微积分定理公式
微积分公式定理整理

微分积分公式整理一、导数1. 基本导数公式(1)()0='C (2)()1-='μμμx x(3)()x cos x sin =' (4)()x sin x cos -=' (5)()x sec x tan 2=' (6)()x csc x cot 2-=' (7)()x tan x sec x sec ⋅=' (8)()x cot x csc x csc ⋅-='(9)()x x e e =' (10)()a ln a a x x ='(11)()xx ln 1=' (12)()aln x x log a1=' (13)()211x x arcsin -=' (14)()211x x arccos --='(15)()211x x arctan +=' (16)()211x xcot arc +-='2. 导数的四则运算法则(1)()v u v u '±'=± (2)()v u v u uv '+'='(3)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 3. 常用等价无穷小代换: 当x →0时,xx sin →xx tan →xx arcsin →xx arctan →2211xx cos →- a ln x a x →-1 x e x →-1()x x ln →+1()abxbx a →+-11()nx x n1111→-+()a ln x x log a →+1 4. 高阶导数公式(1)()()[]()()()()()n n n x v x u x v x u ±=± (2)()[]()()x cu x cu n n = (3)()[]()()()b ax u a b ax u n n n +=+(4)莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑5.基本初等函数的n 阶导数公式 (1)()()!x x n n= (2)()()bax n n bax ea e ++⋅= (3)()()a ln a a n x n x=(4)()[]()⎪⎭⎫ ⎝⎛⋅++=+2x n b ax sin a b ax sin n n (5)()[]()⎪⎭⎫ ⎝⎛⋅++=+2x n b ax cos a b ax cos n n (6)()()()111++⋅-=⎪⎭⎫ ⎝⎛+n n nn b ax !n a b ax(7)()[]()()()()nn n n b ax !n a b ax ln +-⋅-=+-1116. 中值定理与导数应用:拉格朗日中值定理。
微积分公式

微积分公式微积分是数学中计算变化率和求解曲线面积的学科。
它通过研究求解方程来使用数学工具来分析和描述实际现象。
微积分有许多公式,下面是一些常见的公式:1、导数基本公式:如果f(x)是定义在x上的连续函数,那么f(x)的导数为:f′(x)=limh→0[f(x+h)-f(x)/h]2、极限公式:设f(x)是定义在某一点x=a处的连续函数,如果那么当x趋近于a时,f(x)的极限hy→0f(x)的存在限limx→af(x)=L,那么极限公式就是:limx→af(x)=L3、渐近线公式:如果y=f(x)是关于x之间连续相关的函数,当x取极限时,渐近线公式为y=limx→∞f(x)=L4、复合函数求导法则:如果y=f(u)和u=g(x)是连续函数,则dy/dx=dy/du×du/dx,其中du/dx 为求dg(x)/dx。
5、高阶导数:如果y=f(x)是关于x的连续函数,它的第n阶导数dnfdxn=f′(x)=limh→0[f(x+h)-f(x)/h]n-16、微积分定理:即定积分定理,如果f(x)是定义在[a,b]上的连续函数,且f′(x)是定义在[a,b]上的可积函数,则F(x)=∫ f(x)dx在区间[a,b]上极限存在,且F(x)=lim A→BA f(x)dx=F(b)-F(a)7、李雅普诺夫准则:称为最大-最小法则,如果f′(x)>0,则在区间[a,b]内f(x)为递增函数;如果f′(x)<0,则在区间[a,b]内f(x)为递减函数;如果f′(x)=0,则在[a,b]上可能存在极值。
8、Rolle定理:如果函数f(x)在[a,b]上连续有界且f(a)=f(b),其导数在[a,b]上连续,那么该函数f(x)在[a,b]上必定存在一个极值点,此极值点的坐标可以通过公式c=(a+b)/2来确定。
总的来说,微积分的公式十分的丰富,这些公式是学习和使用微积分的基础。
只有熟练运用这些公式,才能更好的理解并使用微积分。
微积分的公式大全

微积分的公式大全1.极限的基本公式:(1)常数规则:lim(c) = c (c 为常数)(2)零规则:lim(0) = 0(3)单位规则:lim(x) = x (x 为自变量)(4)和差规则:lim(f(x) ± g(x)) = lim(f(x)) ± lim(g(x))(5)乘法规则:lim(f(x) * g(x)) = lim(f(x)) * lim(g(x))(6)除法规则:lim(f(x) / g(x)) = lim(f(x)) / lim(g(x)) (若lim(g(x)) ≠ 0)2.导数的基本公式:(1)常数函数的导数:(c)'=0(c为常数)(2)幂函数的导数:(x^n)' = nx^(n-1) (n 为实数)(3)指数函数的导数:(e^x)'=e^x(4)对数函数的导数:(ln(x))' = 1/x(5)三角函数的导数:(sin(x))' = cos(x)、(cos(x))' = -sin(x)、(tan(x))' = sec^2(x)(6)反三角函数的导数:(arcsin(x))' = 1/√(1-x^2)、(arccos(x))' = -1/√(1-x^2)、(arctan(x))' = 1/(1+x^2)3.基本积分公式:(1)幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n ≠ -1)(2)指数函数的积分:∫(e^x)dx = e^x + C(3)对数函数的积分:∫(1/x)dx = ln,x, + C(4)三角函数的积分:∫sin(x)dx = -cos(x) + C、∫cos(x)dx = sin(x) + C、∫tan(x)dx = -ln,cos(x), + C(5)反三角函数的积分:∫(1/√(1-x^2))dx = arcsin(x) + C、∫(-1/√(1-x^2))dx = arccos(x) + C、∫(1/(1+x^2))dx = arctan(x)+ C4.微分中值定理:(1)罗尔定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,并且f(a)=f(b),则存在一个c(a<c<b),使得f'(c)=0。
