第三章抽样分布
蒙特卡罗方法教学课件第三章由巳知分布的随机抽样

h(r) 1 , R0
f (r) 2r , h(r) R0
M 2,
rh R0
则抽样框图为
1 2 >
≤
rf R0 2
取 rf 显 然R0,1没就有可必以要了舍,弃亦ξ即1>ξ2的情况,此时,只需 rf R0 max( 1,2 )
另一方面,也可证明 布F (r) r 2。
与 max( 1,2 ) 具有相同的分
参数n服从如下分布
F(y) Pn
n y
复合分布的一般形式为:
f (x) f2 (x y)dF1( y)
F其1(中y)表f2(示x/y分)表布示函与数。参数y有关的条件分布密度函数 , 布数密f2(复x度/ 合Y函F分1数)中布f1抽(的y)样中抽确抽样定样方XY法f2F(1为x或/YF:)Y首f1,先然由后分再布由函分数布F1密(y)度或函分
>
M
X X f
f2 ( x /YF1 )
证明:
P(x X f x dx) P x X f2 x dx
H ( X f2 ,YF1 ) M
P x
X f2
x dx,
H
(
X f2 M
,
YF1
)
P
H ( X f2 ,YF1 ) M
xdx H ( x, y)
x
M
0 H (x,y)
Pa
a t
反应类型的确定方法为:产生一个随机数ξ
Pel 弹性散射
Pel Pin 非弹性散射
Pel Pin Pf 裂变
吸收
2) 连续型分布的直接抽样方法
对于连续型分布,如果分布函数F(x) 的反函数 F-1(x)存在,则直接抽样方法是 :
X F F 1 ( )
医学统计学题库

第一章 绪论习题一、选择题1.统计工作和统计研究的全过程可分为以下步骤:(D )A. 调查、录入数据、分析资料、撰写论文B. 实验、录入数据、分析资料、撰写论文C. 调查或实验、整理资料、分析资料D. 设计、收集资料、整理资料、分析资料E. 收集资料、整理资料、分析资料2.在统计学中,习惯上把(B )的事件称为小概率事件。
A.10.0≤P B. 05.0≤P 或01.0≤P C. 005.0≤P D.05.0≤P E. 01.0≤P 3~8A.计数资料B.等级资料C.计量资料D.名义资料E.角度资料3.某偏僻农村144名妇女生育情况如下:0胎5人、1胎25人、2胎70人、3胎30人、4胎14人。
该资料的类型是( A )。
4.分别用两种不同成分的培养基(A 与B )培养鼠疫杆菌,重复实验单元数均为5个,记录48小时各实验单元上生长的活菌数如下,A :48、84、90、123、171;B :90、116、124、225、84。
该资料的类型是(C )。
5.空腹血糖测量值,属于( C )资料。
6.用某种新疗法治疗某病患者41人,治疗结果如下:治愈8人、显效23人、好转6人、恶化3人、死亡1人。
该资料的类型是(B )。
7.某血库提供6094例ABO 血型分布资料如下:O 型1823、A 型1598、B 型2032、AB 型641。
该资料的类型是(D )。
8. 100名18岁男生的身高数据属于(C )。
二、问答题1.举例说明总体与样本的概念.答:统计学家用总体这个术语表示大同小异的对象全体,通常称为目标总体,而资料常来源于目标总体的一个较小总体,称为研究总体。
实际中由于研究总体的个体众多,甚至无限多,因此科学的办法是从中抽取一部分具有代表性的个体,称为样本。
例如,关于吸烟与肺癌的研究以英国成年男子为总体目标,1951年英国全部注册医生作为研究总体,按照实验设计随机抽取的一定量的个体则组成了研究的样本。
统计学第3章-概率、概率分布与抽样分布

互斥事件及其概率
(例题分析)
解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6
合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率
统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
3 理论分布与抽样分布

