精品(暑假一日一练)2019年七年级数学上册第2章整式的加减2.2.2去括号与添括号习题

合集下载

(暑假一日一练)2018年七年级数学上册 第2章 整式的加减 2.2.2 去括号与添括号习题 (新版)新人教版

(暑假一日一练)2018年七年级数学上册 第2章 整式的加减 2.2.2 去括号与添括号习题 (新版)新人教版

2.2.2 去括号与添括号学校:___________姓名:___________班级:___________一.选择题(共15小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c4.﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.下列计算中正确的是()A.﹣3(a+b)=﹣3a+b B.﹣3(a+b)=﹣3a﹣b C.﹣3(a+b)=﹣3a+3b D.﹣3(a+b)=﹣3a﹣3b6.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c) D.(﹣c)﹣(b﹣a)7.下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1 B.2 C.3 D.48.下列去括号错误的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b﹣c C.2(a﹣b)=2a﹣b D.﹣(a﹣2b)=﹣a+2b9.把a﹣2(b﹣c)去括号正确的是()A.a﹣2b﹣c B.a﹣2b﹣2c C.a+2b﹣2c D.a﹣2b+2c10.下列各式:①a﹣(b﹣c)=a﹣b+c;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2;③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y;④﹣3(x﹣y)+(a+b)=﹣3x﹣3y+a﹣b由等号左边变到右边变形错误的有()A.1个B.2个C.3个D.4个11.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是()A.3b3﹣(2ab2+4a2b﹣a3) B.3b3﹣(2ab2+4a2b+a3)C.3b3﹣(﹣2ab2+4a2b﹣a3)D.3b3﹣(2ab2﹣4a2b+a3)12.下列变形中,不正确的是()A.a﹣b﹣( c﹣d )=a﹣b﹣c﹣d B.a﹣(b﹣c+d )=a﹣b+c﹣dC.a+b﹣(﹣c﹣d )=a+b+c+d D.a+(b+c﹣d )=a+b+c﹣d13.下列各式与代数式﹣b+c 不相等的是()A.﹣(﹣c﹣b)B.﹣b﹣(﹣c)C.+(c﹣b) D.+[﹣(b﹣c)]14.下列等式中成立的是()A.a﹣(b+c)=a﹣b+c B.a+(b+c)=a﹣b+cC.a+b﹣c=a+(b﹣c)D.a﹣b+c=a﹣(b+c)15.﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z二.填空题(共10小题)16.去括号a﹣(b﹣2)= .17.化简:﹣[﹣(﹣5)]= .18.化简(2xy)﹣(x+3y)的结果是.19.在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣().20.﹣[a﹣(b﹣c)]去括号应得.21.已知1﹣()=1﹣2x+xy﹣y2,则在括号里填上适当的项应该是.22.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.23.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣().24.x2﹣2x+y=x2﹣().25.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.三.解答题(共4小题)26.观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x ﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣2,求﹣1+a2+b+b2的值.27.先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)28.阅读下面材料:计算:1+2+3+4+…+99+100 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)29.将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.参考答案与试题解析一.选择题(共15小题)1.解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.2.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.3.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.4.解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.解:﹣3(a+b)=﹣3a﹣3b,故选:D.6.解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.7.解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.8.解:A、a﹣(b+c)=a﹣b﹣c,故本选项不符合题意;B、a+(b﹣c)=a+b﹣c,故本选项不符合题意;C、2(a﹣b)=2a﹣2b,故本选项符合题意;D、﹣(a﹣2b)=﹣a+2b,故本选项不符合题意;故选:C.9.解:a﹣2(b﹣c)=a﹣2b+2c.故选:D.10.解:①a﹣(b﹣c)=a﹣b+c,正确;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,故此选项错误;③﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,故此选项错误;④﹣3(x﹣y)+(a+b)=﹣3x+3y+a+b,故此选项错误;故选:C.11.解:因为3b3﹣2ab2+4a2b﹣a3=3b3﹣(2ab2﹣4a2b+a3);故选:D.12.解:A、a﹣b﹣( c﹣d )=a﹣b﹣c+d,此选项错误;B、a﹣(b﹣c+d )=a﹣b+c﹣d,此选项正确;C、a+b﹣(﹣c﹣d )=a+b+c+d,此选项正确;D、a+(b+c﹣d )=a+b+c﹣d,此选项正确;故选:A.13.解:因为﹣(﹣c﹣b)=c+b,与﹣b+c不相等,故选项A正确;﹣b﹣(﹣c)=﹣b+c,与﹣b+c相等,故选项B错误;+(c﹣b)=c﹣b,与﹣b+c相等,故选项C错误;+[﹣(b﹣c)]=﹣(b﹣c)=﹣b+c,与﹣b+c相等,故选项D错误;故选:A.14.解:A、应为a﹣(b+c)=a﹣b﹣c,故本选项错误;B、应为a+(b+c)=a+b+c,故本选项错误;C、a+b﹣c=a+(b﹣c),正确D、应为a﹣b+c=a﹣(b﹣c),故本选项错误.故选:C.15.解:﹣[x﹣(y﹣z)]=﹣(x﹣y+z)=﹣x+y﹣z.故选:A.二.填空题(共10小题)16.解:原式=a﹣b+2.故答案为:a﹣b+2.17.解:﹣[﹣(﹣5)]=﹣5.故答案为:﹣5.18.解:原式=2xy﹣x﹣3y故答案为:2xy﹣x﹣3y.19.解:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by).故答案是:ay﹣by.20.解:原式=﹣a+(b﹣c)=﹣a+b﹣c.故答案为:﹣a+b﹣c.21.解:1﹣(1﹣2x+xy﹣y2)=1﹣1+2x﹣xy+y2=2x﹣xy+y2,故答案为:2x﹣xy+y2.22.解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b ﹣c+2d).故答案为:a﹣(3b﹣c+2d).23.解:x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).故答案为:y2﹣8y+4.24.解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.25.解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.三.解答题(共4小题)26.解:∵a2+b2=5,1﹣b=﹣2,∴﹣1+a2+b+b2=﹣(1﹣b)+(a2+b2)=﹣(﹣2)+5=7.27.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.28.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.29.解:(1)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,得到4x+3x﹣x=4x+(3x﹣x),4x﹣3x+x=4x﹣(3x﹣x),添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;(2)①﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2+(3x3﹣2);②﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2﹣(﹣3x3+2);③它是五次四项式,按x的降幂排列是﹣3x5+3x3﹣4x2﹣2.。

