热交换器设计
热交换器原理与设计

热交换器原理与设计
热交换器是一种有效的能量转换装置,它可以在两个不同介质间进行热能传递,在许多设备和过程中扮演了重要角色,如冷却发动机、风扇冷却器、回热凝结器,电力发电厂余热冷却系统、冶金工业炉内传热装置等。
热交换器技术在发电厂、船舶、汽车、机场、计算机服务器等重要场合得到了广泛的应用,在机械工程、冶金、空调、石油等行业中也有很多应用。
热交换器的工作原理是,当两种不同的介质接近时,就会发生热量的传输,热量由低温介质传给高温介质,这就是热交换器所典型的热量传递效果。
热交换器设计主要包括三个方面:
1.设定热交换器参数:包括换热器结构、换热面积、热传导率、传热方式、冷热热质量流量等等。
2.选择换热材料:根据工艺要求与换热器的压力与温度,选择满足要求的材料,并按照要求的连接方式生产热交换器。
3.有限元模型分析或仿真分析:将换热器的结构参数输入有限元软件,模拟换热器的工作过程,根据仿真结果,优化换热器的结构与参数等,使其做到达到设计要求。
热交换器原理与设计

热交换器原理与设计
热交换器是一种用于传热的设备,广泛应用于工业生产、能源
领域以及日常生活中。
其作用是在两种流体之间传递热量,使它们
达到所需的温度。
热交换器的设计和运行原理对于提高能源利用效
率和保障设备安全稳定运行具有重要意义。
热交换器的原理是利用热传导的物理特性,通过将两种流体分
别置于不同的传热面上,使它们之间产生温度差,从而实现热量的
传递。
在热交换器中,传热面的设计和流体流动方式是影响传热效
率的关键因素。
此外,热交换器的设计还需要考虑流体的物性参数、流体流速、传热面积以及传热介质的选择等因素。
在热交换器的设计过程中,首先需要确定传热的需求,包括传
热量、传热温差等参数。
然后根据流体的性质和工艺要求选择合适
的传热面积和传热介质。
接下来是热交换器内部结构的设计,包括
传热面的布置方式、流体流动路径的设计等。
最后是对热交换器的
整体结构进行设计,包括支撑结构、连接方式、绝热措施等。
热交换器的设计需要综合考虑传热效率、成本、占地面积等因素。
为了提高传热效率,可以采用增加传热面积、改善流体流动方
式、优化传热介质等措施。
在降低成本方面,可以通过材料选择、结构设计等途径进行优化。
此外,合理设计热交换器的结构,可以减小占地面积,提高设备的整体性能。
总的来说,热交换器的设计是一个综合考虑传热效率、成本和结构合理性的工程问题。
通过科学合理的设计,可以提高能源利用效率,降低生产成本,保障设备的安全稳定运行。
因此,热交换器的设计对于工业生产和生活中的能源利用具有重要的意义。
热交换器的设计

热交换器的设计在工业制造领域,热交换器是一种常见的设备,用于加热、冷却和传热,例如在化学工程、石油工业、制冷和空调系统等领域。
热交换器可被定义为一个由多种不同材料制成的设备,它们可以将热量从一个介质传输到另一个介质,并实现温度的交换和控制,从而满足工业生产需求。
因此,一个优秀热交换器的设计对于提高生产效率和保证产品质量十分重要。
一般而言,一个热交换器主要由两部分组成:热传导面和流体通道,它们是直接影响热交换器性能的关键因素。
其中,热传导面负责向流体中传递热量,一般常采用金属材料,例如铜、铁和铝等。
流体通道则负责将流体从一个区域输送到另一个区域,一般有塑料和金属材料两种。
另外,热交换器还可以根据不同的工艺要求设计不同的结构形式,例如直角式、U形式、管式等,以便于满足不同的工业生产需要。
在设计热交换器时,需要考虑到以下因素:热交换器的传热效率、流体通道的结构和材料以及热传导面的材料。