【例3.7】 已知u~N(0,1),试求: (1) P(u<-1.64)=?
(2) P (u≥2.58)=?
(3) P (|u|≥2.56)=? (4) P(0.34≤u<1.53) =?
(1) P(u<-1.64)=0.05050
(2) P (u≥2.58)=Φ(-2.58)=0.024940
加减不同倍数σ区间的概率)是经常用到的。
P(μ-σ≤x<μ+σ)= 0.6826
P(μ-2σ≤x<μ+2σ) = 0.9545 P (μ-3σ≤x<μ+3σ) = 0.9973
P (μ-1.96σ≤x<μ+1.96σ) = 0.95
P (μ-2.58σ≤x<μ+2.58σ)= 0.99
在数理统计分析中,不仅注意随机变量x落在平均数加减不 同倍数标准差区间(μ-kσ , μ+kσ)之内的概率,更关心的是x落在 此区间之外的概率。
二项分布---二项分布的定义及其特点
二项分布的应用条件: (1)各观察单位 只具有相互对立 的一种结果,如合格或不 合格, 生存或死亡等等,非此即彼; (2)已知发生某一结果 (如死亡) 的概率为p,其对立结果 的概率则为1-P=q,实际中要求p 是从大量观察中获得的比较 稳定的数值; (3)n次观察结果互相独立,即每个观察单位的观察结果不
P (-2.58≤u<2.58)=0.99
标准正态分布的三个常用概率如图示
u变量在上述区间以外取值的概率分别为: P(|u|≥1)=2Φ(-1)=1- P(-1≤u<1) =1-0.6826=0.3174 P(|u|≥2)=2Φ(-2) =1- P(-2≤u<2) =1-0.9545=0.0455 P(|u|≥3)=1-0.9973=0.0027 P(|u|≥1.96)=1-0.95=0.05 P(|u|≥2.58)=1-0.99=0.01
第3章 抽样分布

样本方差s2
s2取值的概率
0.0 0.5
4/16 6/16
2
4.5
39
4/16
2/16
0.00 0.0 0.5 s的取值 2.0 4.5
(用Excel计算2分布的概率)
1. 利用Excel提供的CHIDIST统计函数,计算2分布 右单尾的概率值
2. 语法为 CHIDIST(x,df) ,其中 df 为自由度, x 是随 机变量的取值 3. 给定自由度和统计量取值的右尾概率,也可以利 用“插入函数”命令来实现 4. 计算自由度为8,统计量的取值大于10的概率
σ2 =1.25
23
x 2.5
x2 0.625
样本均值的抽样分布
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数 学期望为μ,方差为σ2/n。即x~N(μ,σ2/n)
=10
n=4 x 5 n =16 x 2.5
37
2分布
(图示)
选择容量为n 的 不同容量样本的抽样分布
n=1 n=4 n=10
总体
简单随机样本
计算样本方差s2
计算卡方值
n=20
2 = (n-1)s2/σ2
计算出所有的
2
2值
38
2分布
(例题的图示)
16个样本方差的分布
s取值的概率
0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
13
三种不同性质的分布
1 2 3
14
总体分布 样本分布 抽样分布
总体分布
(population distribution)
03第三章 简单随机抽样

首先,在理论上最符合随机原则.对此可有二 种理解:一种是总体中各个单位被抽中的机会 相等.设总体有N个单位,各单位被抽中的概 1 率均为 N.另一种是总体中各个样本被抽中的 概率相等.我们知道,一个总体N中可以抽取 许多个容量为n 的样本,通常情况下按组合形 n C N个样本,那么,在一次抽样中,某个样 式有 1 本被抽中的概率为C ,这个概率对每个可能的 样本都相等.简单随机抽样遵循这种等可能性 原则,为进行抽样估计,计算抽样误差,提供 了重要前提条件.
Y3 + Y4 2
可见,样本均值 y 是 Y 的一个无偏估计量,因为
1 Yi + Y j 1 3 4 E ( y ) = ∑∑ ( ) = ∑∑ (Yi + Y j ) 2 12 i =1 j i i =1 j i 6
3 4
而每个单元均可能在三个样本内出现,故
1 4 E ( y ) = ∑ 3Yi = Y 12 i =1
颜色 蓝 绿 红 白 黄 合计
人的编号 1 14 28 15 25 18 2 26 21 12 23 18 3 20 15 20 20 25 4 12 21 22 19 26
期望 数字 20 20 20 20 20 100
100 100 100 100
可见四个人都对颜色存在偏好,如第一个人偏爱绿色, 第二个人偏爱蓝色等.这种由于对颜色偏好所引起的偏估 类型,可称之为颜色偏误. 结论:随意抽样≠随机抽样
n N
其次,它是设计其他更复杂抽样形式的基础. 例如,设计分层抽样,将总体划分为若干层, 然后对各个层实施简单随机抽样.对一个非常 大的总体,需要分若干个阶段进行抽样.例如, 进行全国性抽样调查,第一阶段可以由全国抽 取若干个省份,第二阶段再由抽中的省份抽取 若干个县(市);第三阶段再由抽中的县(市)抽 取若干个乡(街道);第四阶段再由抽中的乡 (街道)抽取若干个村(居委会)等等.在这种多 阶段抽样中,每个阶段中抽取样本单位均可采 用简单随机抽样方法.
第三章抽样和抽样分布