高等数学微积分公式定理整理

高等数学公式中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
微积分公式大全

微积分公式sin (α±β)=sin αcos β±cos αsin βcos (α±β)=cos αcos β sin αsin β2sin αcos β=sin (α+β)+sin (α-β)2cos αsin β=sin (α+β)-sin (α-β)2cos αcos β=cos (α-β)+cos (α+β)2sin αsin β=cos (α-β)-cos (α+β)sin α+sin β=2sin ½(α+β)cos ½(α-β)sin α-sin β=2cos ½(α+β)sin ½(α-β)cos α+cos β=2cos ½(α+β)cos ½(α-β)cos α-cos β=-2sin ½(α+β)sin ½(α-β)tan (α±β)=βαβαtan tan tan tan ±,cot (α±β)=βαβαcot cot cot cot ± e x=1+x+!22x +!33x +…+!n x n+…sin x =x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n +…cos x =1-!22x +!44x -!66x +…+)!2()1(2n x nn -+…ln (1+x)=x-22x +33x -44x +…+)!1()1(1+-+n x n n +…tan -1x =x-33x +55x -77x +…+)12()1(12+-+n xn n +…(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+…-1<x<1∑=ni 11=n∑=ni i 1=½n (n +1)∑=ni i 12=61n (n +1)(2n +1)∑=ni i13=[½n (n +1)]2Γ(x)=⎰∞t x-1e -t d t =2⎰∞t 2x-12t e -d t =⎰∞)1(ln tx-1d t β(m ,n )=⎰10x m -1(1-x)n -1d x =2⎰20sin π2m -1x cos 2n -1x d x=⎰∞+-+01)1(nm m x x d x 希臘字母(Greek Alphabets)大寫小寫讀音大寫小寫讀音大寫小寫讀音Ααalpha Ιιiota Ρρrho Ββbeta Κκkappa Σσ,ςsigma Γγgamma Λλlambda Ττtau Δδdelta Μμmu Υυupsilon Εεepsilon Ννnu Φφphi Ζζzeta Ξξxi Χχkhi Ηηeta Οοomicron Ψψpsi ΘθthetaΠπpiΩωomega倒數關係:sin θcsc θ=1;tan θcot θ=1;cos θsec θ=1商數關係:tan θ=θθcos sin ;cot θ=θθsin cos 平方關係:cos 2θ+sin 2θ=1;tan 2θ+1=sec 2θ;1+cot 2θ=csc 2θ順位低順位高;⎰順位高d 順位低;0*∞=∞1*∞=∞∞=0*01=00順位一:對數;反三角(反雙曲)順位二:多項函數;冪函數00=)(0-∞e ;0∞=∞⋅0e ;∞1=∞⋅0e 順位三:指數;三角(雙曲)算術平均數(Arithmetic mean)nX X X X n+++=...21中位數(Median)取排序後中間的那位數字眾數(Mode)次數出現最多的數值幾何平均數(Geometric mean)n n X X X G ⋅⋅⋅=...21調和平均數(Harmonic mean))1...11(1121nx x x n H +++=平均差(Average Deviatoin)nX Xni||1-∑變異數(Variance)nX Xni21)(-∑or1)(21--∑n X Xni標準差(Standard Deviation)nX Xni21)(-∑or1)(21--∑n X Xni分配機率函數f (x )期望值E(x )變異數V(x )動差母函數m (t )DiscreteUniform n 121(n +1)121(n 2+1)t nt t e e e n --1)1(1Continuous Uniform ab -121(a +b )121(b -a )2ta b e e at bt )(--Bernoulli p x q 1-x (x =0,1)p pq q +pe t Binomial ⎪⎪⎭⎫ ⎝⎛x n p x q n -x npnpq(q+pe t )nNegative Binomial ⎪⎪⎭⎫ ⎝⎛-+x x k 1p k q x pkq2p kq kt kqe p )1(-Multinomialf (x 1,x 2,…,x m -1)=mxm x x m p p p x x x n ...!!...!!212121np inp i (1-p i )三項(p 1e t 1+p 2e t 2+p 3)nGeometricpq x-1p12p q tt qe pe -1Hypergeometric⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛n N x n k N x k n ⎪⎭⎫ ⎝⎛N k ⎪⎭⎫ ⎝⎛--1N n N n ⎪⎭⎫ ⎝⎛N k Poisson !x e xλλ-λλ)1(--t e eλNormal 2)(21 21σμπσ--x eμσ222 21t t eσμ+Beta 11)1(),(1---βαβαx x B βαα+2))(1(βαβααβ+++Gammaxe x λαλαλ--Γ1)()(λα2λααλλ-⎪⎭⎫ ⎝⎛-t Exponentxeλλ-λ121λt-λλChi-Squared χ2=f (χ2)=212222)(221χχ--⎪⎭⎫ ⎝⎛Γen n n E(χ2)=nV(χ2)=2n2)21(n t --Weibullαβα--x e1⎪⎭⎫ ⎝⎛+Γ+111λαβλ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+Γ-⎪⎭⎫ ⎝⎛+Γ111222λλαλ10000000000000000000000001024yotta Y10000000000000000000001021zetta Z 10000000000000000001018exa E 10000000000000001015peta P 10000000000001012tera T 兆1000000000109giga G 十億1000000106mega M 百萬1000103kilo K 千100102hecto H 百10101deca D 十0.110-1deci d 分,十分之一0.0110-2centi c 厘(或寫作「厘」),百分之一0.00110-3milli m 毫,千分之一0.00000110-6micro ?微,百萬分之一0.00000000110-9nano n 奈,十億分之一0.00000000000110-12pico p 皮,兆分之一0.00000000000000110-15femto f 飛(或作「費」),千兆分之一0.00000000000000000110-18atto a 阿0.00000000000000000000110-21zepto z 0.00000000000000000000000110-24yocto y。
微积分的公式大全

微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。
在微积分中,有许多重要的公式在各个方面被广泛应用。
下面给出了微积分的一些重要公式。
1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。
微积分定理和公式
、函数【定义】设在某一变化过程中有两个变量X和y,若对非空集合D中的每一点x,都按照某一对应规则f ,有惟一确定的实数y与之相对应,则称y是x的函数,记作x 称为自变量, y 称为因变量, D 称为函数的定义域, y 的取值范围即集合y| y f(x),x D 称为函数的值域.xoy平面上点的集合(x,y)|y f(x),x D称为函数y f (x)的图形.定义域D( 或记D f )与对应法则 f 是确定函数的两个要素. 因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义】设函数f(x)在实数集D上有定义,对于D内任意两点x「X2,当为V X2时,若总有f(xj < f(X2)成立,则称f(x)在D内单调递增(或单增);若总有f(xj V f(X2)成立,则称f(x)在D内严格单增,严格单增也是单增.当f(x)在D内单调递增时,又称f(x)是D内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义】设函数f(x)在集合D内有定义,若存在实数M > 0,使得对任意x D ,都有| f(x)| < M ,则称f(x)在D内有界,或称f(x)为D内的有界函数.【定义】设函数f (x)在集合D内有定义,若对任意的实数M >0,总可以找到一x D ,使得| f (x) | > M ,则称f (x)在D内无界,或称f(x)为D内的无界函数.【定义】设函数f(x)在一个关于原点对称的集合内有定义,若对任意x D,都有f( x) f(x)(或f( x) f(x)),则称f(x)为D内的奇(偶)函数.奇函数的图形关于原点对称, 当f(x) 为连续的函数时, f(x) =0, 即f(x) 的图形过原点. 偶函数的图形关于y 轴对称. 关于奇偶函数有如下的运算规律:设f1(x) f2(x) 为奇函数, g1(x),g2(y) 为偶函数, 则f i(x) f2(x)为奇函数;g,x) g2(x)为偶函数;f i(x)g i(x)非奇偶函数;f i(x)g i(x)为奇函数;f i(x) f2(x),g i(x) g2(x)均为偶函数. 常数C是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算. 对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义】设函数f(x)d在集合D内有定义,如果存在非零常数T,使得对任意x D ,恒有f (x T) f (x)成立,则称f (x)为周期函数.满足上式的最小正数T,称为f(x) 的基本周期, 简称周期.我们熟知的三角函数为周期函数( 考纲不要求), 除此以外知之甚少. y x [x]是以1为周期的周期函数• y [X]与y x [X]的图形分别如图1-1(a)和图1-1(b) 所示•(三) 初等函数 1 .基本初等函数(1)常数函数 y C ,定义域为(-*,+ X ),图形为平行于x 轴的直线.在y 轴 上的截距为c .(2)幂函数y x ,其定义域随着 的不同而变化.但不论取何值,总在(1,+ X )内有定义,且图形过点(1,1 ).