传热效率是热交换器设计最关键的指标之一,可通过增加热传导面积来提高。
此外,对于流体通道的设计,需要充分考虑流体在管道中的流动状态,以便于保证流体畅通,避免热传导过程中的热阻;同时,选择合适材料也是有效提高热交换器性能的直接途径。
例如,在化工中使用的有机溶剂可能会对一些材料产生腐蚀,因此在热交换器设计时选择材料应特别注意。
除了传热效率和材料选择外,热交换器设计还需要考虑使用领域,并根据特定的行业需求进行调整。
例如,在化学工厂中,一些危险物质需要特殊处理方式。
此时,热交换器的结构和材料也需要根据化学要求进行调整。
一般可以采用包括耐腐蚀、耐压等一些特殊材料,如316L不锈钢、625镍基合金等。
在日益发展的工业生产领域,热交换器的设计直接影响到生产成本和工业品质。
随着工业领域不断发展,热交换器的应用也会不断普及,因此热交换器设计也将处于不断改进和提高的趋势。
相信随着科技的发展,热交换器的性能将不断提升,为各行各业的生产带来更加便捷、经济的解决方案。
《热交换器原理与设计》热交换器设计

结构紧凑,制造简便,单位体积设备内的传热面积约为列管式换 热器的3倍。
操作压力和温度不能太高,尤其是所能承受的压力比较低,操作 压力只能在20atm以下,操作温度约在300-400℃以下。
37
具有的共同特点
①强化传热的凹凸形波纹; ②用以安装密封垫片的密封槽; ③介质进出的角孔; ④板片悬挂装置(缺口); ⑤保证密封垫片压紧时对中的定 位缺口; ⑥板片组装后保持流道一定的间 隙、并使流层“网状”化的触点, 可使板片在两侧介质有压差情况 下减少板片的变形; ⑦使介质能均匀沿板片流道宽度 分布的导流槽;
1—上导杆;2—垫片;3—传热板片;4—角孔; 5—前支柱;6—固定端板;7—下导杆;8—活动端板
29
30
a 传热板片
作用: 流体在低速下发生强烈湍流,以强化传热 提高板片刚度,能耐较高的压力
类型:
人字形板
水平平直波纹板
锯齿形板
31
32
人字形波纹片
33
板片的样式
34
35
水平平直波纹
36
17
组成 传热板片
密封垫圈
压紧装置 轴及接口管等
18
板式换热器的构造
19
20
21
平板式换热器的工作原理
若干矩形板片,其上四角开有圆孔,通过圆孔外设置或不 设置圆环形垫片可使每个板间通道只留两个孔相连。
(a)平板式换热器流向示意图
b)平板式换热器板片
平板式换热器
22
工作过程
板四角开有角孔,流体由一个角孔流入,即在两块板形成的流道 中流动,而经另一对角线角孔流出(该板的另外两个角孔则由垫 片堵住),流道很窄,通常只有3~4 mm,冷热两流体的流道彼 此相间隔。为了强化流体在流道中的扰动,板面都做成波纹形。 板片间装有密封垫片,它既用来防漏,又用以控制两板间的距离。 冷热两流体分别由板的上、下角孔进入换热器,并相间流过奇数 及偶数流道,然后再从下、上角孔流出。传热板片是板式换热器 的关键元件,不同类型的板片直接影响到传热系数、流动阻力和 承受压力的能力。 板片的材料,通常为不锈钢,对于腐蚀性强的流体(如海水冷却 器),可用钛板。
热交换器原理与设计

绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmax=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。
热交换器原理与设计

热交换器原理与设计热交换器是一种用于传热的设备,它可以将热量从一个流体传递到另一个流体,而两者之间并不直接接触。
热交换器广泛应用于工业生产和日常生活中,如空调系统、冷却系统、加热系统等。
