式两边多项式的同类项的对应系数相等,即解得.∴x3﹣1=(x﹣1)(x2+x+1).【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法.【学以致用】(1)若x2﹣mx﹣12=(x+3)(x﹣4),则m=;(2)若x3+3x2﹣3x+k有一个因式是x+1,求k的值;(3)请判断多项式x4+x2+1能否分解成两个整系数二次多项式的乘积,若能,请直接写出结果,否则说明理由.参考答案1.解:A.是整式的乘法,不是因式分解,故此选项不符合题意;B.符合因式分解的定义,是因式分解,故此选项符合题意;C.不符合因式分解的定义,不是因式分解,故此选项不符合题意;D.不符合因式分解的定义,不是因式分解,故此选项不符合题意;故选:B.2.解:∵选项A提取公因式不彻底,2a2﹣4a=2a(a﹣2),故A错误;a2﹣2a+1=(a﹣1)2,故选项B正确;﹣a2+4=﹣(a2﹣4)=﹣(a+2)(a﹣2)≠(a+2)(a﹣2),故选项C错误;a2﹣5a﹣6=(a﹣6)(a+1)≠(a﹣2)(a﹣3),故选项D错误.故选:B.3.解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.4.解:∵x2+5x+m=(x+n)2=x2+2nx+n2,∴2n=5,m=n2,解得m=,n=,故选:A.5.解:12ab3c+8a3b=4ab(3b2c+2a2),则4ab是公因式,故选:C.6.解:因为3x﹣9=3(x﹣3),x2﹣9=(x+3)(x﹣3),x2﹣6x+9=(x﹣3)2,所以多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为(x﹣3).故选:C.7.解:a2+2ab+b2﹣c2=10,(a+b)2﹣c2=10,(a+b+c)(a+b﹣c)=10,∵a+b+c=5,∴5(a+b﹣c)=10,解得a+b﹣c=2.故选:A.8.解:∵x2+mx+9=(x﹣3)2,∴x2+mx+9=x2﹣6x+9,∴m=﹣6,故选:B.9.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.10.解:(x﹣y)3+4(y﹣x)=(x﹣y)3﹣4(x﹣y)=(x﹣y)[(x﹣y)2﹣4]=(x﹣y)(x﹣y+2)(x﹣y﹣2),故将多项式(x﹣y)3+4(y﹣x)进行因式分解,使用的方法有:①提公因式法;②平方差公式法;故选:A.11.解:原式=(﹣2)99×(﹣2+1)=(﹣2)99×(﹣1)=299.故选:B.12.解:A.x2﹣3x+2=(x﹣1)(x﹣2),此选项不符合题意;B.3x2﹣x+1不能在实数范围内因式分解,此选项符合题意;C.2x2﹣9x﹣1=2(x﹣)2﹣=[(x﹣)+][(x﹣)﹣],此选项不符合题意;D.x2﹣4x+2=(x﹣2)2﹣2=(x﹣2+)(x﹣2﹣),此选项不符合题意;故选:B.13.解:①4x2﹣4xy﹣y2,不能用完全平方公式分解;②﹣1﹣a﹣=﹣(1+a+)=﹣(+1)2,可以用完全平方公式分解;③m2n2+4﹣4mn=(mn﹣2)2,可以用完全平方公式分解;④a2﹣2ab+4b2,不能用完全平方公式分解;⑤x2﹣8x+9,不能用完全平方公式分解;故选:B.14.解:x2﹣3x+2=x2+(﹣1﹣2)x+(﹣1)×(﹣2)=(x﹣1)(x﹣2),x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),x2﹣2x﹣3=x2+(1﹣3)x+1×(﹣3)=(x+1)(x﹣3),x2+2x+3不能用公式进行分解,故选项D符合题意;故选:D.15.解:A.m2+4n2是平方和,不能进行因式分解,此选项不符合题意;B.原式=﹣[m2﹣(2n)2]=﹣(m+2n)(m﹣2n),此选项不符合题意;C.原式=m2﹣(2n)2=(m+2n)(m﹣2n),此选项符合题意;D.不能进行因式分解,此选项不符合题意;故选:C.16.解:(1)原式=2a(a2﹣4a+4)=2a(a﹣2)2;(2)原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2);(3)原式=(x﹣4)(x+3).17.解:(1)原式=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).18.解:(1)原式=3a(x﹣y)+2b(x﹣y)=(x﹣y)(3a+2b);(2)原式=﹣b(﹣4ab+4b2+a2)=﹣b(a﹣2b)2.19.解:(1)原式=[(m+n)﹣2m]2=(n﹣m)2(2)原式=ab(a2﹣1)=ab(a+1)(a﹣1).(3)原式=(x+3)(x﹣1).20.解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).21.解:(1)原式=xy(9x2﹣y2)=xy(3x+y)(3x﹣y);(2)原式=(a﹣b)(3a+b)2﹣(a+3b)2(a﹣b)=(a﹣b)[(3a+b)2﹣(a+3b)2]=(a﹣b)(9a2+6ab+b2﹣a2﹣6ab﹣9b2)=(a﹣b)(8a2﹣8b2)=8(a﹣b)(a2﹣b2)=8(a﹣b)(a﹣b)(a+b)=8(a﹣b)2(a+b).22.解:原式=(a4﹣a2b2)﹣(4a2c2﹣4b2c2)=a2(a2﹣b2)+4c2(a2﹣b2)=(a2﹣b2)(a2﹣4c2)=(a+b)(a﹣b)(a+2c)(a﹣2c).23.解:(1)原式=(a2+4)(a2﹣4)=(a2+4)(a+2)(a﹣2);(2)原式=﹣m(p2﹣4p+4)=﹣m(p﹣2)2;(3)原式=(x﹣3)x2﹣9(x﹣3)=(x﹣3)(x2﹣9)=(x﹣3)(x+3)(x﹣3)=(x ﹣3)2(x+3);(4)原式=(m2+2m﹣1)2.24.解:(1)原式=3(x2﹣4xy+4y2)=3(x﹣2y)2;(2)原式=20202﹣(2020﹣1)(2020+1)=20202﹣(20202﹣1)=20202﹣20202+1=1.25.解:∵a2+2b2+c2﹣2b(a+c)=0,∴a2﹣2ab+b2+b2﹣2bc+c2=0,∴(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,∴a=b,b=c,∴a=b=c,∴三角形ABC是等边三角形.26.解:设另一个因式为(x+p),得2x2+x+k=(x+p)(2x﹣3),则2x2+x+k=2x2+(2p﹣3)﹣3p,∴,解得,∴另一个因式为(x+2),k的值为﹣6.27.