当 > 0时,函数图形过原点(图1-2 )( b )图1-21),其定义域为(-X ,+ X)..当 > 1时,函数严格单调递增.子数图形e 为底的指数函数,即y e x (图1-3 )0, 1),其定义域为(1,+ X ),它与y x 互为反函数.微积分中常用到以 e 为底的对数,记作y 1nx ,称为自然对数.对数函数对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分 应用中都很重要.例如,设f (x)在(a,b)区间内二阶可导,对任意x (a,b),f 〃(x) v 0.(3)指数函数 y x (0,当0v v 1时,函数严格单调递减 过点(0,1 ).微积分中经常用到以(4)对数函数 y的图形过点(1,0 )(图1-4)贝9 (1) f ' (x)在(a,b)内严格单调减少;(2) f(x)在(1,b)上为凸弧,均不充此题可以用举例的方法来说明( 1 )、( 2)均不充分.由初等函数的图形可知,y x4为凸弧.讨'二4x3在(一X , x + )上严格单调递减,但y “ =-12 x2< 0,因此(1) , (2)均不充分,故选E.此题若把题干改成f 〃(x) < 0,则(1) , (2) 均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2. 反函数【定义】设函数y f (x)的定义域为D ,值域为R,如果对于每一个y R,都有惟一确定的x D与之对应,且满足y f(x) x是一个定义在R以y为自变量的函数记作并称其为y f(x)反函数.习惯上用x作自变量,y作因变量,因此y f(x)反函数常记为y f 1(x),x R. 函数y f (x)与反函数y f 1(x)的图形关于直线y x对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.y a x与y log a x互为反函.y x2,x [0,+ X]的反函数为y x ,而y x2,x (-x ,0 )的反函数为y (图1-2 (b)).3. 复合函数【定义】已知函数y f (u), u D f, y R f.又u (x), x D ,u R ,若D f R f非空,则称函数为函数y f (u)与u (x)的复合函数.其中y称为因变量,x称为自变量,u称为中间变量.4. 初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式(四)隐函数若函数的因变量y明显地表示成y f(x)的形式,则称其为显然函数.y x2, y 1n(3x21), y x21 等.设自变量x与因变量y之间的对应法则用一个方程式F(x,y) 0表示,如果存在函数y f(x)(不论这个函数是否能表示成显函数) ,将其代入所设方程,使方程变为恒等式:其中D f为非空实数集.则称函数y f(x)由方程F(x,y) 0所确定的一个隐函数.如方程x y 1可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即但并不是所有隐函数都可以用x的显函数形式来表示,如e xy x y 0因为y我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如x2 y2 1 0.(五)分段函数有些函数,对于其定义域内的自变量 x 的不同值,不能用一个统一的解析式表 示,而是要用两个或两个以上的式子表示 ,这类函数称为分段函数,如 都是定义在(—X , +^)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.、极限(不在考试大纲内,只需了解即可)极限是微积分的基础• (一) 数列极限按照一定顺序排成一串的数叫做数列 ,如a i ,a 2 a n a n 称为通项. 1 .极限定义【定义】 设数列a n ,当项数n 无限增大时,若通项a n 无限接近某个常数A ,则 称数列a n 收敛于A 或称A 为数列a n 的极限,记作否则称数列a n 发散或lim a n 不存在. 2. 数列极限性质 ° (1)四则极限性质设lim x n a,limy n b ,贝卩nn(2) lim x n a lim x n k ann(3) 若limx n a ,则数列x n 是有界数列.(4) 夹逼定理 设存在正整数N o ,使得n N o 时,数列X n , y n , Z n 满足不等式Z n X ny n .若 lim y n lim 召 a ,则 lim x n a . 利用此定理1可以证明重要极限利用此定理可以证明重要极限(二) 函数的极限 1. x时的极限接近常数A 则称f(x)当X 时以A 为极限,记作当X 或X 时的极限当X 沿数轴正(负)方向趋于无穷大 ,简记X( X )时,f(x)无限接(k 为任意正整数)lim 1(,是一个无理数)(5)单调有界数列必有极限设数列X n 有界,且存在正整数N 。
微积分基本公式和基本定理
(14) sh xdx ch x C
sh x ex ex 2
ch x ex ex 2
(15) ch xdx sh x C
23
例11. 求
dx . x3 x
解: 原式 =
x
4 3
dx
x
4 3
1
4 3
1
C
3x13 C
例12 求
sin
x 2
cos
x 2
dx
.
解: 原式=
xdx,
于是
2 e xdx
2
xdx.
2
2
0
0
例9
证明2e
1 4
2 e x2 xdx 2e2 .
0
2
第二节
第三章
微积分基本公式与基本定理
一、微积分基本公式 二、微积分基本定理 三、不定积分
3
一、微积分基本公式
在变速直线运动中, s(t) v(t) 物体在时间间隔
内经过的路程为 vT2 (t)d t s(T2 ) s(T1 ) T1
定理 2.1 ( Newton Leibniz公式)
b f (x)dx F(b) F(a) F(x) b
a
a