在本文中,我们将深入探讨热交换器的原理与设计。
热交换器的原理主要基于热传导和对流传热。
在热交换器中,两种流体分别流经热交换器的两侧,通过热传导和对流传热的方式,实现热量的传递。
热交换器的设计主要包括换热面积、传热系数、流体流速等因素。
换热面积越大,传热效果越好;传热系数越大,传热效率越高;流体流速对于传热效果也有着重要的影响。
热交换器的设计需要考虑多种因素,如流体的性质、温度、压力、换热面积、传热系数等。
在实际工程中,需要根据具体的工况条件来选择合适的热交换器类型,如板式热交换器、管式热交换器、壳管式热交换器等。
不同类型的热交换器适用于不同的工况条件,需要根据实际情况进行合理选择。
在热交换器的设计过程中,需要进行热力学计算、流体力学分析、材料选型等工作。
通过这些工作,可以确定热交换器的尺寸、结构、材料等参数,确保热交换器在实际工作中能够达到预期的换热效果。
此外,还需要考虑热交换器的清洗维护、安装调试等问题,确保热交换器的长期稳定运行。
总的来说,热交换器是一种重要的传热设备,它在工业生产和日常生活中都有着重要的应用。
热交换器的原理基于热传导和对流传热,设计时需要考虑多种因素,如流体性质、温度、压力、换热面积、传热系数等。
合理的热交换器设计可以提高能源利用效率,降低生产成本,对于工业生产和环境保护都具有重要意义。
因此,热交换器的原理与设计是一个值得深入研究的课题,也是工程技术人员需要掌握的重要知识。
热交换器设计手册

热交换器设计手册
热交换器设计手册通常包含以下内容:
1. 热交换器的基本原理和工作原理,包括热传递方式、热
媒流动方式等。
2. 热交换器的分类和应用,包括不同类型的热交换器适用
于不同的工艺条件。
3. 热交换器的设计参数和计算方法,包括换热面积、流体
流量和压降等的计算方法。
4. 热交换器的材料选择和制造工艺,包括不同材料的耐腐
蚀性能和强度等考虑因素。
5. 热交换器的安装和维护,包括热交换器的安装位置选择、管路连接方式和清洗维护方法等。
6. 热交换器的性能评估和测试方法,包括热传导率、换热效率和压降的实际测试方法。
7. 热交换器的故障分析和解决方法,包括常见故障的识别和处理方法。
8. 热交换器的设计案例和示例分析,包括不同应用场景下的实际设计案例和经验总结。
热交换器设计手册旨在提供热交换器设计和应用方面的基础知识和实用指导,帮助工程师在热交换器的选择、设计和运行管理过程中提高工作效率和质量。
热交换器设计说明书终极

0.00303
79 80 81
Gs tw
Gs
M2 23.16 AS 0.0355
假定
652.4 57
200 .4 10 6
℃ kg/( m•s)
w1
查参考文献 2 附录 9
热交换器课程设计说明书
2
82
壳侧换 热系数
rw
(m2•
K)/W
查参考文献 1 附录 C 查参考文献 2
0.00034 0.00017
氨的污 垢热阻 管壁热 阻
(m2•
K)/W
忽略
K [
72.24
P
P
24
参数 P、 R
R
t1'' t 2' 40 25 ' ' 120 25 t1 t 2
0.16
t1' t1'' 120 90 R '' ' 40 25 t2 t2
—
℃
2 0.98 70.8 1000
25 26 27
温差修 正系数 有效平 均温差 初选传 热系数 估算传 热面积
50
度
120
ls (0.2 ~ 1)D s (0.2 ~ 1) 0.5
51
ls
m
0.1 ~ 0.5m
0.3
ls 0.3m ,ls ,i 0.39m,ls ,o 0.39m
热交换器课程设计说明书
52