解:(1)如图所示;(2)由题意可得,m=6,∴5a2+6ab+b2=(5a+b)(a+b),故答案为:(5a+b)(a+b);(3)3张边长为a的正方形纸片的面积是3a2,4张边长分别为a、b(b>a)的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是5b2,∵a2+4ab+4b2=(a+2b)2,∴拼成的正方形的边长最长可以为(a+2b),故答案为:a+2b.28.解:(1)设另一个因式是(x+b),则(2x﹣5)(x+b)=2x2+2bx﹣5x﹣5b=2x2+(2b﹣5)x﹣5b=2x2+3x﹣k,则,解得:,则另一个因式是:x+4,k=20.(2)设另一个因式是(3x+m),则(x+a)(3x+m)=3x2+(m+3a)x+am=3x2+4ax+1,则,解得,或,另一个因式是3x﹣1或3x+1,故另一个因式是3x+1,a=1或3x﹣1,a=﹣1.29.解:(1)①4x2+4x﹣y2+1=(4x2+4x+1)﹣y2=(2x+1)2﹣y2=(2x+y+1)(2x﹣y+1);②x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1=(x﹣3﹣1)(x﹣3+1)=(x﹣4)(x﹣2);③x2﹣5x+6=(x﹣2)(x﹣3);故答案为:(x﹣2)(x﹣3);(2)∵a2+b2+c2﹣4a﹣4b﹣6c+17=0,∴(a2﹣4a+4)+(b2﹣4b+4)+(c2﹣6c+9)=0,∴(a﹣2)2+(b﹣2)2+(c﹣3)2=0,∴a=2,b=2,c=3,∴a+b+c=2+2+3=7.∴△ABC的周长为7.30.解:(1)x2﹣8x+7=x2﹣8x+16+7﹣16=(x﹣4)2﹣9=(x﹣4)2﹣32=(x﹣4+3)(x﹣4﹣3)=(x﹣1)(x﹣7);(2)x2﹣10xy+9y2=x2﹣10xy+25y2+9y2﹣25y2=(x﹣5y)2﹣16y2=(x﹣5y)2﹣(4y)2=[(x﹣5y)+4y][(x﹣5y)﹣4y]=(x﹣y)(x﹣9y);故答案为:25y2,25y2,4y,4y,4y,9y;(3)方法1:原式=x2+[13m+(﹣m)]x+13m•(﹣m)=(x+13m)(x﹣m);方法二:原式=x2+12mx+36m2﹣13m2﹣36m2=(x+6m)2﹣49m2=(x+6m+7m)(x+6m﹣7m)=(x+13m)(x﹣m).31.解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x2﹣6x+9﹣16)=(x﹣3)2﹣16=(x﹣3﹣4)(x﹣3+4)=(x﹣7)(x+1).32.解:(1)阅读因式分解的过程可知:上述分解因式的方法是提公因式法,共应用了2次,故答案为:提公因式法,2;(2)原式=(1+x)2021,则需应用上述方法2020次,结果是(1+x)2021,故答案为:2020,(1+x)2021;(3)原式=(1+x)+x(1+x)+x(1+x)2+…+x(1+x)n=(1+x)[1+x+x(1+x)+…+x(1+x)n﹣1]=(1+x)2[1+x+x(1+x)+…+x(1+x)n﹣2]=(1+x)n+1.33.解:(1)观察图形可得:大正方形的边长为:a+b+c,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=6,a2+b2+c2=14,∴62=14+2(ab+ac+bc),∴ab+ac+bc=(36﹣14)÷2=11.(3)由题意得:(2a+b)(a+4b)=xa2+yab+zb2,∴2a2+8ab+ab+4b2=xa2+yab+zb2,∴2a2+9ab+4b2=xa2+yab+zb2,∴x=2,y=9,z=4,∴x+y+z=2+9+4=15.故答案为:15.34.解:(1)∵(x+3)(x﹣4)=x2﹣x﹣12,∴﹣m=﹣1,∴m=1,故答案为:1;(2)设另一个因式为(x2+ax+k),(x+1)(x2+ax+k)=x3+ax2+kx+x2+ax+k=x3+(a+1)x2+(a+k)x+k,∴x3+(a+1)x2+(a+k)x+k=x3+3x2﹣3x+k,∴a+1=3,a+k=﹣3,解得a=2,k=﹣5;答:k的值为﹣5;(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x2+x+1)(x2+ax+1),①(x2+1)(x2+ax+b)=x4+ax3+bx2+x2+ax+b=x4+ax3+(b+1)x2+ax+b,∴a=0,b+1=1,b=1,由b+1=1得b=0≠1,②(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1,∴a+1=0,a+2=1,解得a=﹣1.即x4+x2+1=(x2+x+1)(x2﹣x+1),∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.。
2020最新湘教版初一(七年级)下册数学第三章《因式分解》专项练习题含答案

《因式分解》单元测试一、选择题1、下列从左边到右边的变形,是因式分解的是( )A 、 ;B 、; C 、; D 、; 2、下列多项式中能用平方差公式分解因式的是( )A 、;B 、;C 、;D 、; 3、多项式的公因式是( )A 、;B 、;C 、;D 、;4、如果是一个完全平方式,那么k 的值是( )A 、15 ;B 、±5;C 、30;D 、±30;5、下列多项式能分解因式的是 ( )A 、a 2-b ;B 、a 2+1;C 、a 2+ab+b 2;D 、a 2-4a+4;6、下列各式中不是完全平方式的是( )A 、B 、C 、D 、7、在下列多项式:① ② ③④中,有一个相同因式的多项式是( )A 、①和②B 、①和④C 、①和③D 、②和④8. 如右图①,边长为的大正方形中有一个边长为的小正方形,小明将图①的阴影部分拼成了一个矩形,如图①. 这一过程可以验证( )A. B.C. D.9、多项式分解因式正确的是( )29)3)(3(x x x -=+-))((23n m n m m mn m -+=-)1)(3()3)(1(+--=-+y y y y z yz z y z z y yz +-=+-)2(224222)(b a -+mn m 2052-22y x --92+-x 3222315520m n m n m n +-5mn 225m n 25m n 25mn 2592++kx x 21664m m -+2242025m mn n ++2224m n mn -+221124964mn m n ++249m -+2294m n -24129m m ++2296m mn n -+a b 222)(2b a ab b a -=-+222)(2b a ab b a +=++))(2(3222b a b a b ab a --=+-))((22b a b a b a -+=-323m n m n x x +++++b a 图○1 ba图○2A 、B 、C 、D 、 10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A 、B 、C 、D 、 二、填空题1、24m 2n+18n 的公因式是________________;2、分解因式x(2-x)+6(x -2)=_________________;(x 2+y 2)2-4x 2y 2=________________;3、x 2-y 2=(x+y )·( ____ );4、在括号前面填上“+”或“-”号,使等式成立:(1); (2)。