----微积分基本公式
4
注意
当a
b时, b a
f
(
x)dx
F
(b)
F
(a ) 仍成立.
解(1)
6
例2
求
2 0
(
2
cos
x
sin
x
1)dx
.
解
原式
2sin
x
cos
x
x2 0
微积分基本公式和基本定理
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。
微积分基本公式
微积分公式tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r=1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1Γ(x) = ⎰∞0t x-1e -t d t = 2⎰∞0t 2x-12t e-d t = ⎰∞)1(ln tx-1d tβ(m , n ) =⎰10x m -1(1-x)n -1d x =2⎰20sin π2m -1x cos 2n -1xd x = ⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写小写读音 大写 小写读音 大写 小写读音Α α alpha Ι ιiota Ρ ρrho Β β beta Κ κ kappa Σ σ, ? sigmaΓ γ gamma Λ λ lambda Τ τtau Δ δ delta Μ μ mu Υ υ upsilonΕ ε epsilon Ν ν nu Φ φphi Ζ ζ zeta Ξ ξ xi Χ χkhi Η η eta Ο ο omicron Ψ ψpsi Θθtheta Ππpi Ω ω omega倒数关系: sin θcsc θ=1; tan θcot θ=1; cos θsec θ=1商数关系: tan θ= θθcos sin ; cot θ= θθsin cos平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ? 顺位高d 顺位低 ;0*? =∞1 *? = ∞∞= 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值 几何平均数(Geometric mean) 调和平均数(Harmonic mean) 平均差(Average Deviatoin)变异数(Variance)nX Xni21)(-∑ or1)(21--∑n X Xni标准差(Standard Deviation)nX Xni21)(-∑ or1)(21--∑n X Xni分配 机率函数f (x ) 期望值E(x )变异数V(x )动差母函数m (t )1 000 000 000 000 000 000 000 000 10 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 第一章 函数、极限连续(予备知识)重点:函数性质与函数的图形函数是微积分的研究对象,因此在课程的开始,要先对函数部分加以复习,要求对函数的概念、表示方法、性质及基本初等函数的图形有较好的理解与掌握.极限是微积分的基础,故需要介绍一下,因为不考试,故不作复习重点,不作任何要求,也不做练习题.一、函数(一)函数的概念 1.函数的定义【定义 1.1】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作.),(D x x f y ∈=x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.2.函数的表示方法函数的表示方法一般有三种:解析法、表格法、图示法.这三种表示方法各有其特点,表格法和图示法直观,解析法便于运算,在实际中经常结合使用.3.函数定义域的求法由解析式表示的函数,其定义域是指使该函数表达式有意义的自变量取值的全体,这种定义域称为自然定义域,自然定义域通常不写出,需要我们去求出,因此必须掌握一些常用函数表达式有意义的条件.(二)函数的几何特性 1.单调性(1)【定义1.2】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.类似可以定义单调递减或严格单减. 单调递增或单调递减函数统称为单调函数.(2)可以用定义证明函数的单调性,对几个常用的基本初等函数,可以根据熟悉的几何图形,找出其单调区间.对一般的初等函数,我们将利用导数来求其单调区间.2.有界性【定义 1.3】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义 1.4】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.有界函数的图形完全落在两条平行于x 轴的直线之间.函数是否有界与定义域有关,如nx y 1=(0,+∞)上无界,但在[1,e]上是有界的. 有界函数的界是不惟一的,即若对任意D x ∈,都有|()|f x ≤M ,则也一定有|)(|x f ≤)0,0(>>+a M a M .3.奇偶性【定义 1.5】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律: 设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数; )()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助. 4.周期性【定义 1.6】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.