折流板 数目 折流板 管孔数 折流板 上管孔 直径 通过折 流板上 管子数 折流板 缺口处 管数
Ds 2h D 2h ) sin[ar cos( s )] DL DL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热交换器设计在采用一体化布置的高温气冷堆中,为了使预应力混凝土压力容器体积不致过大,蒸汽发生器应尽量紧凑,严格限制受热面空间布置,并要求其具有较高的功率密度。
因此,一体化布置的高温气冷反应堆主要选用直流型多头螺旋管式蒸汽发生器。
本文从实际工程设计出发,对多头螺旋管式蒸汽发生器的设计进行了研究,提出了多头螺旋管束受热面结构的设计方法,推荐了螺旋管内外的传热系数和压降的计算关系式。
根据所提出设计方法和螺旋管内外的传热系数和压降的计算关系式对260MW蒸汽发生器进行了设计计算。
由于螺旋管具有占地面积小、传热系数大、结构紧凑、易于清洗、污垢热阻小等优点,不仅在核反应堆,而且在直流锅炉、急冷锅炉、各种石油化工设备中的换热器,热交换器都有相当广泛的应用。
因此本文得到的结果不仅适用于高温气冷反应堆的蒸汽发生器,而且适用于各种工业设备中的螺旋管式换热器和螺旋管式热交换器。
- I -- II - 主要符号表英 文 字 母 pf c液体比热,W /kg ℃; D螺旋直径,m ; c D中心柱直径,m ; d D套筒直径,m ; d管子外径,m ; i d管子内径,m ; aeffn i F F F ,,所示的修正系数,无因次; G质量流速,kg/sm 2; H管束高度,m ; h螺旋管导程,m ; mac h对流放热系数,W/m 2℃; mic h核沸腾放热系数,W/m 2℃; f K液体的导热系数,W/m ℃; L螺旋管长度,m ; M头数,个; Nu努塞尔特数,无因次; g Nu汽相努塞尔特数,无因次; n轴向方向管子排数,个; w g ,Pr管壁温度确定的汽相pr 数,无因次; Pr普朗特数,无因次; Re 雷诺数,无因次;- III - g Re汽相雷诺数,无因次; r液体的汽化潜热,kJ/kg ; i r管内污垢层的污垢系数,m 2℃/W ; o r管外污垢层的污垢系数,m 2℃/W ; T S径向节距,m ; L S轴向节距,m ; w t壁面温度,℃; l t流体温度,℃; sat t饱和温度,℃; v流体的比容,m 3/kg ; 0w循环流速,m/s ; x质量含汽率,无因次; Z管子的总阻力系数(不包括节流圈),无因次; gr i ∆过热段焓增,kJ/kg ; qh i ∆进口介质欠焓,kJ/kg ; jb p ∆局部阻力压降,Pa ; js p ∆加速压降,Pa ; ld p ∆流动阻力压降,Pa ; mc p ∆摩擦阻力压降,Pa ; sat p ∆sat t ∆对应的蒸汽压力变化,Pa ; zw p ∆重位压降,Pa ; sat t ∆ 壁面过热度,℃。
希腊字母α螺旋上升角,度;λ螺旋管内摩擦阻力系数,无因次;λ直管的每米沿程阻力系数,无因次;μ液体动力粘度系数,Pa·s;fξ两相流体局部阻力损失系数,无因次;ξ单相流体螺旋管阻力系数,无因次;jbξ节流圈阻力系数,无因次;jl∑ξ局部阻力系数之和,无因次;ρ过热段出口密度,kg/m3;cρ液体的密度,kg/m3;fρ气体的密度,kg/m3;gρ过热段平均密度,kg/m3;grρ预热段入口密度,kg/m3;rρ'饱和水密度,kg/m3;ρ''饱和蒸汽密度,kg/m3;σ表面张力,N/m- IV -第1章绪论1.1课题的研究背景及意义当今世界,能源是一个国家国民经济发展的基础和前提,在自然资源开采日趋减少的今天,能源发展趋向于多元化。