湘教版七年级数学下册期末复习:专题03 因式分解(含答案及解析)

专题03因式分解2020-2021学年七年级数学下册期末复习精选精炼练(湘教版)一、单选题1.下列选项从左到右变形是因式分解的是( )A .2(2)(2)4a a a +-=-B .24(2)(2)a a a -=+-C .2(1)(2)2a a a a +-=--D .23(1)3x x x x --=--【答案】B【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,进行作答即可.【详解】解:A 、2(2)(2)4a a a +-=-是整式的乘法,不属于因式分解,故此选项不符合题意;B 、24(2)(2)a a a -=+-右边是几个整式的积的形式,属于因式分解,故此选项符合题意;C 、2(1)(2)2a a a a +-=--是整式的乘法,不属于因式分解,故此选项不符合题意;D 、23(1)3x x x x --=--右边不是几个整式的积的形式,不属于因式分解,故此选项不符合题意; 故选B .【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式. 2.若因式分解()()231x ax x x b +-=-+,则a 的值是( ) A .3-B .2-C .2D .4【答案】C【分析】 根据因式分解的定义可直接进行求解.【详解】解:由()()231x ax x x b +-=-+可得:()2231x ax x b x b +-=+--, ∴1,3a b b =-=,∴2a =;故选C .【点睛】本题主要考查因式分解的定义,熟练掌握因式分解是解题的关键.3.多项式322+6+9x x y xy 与339x y xy -的公因式是( )A .2(3)x x y +B .(3)x x y +C .(3)xy x y +D .(3)x x y -【答案】B【分析】先把两个多项式进行因式分解,再根据公因式的概念进行判断,即可得出结论.【详解】解:∴322+6+9x x y xy ()2269x x xy y =++()23x x y =+, 339x y xy -()229xy x y =-()()33xy x y x y =+-,∴多项式322+6+9x x y xy 与339x y xy -的公因式是(3)x x y +.故选:B .【点睛】本题主要考查了公因式的判断,掌握因式分解的方法及公因式的概念是解题的关键.4.4x 2y 和6xy 3的公因式是( )A .2xyB .3xyC .2x 2yD .3xy 3【答案】A【分析】提取各项系数的最大公约数与各项都含有的相同字母的最低次数幂的积即可.【详解】24x y 和36xy 的公因式是2xy ,故选:A .【点睛】本题考查公因式的定义,掌握确定公因式的方法是解题关键.5.下列各式能用平方差公式进行因式分解的是( )A .21x +B .21x --C .21x -+D .2(1)1x +- 【答案】C【分析】根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行判断即可.【详解】解:A 、是x 2与1的和,不能用平方差公式进行分解,故此选项错误;B 、两项的符号相同,不符合平方差公式特点,不能用平方差公式进行分解,故此选项错误;C 、符合平方差公式特点,能用平方差公式进行分解,故此选项正确;D 、去括号后结果为x 2,不是二项式,不能用平方差公式进行分解,故此选项错误;故选:C .【点睛】此题主要考查了平方差公式,关键是熟练掌握平方差公式分解因式的多项式的特点.6.下列运算正确的是( )A .23235m m m +=B .32m m m ÷=C .()326m m m ⋅=D .()()22m n n m n m --=-【答案】B【分析】根据同类项的定义,幂的运算法则以及完全平方式逐项计算即可判断.【详解】A. 2m 和23m 不是同类项不能合并.故该选项错误,不符合题意.B. 3232m m m m -÷==.故该选项正确,符合题意.C. ()32236167m m m m m m m m ⨯+⋅=⋅=⋅==.故该选项错误,不符合题意.D. ()()()2222m n n m m n m mn n --=--=-+-.故该选项错误,不符合题意.故选B .【点睛】本题考查同类项的定义,幂的运算法则以及完全平方式.熟练掌握各知识点是解答本题的关键. 7.对于:①()2242x x -=-;②()()2111x x x -+=+-; ③()23242x x x +-=+; ④22111142x x x ⎛⎫-+=- ⎪⎝⎭. 其中因式分解正确的是( )A .①③B .②③C .①④D .②④【答案】D【分析】根据因式分解的定义逐个判断即可.【详解】解:①()()2422x x x -=-+,此项错误; ②()()2111x x x -+=+-,此项正确; ③()23242x x x +-≠+,此项错误; ④22111142x x x ⎛⎫-+=- ⎪⎝⎭,此项正确. 故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题8.分解因式:26a a -=__________;【答案】(6)a a -【分析】找出公因式,直接提取分解因式即可.【详解】解:a 2-6a =a (a -6).故答案为:a (a -6).【点睛】本题考查了提取公因式法分解因式,正确提取公因式是解题关键.9.若224x y -=-,则236x y -+的值为________..【答案】12【分析】先将236x y -+提取公因式再整体代入求解即可.【详解】∴223632x y x y -+=--()且224x y -=- ,∴2363412x y -+=-⨯-=(),故答案为:12.【点睛】此题考查代数式求值,利用提取公因式法因式分解再整体代入求解,难度一般.10.分解因式:a 2﹣4=_____________.【答案】(a +2)(a ﹣2).