Probability Sample
• Probability Sample • A probability sample is a sample chosen
by chance. We must know what samples are possible and what chance, or probability, each possible sample has.
第三章抽样和抽样分布
统计应用
“抓阄”征兵计划
➢ 然而结果是,有73个较小的号码被分配给了前半
年的日子,同时有110个较小的号码被分配给了后 半年的日子。换句话说,如果你生于后半年的某 一天,那么,你因为被分配给一个较小号码而去 服兵役的机会要大于生于前半年的人
➢ 在这种情况下,两个数字之间只应该有随机误差,
convenience sampling chooses the individuals
easiest to reach. Here is an example
of convenience sampling.
Both voluntary response samples and
convenience samples produce samples that are almost guaranteed not to represent the entire
被分配的号码较大的人也许永远轮不上到军队服役
➢ 这种抓阄看起来对决定应该被征召入伍是一个相当不错
的方法。然而,在抓阄的第二天,当所有的日子和它们 对应的号码公布以后,统计学家们开始研究这些数据。 经过观察和计算,统计学家们发现了一些规律。例如, 我们本应期望应该有差不多一半的较小的号码(1到183) 被分配给前半年的日子,即从1月份到6月份;另外一半 较小的号码被分配给后半年的日子,从7月到12月份。 由于抓阄的随机性,前半年中可能不会分到正好一半较 小的号码,但是应当接近一半
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 抽样分布
一、单项选择题
1.样本均值与总体均值之间的差被称为( )。
A 、抽样误差
B 、点估计
C 、均值的标准误差
D 、区间估计
2.假设总体服从均匀分布,从此总体中抽取容量为40的样本均值的抽样分布( )。
A 、服从均匀分布
B 、近似服从正态分布
C 、不可能服从正态分布
D 、无法确定
3.有一批灯泡共1000箱,每箱200个,现随机抽取20箱并检查这些箱中的全部灯泡,此种检验属于( )。
A 、纯随机抽样
B 、类型抽样
C 、整群抽样
D 、等距抽样
4.设随机变量ηξ与相互独立,且ξ~)
,(),,(222211~σαησαN N ,则Z~ξ+η仍具正态分布,且有( )。
A 、),(~22211σσα+N Z )
B 、),(~2121σσαα+N Z
C 、),(~222121σσαα++N Z
D 、),(~222121σσαα+N Z
5.从标准差为10的总体中抽取一个容量为40的样本,如果采用重复抽样,则样本均值的标准差为( )。
A 、0.25
B 、0.5
C 、0.4
D 、0.04
6.当总体单位数越来越大时,重复抽样和不重复抽样之间的差异( )。
A 、越来越明显
B 、越来越小
C 、保持不变
D 、难以判断
7.第一个χ2分布的方差为20,第二个χ2分布的方差为30,则它们的和仍然服从χ2分布,自由度为( )。
A 、50
B 、20
C 、30
D 、25
8.均值为0,方差为1的标准正态分布的平方服从( )。
A 、F 分布
B 、正态分布
C 、χ2分布
D 、无法确定
9.在某高校中,管理学专业的学生占10%,如果从该高校中随机抽取200名学生进行调查,样本中管理学专业学生所占比例的期望值为( )。
A 、10%
B 、20%
C 、5%
D 、40%