其中核能作为一种潜力很大的能源,在当今世界多数国家得以发展。
一些发达国家的核电消费量在整个电力消费量中已占有相当大的比重。
1942年,意大利科学家费米亲自主持了美国芝加哥大学建成的世界上第一座核反应堆,从而揭开了原子核能时代的序幕。
原子核能的和平利用在二战后的50年代开始,经过试验性原子核反应堆阶段到20世纪90年代,人们已经在核电站用反应堆方面形成了一个综合性的高技术工业部门。
可见,核电发展的脚步相当迅速,核能作为一种新能源替代品,将受到越来越多国家的重视,正由发达国家向发展中国家扩展。
核能是一种潜力巨大的能源,由于世界各国日益严重的燃料供应和环境问题的困扰。
首先化石能源逐渐耗尽,其价格必然上涨,从而使电价也会跟着上涨。
其次环境问题的日益严重,尤其每年成亿吨、上百种的有害烟尘和废气排入大气层及全球性的气温变暖,都会导致人类生存条件的降低,使得多数国家的目光集中在核电发展上,而发展核电又是能源多元化的重要组成部分。
然而当今不少人对核电本身存在着或多或少的忧虑,尤其经历了历史上两次事故(即1979年美国三里岛事故和1986年前苏联切尔诺贝利事故),使得反核派以此作为借口,大唱反核之调。
事实上,经调查,事故造成的放射性影响是微不足道的,也无因放射性泄露而造成的人身伤亡。
因此,核电站是非常安全的,另外,在核电站经济性方面,其特点是基建投资高,但燃料费用低廉,完全可与火电竞争。
以基建投资来说,在同样条件下,核电站的单位造价约为火电站的1.5~2倍,但由于核电的燃料费便宜得多,使得其成本仅相当于火电成本的50%~90%。
从综合效益来讲,核电在经济上是合算的。
尤其当燃料价格上涨时,核电站在经济上的优越性便显现出来。
随着核电本身安全性的提高,积累了5000堆年(一座堆运行一年为一堆年)的运行经验以及新一代更为安全、经济的先进堆的推广使用和人类对核不扩散- 1 -的共识,都将认为核电技术是成熟的,并且是一种可靠经济的能源。
总之,核电的大力、迅速发展,使之会成为下个世纪的首选能源[1]。
我国于上世纪70年代初才开始发展核电,1991年12月自行建设的300MW 秦山核电站投入运行。
从而结束了中国大陆无核电的历史,接着从法国引进的2×900MW大亚湾核电站于1992年投入运行,标志着我国核电由起步进入新的发展时期。
1995年确定的4个核电项目8个堆的建设已于2000年完成,使得我国核电的装机总容量达到9GW左右。
勿庸置疑,在本世纪,核电在我国必将有一个更大的发展。
核反应堆,其主要类型:1、根据引起燃料核裂变的中子的能量,可分为快堆、中能堆、热堆。
2、根据所用燃料的种类,又可分为铀堆、钚堆、钍堆和混合堆。
3、根据用于慢化中子的材料,分为轻水堆、重水堆、石墨堆及有机介质堆。
4、根据目的和用途,分为动力堆、生产放射性同位素堆[2]。
目前国外已实际使用的热中子转换堆有以轻水作慢化剂和冷却剂的轻水堆,以石墨作慢化剂的石墨堆和以重水作慢化剂的重水准。
轻水堆是世界上应用最广的堆型。
又分为压水堆(PWR)、沸水堆(BWR)两种类型,这两种均采用普通轻水作慢化剂,低浓度二氧化铀制成芯块,装入锆包壳内作燃料。
在已投入运行的轻水堆中,其中压水堆占到65%,沸水堆占到35%。
石墨反应堆采用石墨作为慢化剂,其中投入运行的石墨堆中有58%用二氧化碳作为冷却剂,其余42%用轻水作冷却剂,仅前苏联采用此堆型,而其他国家均未采用。
重水堆,由于重水价格昂贵,目前仅在加拿大建造即坎杜型(CANDU)重水堆,以天然铀作燃料,重水作为慢化剂和冷却剂。