【分析】直接根据平方差公式进行因式分解即可;【详解】a 2﹣4=(a +2)(a ﹣2).故答案为:(a +2)(a ﹣2).【点睛】本题考查了平方差公式进行因式分解,正确掌握知识点是解题的关键;11.分解因式:2363x x ++=__________.【答案】()231x +【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解,即可得到答案.【详解】解:2363x x ++, ()2321x x =++,()231x =+.故答案为:()231x +.【点睛】此题主要考查了提取公因式法以及公式法进行分解因式,正确运用分解因式的方法是解题关键. 12.分解因式:a 3-4a 2+4a =_________.【答案】a (a -2)2【分析】先提公因式,再运用完全平方公式.【详解】解:原式2(44)a a a =-+ 2(2)a a =-.故答案为:2(2)a a -.【点睛】本题考查了整式的因式分解,掌握提公因式法和因式分解的完全平方公式是解决本题的关键.13.若3ab =,1a b +=-,则代数式22a b ab +的值等于__.【答案】-3【分析】直接提取公因式ab ,进而分解因式,把已知数据代入得出答案.【详解】解:∴ab =3,a +b =-1,a 2b +ab 2=ab (a +b )=3×(-1)=-3.故答案为:-3.【点睛】此题主要考查了提取公因式法分解因式以及代数式求值,正确分解因式是解题关键.三、解答题14.因式分解(1)29x - (2)2(1)22x x --+【答案】(1)()()33x x +-;(2)()()13x x --【分析】(1)直接利用平方差分解因式得出答案;(2)将括号展开,合并同类项,再利用十字相乘法分解因式得出答案.【详解】解:(1)29x -=()()33x x +-;(2)2(1)22x x --+=21222x x x +--+=243x x -+=()()13x x --【点睛】此题主要考查了公式法以及十字相乘法分解因式,正确应用公式是解题关键.15.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和公式法,其实分解因式的方法还有分组分解法、配方法(拆项法)、十字相乘法等等.分组分解法是将一个多项式适当分组后,再用提公因式或运用公式继续分解的方法.如①和②:①ax by bx ay +++()()ax bx ay by =+++()()x a b y a b =+++()()a b x y =++②2221xy y x +-+()2221x xy y =++-()21x y =+-()()11x y x y =+++-请你仿照以上方法,探索并解决下列问题:(1)分解因式:22a a b b +--;(2)两个不相等的实数m ,n 满足2240m n +=.若26m m k -=,26n n k -=,求m n +和k 的值.【答案】(1)()()1a b a b -++;(2)6m n +=,2k =.【分析】(1)先分组得()22a b a b -+-,再根据平方差公式和提取公因式法进行因式分解; (2)由已知26m m k -=,26n n k -=两式相减得到22660m m n n --+=,左边分解后可得到6m n +=,再由已知26m m k -=,26n n k -=两式相加结合2240m n +=即可求得k 的值.【详解】解:(1)22a a b b +--()22a b a b =-+-()()()a b a b a b =+-+-()()1a b a b =-++;(2)∴26m m k -=,26n n k -=,两式相减得22660m m n n --+=,∴22660m n m n --+=,即()()()60m n m n m n +---=,因式分解得()()60m n m n -+-=,∴m n ≠,∴60m n +-=即6m n +=,∴26m m k -=,26n n k -=,两式相加得22662m m n n k -+-=,即()2262m n m n k +-+=, ∴2240m n +=,6m n +=,∴240664k =-⨯=,∴2k =.【点睛】本题考查了平方差公式以及分组分解法分解因式,因式分解的应用,正确灵活应用公式是解题关键. 16.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正方形,五块是长为m ,宽为n 的全等小矩形,且 m n >.(以上长度单位:cm )(1)观察图形,可以发现代数式22252m mn n ++可以因式分解,请写出因式分解的结果;(2)若每块小矩形的面积为210cm ,四个正方形的面积和为288cm ,试求图中所有裁剪线(虚线部分)长之和.【答案】(1)(m +2n )(2m +n );(2)48cm【分析】(1)根据图象由长方形面积公式将代数式2m 2+5mn +2n 2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10cm 2,得出等式求出m +n ,进一步得到图中所有裁剪线(虚线部分)长之和即可.【详解】解:(1)2m 2+5mn +2n 2可以因式分解为(m +2n )(2m +n );故答案为:(m +2n )(2m +n );(2)依题意得,2m 2+2n 2=88,mn =10,∴m 2+n 2=44,∴(m +n )2=m 2+2mn +n 2,∴(m +n )2=44+20=64,∴m +n >0,∴m +n =8,∴图中所有裁剪线(虚线部分)长之和为6m +6n =6(m +n )=48cm .【点睛】此题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题关键.17.先化简:22121(1)24x x x x ++-÷+-,再从不等式216x --<的负整数解中选一个适当的数代入求值. 【答案】21x x -+;x 取-3,原式值为52. 【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数,即分式不为零的值,即可解题.【详解】 解:22121(1)24x x x x ++-÷+- 22214221x x x x x +--=⨯+++ 21(2)(2)2(1)x x x x x ++-=⨯++ 21x x -=+ 216x --<72x ∴>-72x ∴>-的负整数解有:-3,-2,-1, 2,1x x ≠-≠-3x ∴=- 原式21x x -=+ 3231--=-+ 52=. 