10.如果总体单位数较小,则与重复抽样相比,不重复抽样中样本均值的标准差()。
A 、较大
B 、较小
C 、相等
D 、无法比较
二、多项选择题
1.以下是样本统计量的有( )。
A 、样本平均数
B 、样本比例
C 、样本标准差
D 、样本方差
2.重复抽样的特点有( )。
A 、每次抽样时,总体单位数始终不变
B 、各单位被抽选的机会在各次抽选中相等
C 、各次抽选相互独立
D 、各单位被抽选的机会在各次抽选中不相等
3.在下列叙述中,正确有( )。
A 、如果抽样分布的均值不等于总体参数,则该统计量被称为参数的有偏估计
B 、样本方差可以估计总体方差
C 、样本均值可以估计总体均值
D 、样本均值不可以估计总体均值
三、填空题
1.χ2分布的可加性成立的前提条件是随机变量之间_________。
2.为了比较人数不等的连个班级学生的学习成绩的优劣,需计算________,而为了说明哪个班级学生的学习成绩比较整齐,则需计算_______。
3.对某种连续生产的产品进行质量检验,要求每隔两小时抽出10分钟的产品进行检验,这种抽查方式是_______。
4.设一正态总体N=200,平均数是40,对其进行样本容量为10的简单随机抽样,则平均数抽样分布的期望值是_______。
5.不重复抽样情况下,样本比例的抽样分布的方差是__________。
6.当n 充分大时,t 分布可以用_________来近似。
7.设X 1,X 2,…,X n 是来自正态总体N(μ,σ2)的样本,,S 2,分别为样本均值和样本
标准差,则X 和S 2
相互独立,则2
2)1(σs n −服从自由度为_______的_______分布;n s X µ−服从自由度为______的______分布。
8.自由度为10的χ2分布与自由度为5的χ2分布的比值服从_______,它们的和服从_____。
9.为了调查某高校大学生的消费水平,从男生中抽取70名学生调查,从女生中抽取30名学生调查,这种抽样方法是_______。
10.中心极限定理告诉我们,不管总体服从什么分布,其_________的分布总是近似服从正态分布。
四、判断题
1.χ2(n )分布的变量值始终为正。
( )
2.一般而言,在同等条件下,较大的样本所提供的有关总体的信息要比较小样本的多。
( )
3.t 分布与正态分布的区别在于分布形态是否是对称的。
( )
4.样本均值的抽样分布形式仅与样本容量n 有关。
( )
5.重复抽样误差大于不重复抽样误差。
( )
6.增加样本单位数目,可提高抽样推断的精度。
( )
7.统计量不能含有任何总体参数。
( )
8.在设计一个抽样方案时,抽取的样本量并不是越多越好。
( )
9.样本均值的方差和抽样方法有关。
( )
10.参数是对总体的一种数量描述,它的值是已知的。
( )
五、简答题
1.对于有限总体,要得到一个简单随机样本,需要采用有放回的抽样,为什么?而无限总体则为何无须此要求?
2.如何理解一个总体就是一个具有确定概率分布的随机变量。
六、计算题
1.在总体),(2σµN 中抽取样本4321,,,X X X X ,其中µ已知而2σ未知。
在样本的函数:
∑=41
i i X ,µ321+−X X ,),,,min(4321X X X X ,∑=4
1221i i X σ,||14X X −中哪些是统计量,哪些不是统计量,为什么? 2.设1621,,,X X X L 为)0(2
4,N 的一个样本,则∑=1612161i i X 的数学期望和方差分别为多少? 3.在总体)(23.6,52N 中随机抽取一容量为36的样本,求样本均值落在50.8 到53.8之间的概率。
4.设总体X 服从正态分布),(2
σµN ,4321,,,X X X X 为其一个样本,(1)试给出4321,,,X X X X 的联合分布密度函数;(2)给出样本均值X 的密度函数。