高温气冷堆(HTGR)是美国开发的一种新堆型,采用氦作冷却剂,铀和钍的氧化物作燃料。
钠冷快中子增殖堆(FBR),1951年始创于美国,有关核专家预测,这种堆型是取代目前正广泛被采用的压水堆的又一新堆型。
目前只有法国、俄罗斯、美国、日本、德国等少数国家拥有此种堆型[3]。
高温气冷反应堆是在低温堆的基础上发展起来的,是改进型气冷堆的进一步发展。
高温气冷反应堆内选择了在化学上呈惰性且热工性能好的氦气作冷却剂。
燃料元件采用全陶瓷型的热解碳涂敷颗粒,这是高温气冷堆的一项技术突破,这样就允许燃料包壳在1000℃以上的高温下运行。
石墨被用作慢化剂兼堆芯结构材料。
这样堆芯出口温度提高到750℃以上甚至可达950—1000℃,堆芯功率密度达6~8MW/m3,用于发电的热效率可达40%左右,而用于高温供热时总热效率可达60%以上。
高温气冷堆还具有一次回路放射性低,易于维护和检修,具有安全性高,事故安全性好,对环境放射排放量少等一系列优点[4-5],所以这- 2 -种堆型越来越受到世界各国的高度重视。
自高温气冷反应堆发展以来,作为高温气冷反应堆动力装置关键设备之一的蒸汽发生器也获得了很大的发展。
其特点是一回路介质采用高热工参数的氦气,入口温度高达750℃左右,使之产生高参数的蒸汽,压力为17MPa,温度为540℃与火电站的参数基本相同,因此蒸汽循环的热效率与先进火电站相近,可达40%左右。
蒸汽发生器是高温气冷反应堆动力装置中的主要设备之一,它的作用是将一次回路冷却剂的热量传递到与之隔绝的二次回路的介质,进而产生蒸汽,它是并联分隔一、二次回路的关键设备,是一、二次回路的枢纽,它的工作可靠性及安全可靠性直接影响到核动力装置的经济性、工作性能和安全可靠性。
一旦蒸汽发生器发生爆管事故,将迫使核电站停运,电厂直接经济损失和社会效益损失可达数亿元人民币。
同时还使反应堆一次回路中的放射性物质泄露到二次回路中,最终外逸到环境中,造成环境污染,直接威胁人类的生命安全。
因此蒸汽发生器的结构设计、材料选择、制造工艺、运行操作和维护检修等必须十分重视。
在采用一体化布置的高温气冷堆中,为了使预应力混凝土压力容器体积不致过大,蒸汽发生器应尽量紧凑,严格限制受热面空间布置,并要求其具有较高的功率密度。
因此,一体化布置的高温气冷堆主要选用直流型多头螺旋管式蒸汽发生器。
由于螺旋管具有占地面积小、传热系数大、结构紧凑、易于清洗、污垢热阻小等优点,不仅在核反应堆,而且在直流锅炉、急冷锅炉、各种石油化工设备中的换热器,热交换器都有相当广泛的应用[6-8]。
因此本文得到的结果不仅适用于高温气冷反应堆的蒸汽发生器,而且适用于各种工业设备中的螺旋管式换热器和螺旋管式热交换器。
1.2换热器的发展和现状1.2.1换热器概述热交换器是工业生产中重要的单元设备,根据以往的统计,热交换器的吨位约占整个工艺设备的20%,有的甚至高达30%,其重要性就可想而知。
目前,应用最广泛的换热器为管壳式热交换器。
此外,还有板式热交换器、板翅式热- 3 -交换器、螺旋板式热交换器等。
管壳式热交换器包括固定管板式、浮头式、U 型管式、滑动管板式、填料函式热交换器等。
管壳式热交换器虽然在热交换效率、紧凑性和金属消耗量等方面不及其他形式的热交换器,但它具有结构坚固、可靠性高、适应性大、用材范围广等优点,仍得到广泛的应用。
为了适应温度和压力对介质的腐蚀要求,在上述基础上变形的也很多,其中最具代表性的是废热锅炉,这种利用工艺流程中产生的余热生产高压蒸汽的废热锅炉,就是个节能型热交换设备,在工业生产中应用很广。
近年来,我国的高温高压热交换器,在材料、结构和制造方面都取得了一定的进展。