【点睛】本题考查分式的混合运算、分式的化简求值,涉及完全平方公式、平方差公式进行因式分解,解一元一次不等式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.(阅读材料) 在进行计算或化简时,可以根据题目特点,将一个分数或分式变成两部分之差,如:23111111111111;;()333623231535235-==-==-==-⨯⨯等. (问题解决)利用上述材料中的方法,解决下列问题:(1)求111111261220342380++++++的值; (2)求11111141224402(1)2(1)n n n n ++++++-+的值; (3)求211111315356341n +++++-的值. 【答案】(1)1920;(2)22n n +;(3)21n n +. 【分析】 (1)根据题目中的式子特点,先分解,然后裂项,再计算即可解答本题; (2)先提出12,然后裂项计算即可解答本题; (3)根据题目中式子的特点,先裂项,然后计算即可解答本题.【详解】解:(1)111111261220342380++++++=111223+⨯⨯+134⨯+…+1118191920+⨯⨯ =1﹣1111122334+-+-+…+111118191920-+- =1﹣120=1920; (2)11111141224402(1)2(1)n n n n ++++++-+ =12×[1112612+++…+1n(n 1)+] =12×[111223+⨯⨯+134⨯+…+1n(n 1)+] =12×(1﹣1111122334+-+-+…+111n n -+) =12×(1﹣11n +) =12×111n n +-+ =22n n +; (3)211111315356341n +++++-=111335+⨯⨯+157⨯+…+1(21)(21)n n -+ =12×(1﹣1111133557+-+-+…+112121n n --+) =12×(1﹣121n +) =12×221n n + =21n n +. 【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现式子的变化特点,求出所求式子的值.。
2020—2021学年湘教版数学七年级下册第3章《因式分解》常考题(解析版)

2020—2021学年湘教版数学七年级下册第3章《因式分解》常考题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列从左到右的变形中,属于因式分解的是()A.(x+y)(x-2y)=x2-xy+y2B.3x2-x=x(3x-1)C.(a-b)2=(a-b)(a-b)D.25(x-2y)2-4(2y-x)2【答案】B【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.结果不是乘积的形式,故不符合;B.符合因式分解的定义,故符合;C.两边都是乘积的形式,故不符合;D.没有进行变形,故不符合;故选:B.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.2.4x2y和6xy3的公因式是()A.2xy B.3xy C.2x2y D.3xy3【答案】A【分析】提取各项系数的最大公约数与各项都含有的相同字母的最低次数幂的积即可.【详解】和的公因式是,故选:A.【点睛】本题考查公因式的定义,掌握确定公因式的方法是解题关键.3.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)【答案】B【分析】此题可将x﹣y的形式化成﹣(y﹣x),然后提取公因式(y﹣x),据此可解此题.【详解】﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(y﹣x),=(y﹣x)(a﹣b﹣c).故选:B.【点评】此题考查的是因式分解,先观察题意找出公因式y﹣x,然后提取公因式.4.下列各式:①﹣x2﹣y2;①﹣a2b2+1; ①a2+ab+b2; ①﹣x2+2xy﹣y2;①﹣mm+m2n2,用公式法分解因式的有()A.2个B.3个C.4个D.5个【答案】B【分析】根据每个多项式的特征,结合平方差公式、完全平方公式的结构特征,综合进行判断即可.【详解】解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;①﹣a2b2+1=1﹣=(1+ab)(1﹣ab),因此①能用公式法分解因式;①a2+ab+b2不符合完全平方公式的结果特征,因此①不能用公式法分解因式;①﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此①能用公式法分解因式;①﹣mm+m2n2=(﹣mn)2,因此①能用公式法分解因式;综上所述,能用公式法分解因式的有①①①,故选:B.【点睛】本题考查平方差公式、完全平方公式,掌握公式的结果特征是应用的前提.5.若实数,满足方程组,则的值为()A.20B.15C.D.10【答案】B【分析】直接利用整体思想得出ab ,a +b 的值,进而分解因式得出答案.【详解】解:①,①,①a 2b -ab 2=ab (a -b )=3×5=15.故选:B .【点睛】此题主要考查了提取公因式法分解因式以及整体思想的应用,正确解方程组是解题关键.6.已知x 2+kx +9可以用完全平方公式进行因式分解,则k 的值为( )A .3B .±3C .6D .±6 【答案】D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】解:①x 2+kx+9可以用完全平方公式进行因式分解,①k=±6,故选:D .【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键. 7.如果多项式221155abc ab a bc -+-的一个因式是,那么另一个因式是( ) A .B .5c b ac +-C .D . 【答案】A【分析】该多项式是有公因式的,提取公因式即可得.【详解】解:原式=()155ab c b ac --+故选A【点睛】本题考查了提取多项式公因式;关键在于能够找到公因式并正确的提取公因式.8.若二次三项式可分解为,则a+b的值为()A.B.1C.D.2【答案】A【分析】利用多项式的乘法运算法则展开,然后根据对应项的系数相等列式求出a、b的值,然后代入代数式进行计算即可得解.【详解】解:(x-2)(x+b)=x2+(b-2)x-2b,①二次三项式x2+ax-1可分解为(x-2)(x+b),①,解得:,①a+b= -+=-1.故选:A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,根据对应项系数相等列式是解题的关键.9.