图1-1(三)初等函数 1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα xy ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即xe y =(图1-3)(4)对数函数 )1,0(l o g ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义1.7】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作.),(1R y y f x ∈=-并称其为)(x f y =反函数.习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x f y ∈=-),(1.函数)(x f y =与反函数)(1x fy -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a xlog ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为xy -=(图1-2(b )).3.复合函数【定义 1.8】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若f f R D 非空,则称函数{}f D x x x x f y ∈∈=)(|)],([ϕϕ为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:f D x x f x F ∈=,0))(,(其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数.如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即]1,0[,)1()(2∈-==x x x f y但并不是所有隐函数都可以用x 的显函数形式来表示,如0=++y x exy因为y 我法用初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如0122=++y x .(五)分段函数有些函数,对于其定义域内的自变量x 的不同值,不能用一个统一的解析式表示,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如⎩⎨⎧>≤-=⎩⎨⎧≤->+=.0,1,0,1)(.0,1,0,1)(2x nx x e x g x x x x x f x 都是定义在(-∞,+∞)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限(不在考试大纲内,只需了解即可)极限是微积分的基础. (一)数列极限按照一定顺序排成一串的数叫做数列,如n n a a a a ⋅ 21,称为通项. 1.极限定义【定义1.9】 设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作A a n n =∞→lim否则称数列{}n a 发散或n n a ∞→lim 不存在. 2.数列极限性质(1)四则极限性质 设b y a x n n n n ==∞→∞→lim ,lim ,则).0(lim lim lim .lim lim lim .lim lim )(lim .lim lim ≠===⨯=⋅±=±=±==∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→∞→b b a y x y x ab y x y x b a y x y x ca x c cx n n n nnn n n n n n n n n n n n n n n n n n n n(2)a x a x k n n n n =⇔=+∞→∞→lim lim (k 为任意正整数)..lim lim lim 122a x x a x n n n n n n ==⇔=+∞→∞→∞→(3)若a x n n =∞→lim ,则数列{}n x 是有界数列.(4)夹逼定理 设存在正整数0N ,使得0N n ≥时,数列{}{}{}n n n z y x ,,满足不等式n n n y x z ≤≤.若a z y n n n n ==∞→∞→lim lim ,则a x n n =∞→lim .利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim (e =2.718,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n nn =⎪⎭⎫⎝⎛+∞→11lim (e =2.718,是一个无理数). (二)函数的极限 1.∞→x 时的极限【定义1.10】 设函数)(x f 在)0(||>≥a ax 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作.)(lim A x f n =∞→当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作.)(lim )(lim )(lim ).)(lim ()(lim A x f A x f A x f A x f A x f n n n n n ===⇔===+∞→+∞→∞→-∞→+∞→3.0x x →时的极限【定义 1.11】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作.)(lim 0A x f x x =→4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0.)(lim )(lim )(lim 0A x f A x f A x f x x x x x x ===⇔=-+→→→(三)函数极限的性质 1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 0则A=B . 2.局部有界性 若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻域内有)(x f >0(或)(x f <0=。