设是三角形的三边长,且满足222++=++,关于此三角形的形状a b c ab bc ca有以下判断:①是直角三角形; ①是等边三角形; ①是锐角三角形;①是钝角三角形,其中正确的说法的个数有()A.1个B.2个C.3个D.4个【答案】B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出.进而判断即可.【详解】①222++=++,a b c ab bc ca①222a b c ab bc ca++=++,222222即,①,①此三角形为等边三角形,同时也是锐角三角形.故选:B.本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.10.已知实数m ,n ,p ,q 满足4m n p q +=+=,4mp nq +=,则( ) A .48B .36C .96D .无法计算 【答案】A【分析】先利用单项式乘以多项式法则将要求值的多项式进行整理,将题目所给的有确定值的式子进行变形,得出所需要的式子的值,运用整体代入法既可求解.【详解】解:4m n p q +=+=,,, 16mp mq np nq ∴+++=,4mp nq +=,12mq np ∴+=,,2222m pq n pq mnp mnq =+++,,,,()()mp nq np mq =++,,,故选:A .【点睛】本题考查单项式乘以多项式、多项式乘以多项式的综合运用,解题的关键是对条件所给的式子变形要有方向性和目的性,同时要掌握分组分解法对式子进行因式分解.二、填空题(本大题共7小题,每小题3分,共21分)11.分解因式:____.首先找出公因式2y ,进而提取2y ,分解因式即可.【详解】原式=2y (x ﹣2).故答案为:2y (x ﹣2).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.分解因式:2(2)2a b a b --+=_______.【答案】(2a -b )(2a -b -1)【分析】先添加括号,再提取公因式,即可得出答案.【详解】解:(2a -b )2-2a+b=(2a -b )2-(2a -b )=(2a -b )(2a -b -1),故答案为:(2a -b )(2a -b -1).【点睛】本题考查了因式分解,能灵活运用各种方法分解因式是解此题的关键.13.分解因式:_____.【答案】【分析】先提取公因式,然后利用平方差公式进行因式分解.【详解】解:()()()324422m m m m m m m -=-=-+ 故答案为:.【点睛】本题考查综合提公因式法和公式法进行因式分解,掌握提公因式的技巧和平方差公式的公式结构正确计算是解题关键.14.若212()()++=++x mx x a x b ,且、为整数,则常数的所有可能值有________个.由可得,12,m a b ab =+=再结合为整数,从而可得答案.【详解】解:,12,m a b ab ∴=+=、为整数,()()12112112,=⨯=-⨯-或或()()123434,=⨯=-⨯-11213m ∴=+=或11213,m =--=-或或故符合题意的的值有:个,故答案为:【点睛】本题考查的是十字乘法分解因式,掌握十字乘法分解因式是解题的关键.15.若,则分解因式为____________.【答案】(x+5y )(x -5y )【分析】由|m -1|+(n -25)2=0得出m 和n 的值,然后代入进行因式分解.【详解】解:由|m -1|+(n -25)2=0得:m -1=0,n -25=0,①m=1,n=25,所以mx 2-ny 2=x 2-25y 2=(x+5y )(x -5y ),故答案为:(x+5y )(x -5y ).【点睛】本题主要考查了分解因式,解此类题目的关键是由|m -1|+(n -25)2=0得出m 和n 的值.16.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.根据x2-3x-1=0可得x2-3x=1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:①x2-3x-1=0,①x2-3x=1,①32x x x--+23111==将x2-3x=1代入原式=2+-+x x3x2111=将x2-3x=1代入原式=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.17.=_______.【答案】【分析】先运用平方差公式对各括号内因式分解,然后寻找规律解答即可.【详解】解:====【点睛】本题考查了实数的运算以及运用平方差公式因式分解,因式分解后观察发现数字间的规律是解答本题的关键.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.分解因式:(1)(2) 2363x y xy y -+【答案】(1)(1)(1)x x x +-;(2)【分析】(1)先提出公因式x ,再利用平方差公式进行因式分解即可;(2)先提出公因式3y ,再利用完全平方公式进行因式分解即可.【详解】解:(1) 32(1)(1)(1)x x x x x x x -=-=+-(2) 2223633(21)3(1)x y xy y y x x y x -+=-+=-【点睛】本题考查了因式分解,熟练掌握提公因式法及公式法是解题的关键.19.阅读材料:例:分解因式解:原式==222(233)37x x +⨯+--=()2316x +-==(34)(34)x x +++-=(7)(1)x x +-上述例子用到了“在式子变形中,先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫配方法.”请根据这种方法解答下列问题:分解因式:(1)2616a a --;(2)241615a a -+【答案】(1);(2)【分析】仿照题中分解因式的方法计算即可.【详解】解:(1)2616a a --==()2235a --==;(2)241615a a -+====【点睛】此题考查了因式分解,熟练掌握完全平方公式是解本题的关键.20.(1)化简求值:2(2)(2)(3)x y x y x y +----,其中.(2)先因式分解再求值,已知,,求42332444x y x y x y -+-.【答案】(1),;(2)()2222x y x y --,【分析】(1)原式利用平方差公式及完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.(2)提公因式,再利用完全平方公式进行因式分解,最后将,代入计算.【详解】解:(1)2(2)(2)(3)x y x y x y +---- =()2222964x y xy x y +-+-=2222964x y xy x y ----=将代入,原式==;(2)42332444x y x y x y -+-=()222244x y x xy y --+=()2222x y x y --①,,①原式===.【点睛】此题考查了整式的混合运算-化简求值,因式分解,熟练掌握运算法则是解本题的关键.21.已知.(1)求a ,b 的值.(2)求代数式的值.【答案】(1).(2).【分析】(1)根据非负数的性质求解即可;(2)先化简,再代入求值.【详解】解:(1),22(3)(31)0a b ++-=,①30,310a b +=-=,①.(2)22321a b ab =-+-①,①22321a b ab -+-23()21ab ab =-+-2113323133⎛⎫⎛⎫=--⨯+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查了非负数的性质和整式的化简求值以及因式分解,解题关键是熟练运用整式的运算法则进行化简,代入数值后合理计算.22.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和公式法,其实分解因式的方法还有分组分解法、配方法(拆项法)、十字相乘法等等.分组分解法是将一个多项式适当分组后,再用提公因式或运用公式继续分解的方法.如①和①:①ax by bx ay +++①2221xy y x +-+请你仿照以上方法,探索并解决下列问题:(1)分解因式:;(2)两个不相等的实数m ,n 满足2240m n +=.若26m m k -=,,求和k 的值.【答案】(1);(2),.【分析】(1)先分组得()22a b a b -+-,再根据平方差公式和提取公因式法进行因式分解; (2)由已知26m m k -=,两式相减得到22660m m n n --+=,左边分解后可得到,再由已知26m m k -=,两式相加结合2240m n +=即可求得的值.【详解】解:(1)()22a b a b =-+-;(2)①26m m k -=,,两式相减得22660m m n n --+=,①22660m n m n --+=,即,因式分解得,①,①即,①26m m k -=,,两式相加得22662m m n n k -+-=,即()2262m n m n k +-+=, ①2240m n +=,,①240664k =-⨯=,①.【点睛】本题考查了平方差公式以及分组分解法分解因式,因式分解的应用,正确灵活应用公式是解题关键.23.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a +8,解:原式=a 2+6a +8+1-1=a 2+6a +9-1=(a +3)2-12=①M =a 2-2a -1,利用配方法求M 的最小值.解:22221212(1)2a a a a a --=-+-=--①(a -b )2≥0,①当a =1时,M 有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:. (2)若228M x x =-,求M 的最小值.(3)已知x 2+2y 2+z 2-2xy -2y -4z +5=0,求x +y +z 的值.【答案】(1)(3)(1)x x +-;(2);(3)4.【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可; (2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用配方法进行因式分解,再利用偶次方的非负性求出x 、y 、z 的值,然后代入求解即可.【详解】(1)原式22344x x =+-+-2214x x =++-;(2)22282(4)x x x x -=-22(444)x x =-+-22(2)8x =--2(2)0x -≥当时,有最小值;(3)22222245x y z xy y z ++---+2222(2(21)()44)x xy y y y z z =-++-++-+222()(1)(20)x y y z -+-+-=解得则1124x y z ++=++=.【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂题意,掌握配方法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标 2017-2018 学年湘教版七年级数学下册
综合练习 因式分解及其应用
1.下列式子从左到右变形是因式分解的是
2.下面分解因式正确的是 ( )
4.下列各式不能用平方差公式因式分解的是
22
D. -x 2+(-y) 2
D.9, 6, -1
7. 利用因式分解简便计算 57×99+44 ×99-99 正确的是 ( )
A. 99×(57+44)=9 999
B. 99×(57+44-1)=9 900
2
A . a +4a-21=a(a+4)- 2
B . a +4a-21=(a-2
C . (a-3)(a+7)=a 2
+4a-22
D . a 2+4a-21=(a+2) 2-25
2
A . x
23 B.(x -4)x=x -4x C.ax+bx=(a+b)x
D.m 2
-2mn+n 22
2=(m+n) 2
3.若代数式 x 2+ax 可以因式分解,则常数 a 不可以取 ( A .-1
B .0
C .1
D .2
A.-y 2
+1
22
B.x 2+(-y) 2
22
C.m -n
5.下列多项式中, 能用完全平方公式进行因式分解的是
2
A . -a -
B . 2
a +6ab-9b
22
C . a 2
+6a+9b
D . 2
4(a-b ) 2+4 ( a-b )+1
22
6. 若多项式 ax 2
+bx+c 可分解为 (1-3x) 2
,那么 a 、
c 的值分别为 ( )
A. -9 ,6,-1
B. 9,-6 , 1
C. 9, 6, 1
C. 99×(57+44+1)=10
D. 99×(57+44-99)=198
098
11
8. (- 2)2 015+(- 2)2 016的结果是( )
1 1 1
A.- 2
B.2
C.( 2 )2 015
1
2)2 016
D.-(
2
9. _________________________________________________________________ 将3a(2 x-y )-6ab(y-x )用提公因式法因式分解,应提出的公因式是 ___________
2
10. ________________________________ 计算:32×3.14+3 ×(-9.42)= .
2
11. _____________________________ 因式分解:x2+3x(x-3)-9= .
2 2 2 2 2
12. ______________________ 设a=192×918,b=8882-30 2,c=1 0532-747 2,
则数a,b,c 按从小到大的顺序排列,结果是___ <_ <._
13. _________________________________________________ 若x2+(m-3)x+4 是完全平方式,则数m 的值是 __________________________ .
14. ________________________ 如图,边长为a的正方形中有一个边长为 b
的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图
2 的阴影部分的面积,你能得到的公式是.
15.58-1 能被20 至30 之间的两个整数整除,那么这两个整数是________
2 2 2
16. ___________________________________________________________ 若a※b=a -ab ,则x ※y 所表示的代数式因式分解的结果是____________ .
17. 因式分解:
2 2 2 3
1)4a 2b 2
-12ab 2
+24ab 3
c;
22
(3)x 2-(y-1) 2;
2 2 2 2
(4)(a +1) -4a(a +1)+4a .
18. 用简便方法计算:
1 1 1
22
(2) 4 ×8.92-8.9 ×2.9×2 + 4 ×2.92.
2 3 2 2 3
19. 若|a+b-6|+(ab-4) 2=0,求 -a 3b-2a 2b 2-ab 3的值.
2
(2)4x(y-x)-y 2;
22
1) 15×1012-99 2×15;
2 2 2 014
20. 已知a3+b 2+8a-6b+25=0 ,求(a+b) 2 014的值.
21. 春蕾中学正在新建一栋食堂,在施工过程中,需要浇制三种半径分别为0.21 m,0.35 m,0.44 m 的钢筋圆环,每种圆环都需要20 个,则所需钢筋共有多长?
22
22. 阅读并解决问题.对于形如x2+2ax+a 2这样的二次三项式,可以用公式法将它分解成(x+a)的形式.但对于二次三项式x +2ax-3a ,就不能直接
3
的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
运用公
2 2 2 2
式了.此时,我们可以在二次三项式x +2ax-3a 中先加上一项 a ,使它与x+2ax
2 2 2 2 2 2 2 2
x +2ax-3a =(x +2ax+a )-a -3a =(x+a)-(2a)= (x+3a )(x-a )像这样,先添一适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”因式分解:a2-6a+8;
2)若a+b=5 ,ab=6 ,求:
② a 4+b 4的值.
2 2 2
(2)原式 =4xy-4x -y =-(2x-y) .
(3) 原式 =(x+y-1)(x-y+1).
2 2 4
(4) 原式=(a 2+1-2a) 2=(a-1) 4.
22
18. (1)原式=15 ×(1012-99 2)=15×200×2=6 000.
1 1 1
(2)原式= 4 ×(8.92-8.9 ×2.9×2+2.92)= 4 ×(8.9-2.9) 2= 4 ×62=9. 19. 因为 |a+b-6|+(ab-4) 2=0,
所以 a+b-6=0,ab-4=0, 即 a+b=6,ab=4.
4 4 2 2 2 2 2 2 2
②a+b =(a +b ) -2a b =13 -2 ×6 =97.
22
①a+b ; 1.B 2.C 3.B 4.B 5.D 6.B 11.(4x+3)(x-3) 12.a c b 22
14.a -b =(a+b)(a-b)
15.26、 17. (1)原式=4ab 2(a-3+6bc).
参考答案
7.B 8.D 9.3a(x-y) 10.0 13.7 或-1
2
24
16.x (x+y)(x-y)
3 2 2 3 2 2 2
又因为-a b-2a b -ab =-ab(a +2ab+b )=-ab(a+b) ,
2
当a+b=6,ab=4 时,原式=-ab(a+b) =-4 ×6=-24.
22
20. 因为a2+b 2+8a-6b+25=0,
2 2 2 2
所以(a2+8a+16)+(b 2-6b+9)=0,(a+4) 2+(b-3) 2=0.
2 014 2 014
所以a=-4,b=3,(a+b) =(-4+3) =1.
21.2π×0.21×20+2 π×0.35×20+2 π×0.44×20=2 π×20×(0.21+0.35+0.44)=40 π≈125.6(m).
答:所需钢筋共有约125.6 m.
2 2 2
22.(1)a2-6a+8=a 2-6a+9-1= ( a-3 )2-1= ( a-3+1 )(a-3-1 )=(a-2)(a-4 ).
2 2 2 2
( 2)① a2+b 2= ( a+b ) 2-2ab=5 2-2 ×6=13.。