人教版七年级上册数学第二章 2.2整式的加减 第2课时 去括号 同步训练

人教版七年级上册数学第二章 2.2整式的加减 第2课时  去括号  同步训练

七年级上册第二章2.2第2课时《去括号》同步训练一、选择题1.下列计算正确的是( )A .a +(﹣b +c ﹣3d )=a ﹣b +c ﹣3dB .a ﹣(﹣2b +c ﹣d )=a +2b ﹣c ﹣dC .a ﹣2(﹣2b +4c ﹣3d )=a +4b +8c ﹣6dD .a ﹣2(﹣3b +c ﹣7d )=a +6b ﹣c +7d2.下列去括号的过程(1)a +(b ﹣c )=a +b ﹣c ;(2)a ﹣(b +c )=a ﹣b ﹣c ;(3)a ﹣(b ﹣c )=a ﹣b ﹣c ;(4)a ﹣(b ﹣c )=a ﹣b +c .其中,运算结果正确的个数为( )A .1B .2C .3D .43.减去-2x 等于2341x x -++的多项式是( )A .2321x x -++B .2321x x --C .231x -+D .231x +4.长方形的一边长等于3m+2n,其邻边长比它长m-n,则这个长方形的周长是( )A .14m+6nB .7m+3nC .4m+nD .8m+2n5.下列去括号正确的是( )A .x ﹣(5y ﹣3x )=x ﹣5y ﹣3xB .5x ﹣[2y ﹣(x ﹣z )]=5x ﹣2y +x ﹣zC .2x +(﹣3y +7)=2x ﹣3y ﹣7D .a ﹣3(b ﹣c +d )=a ﹣3b ﹣3c ﹣3d6.下列去括号运算正确的是( )A .﹣(3x ﹣2y +1)=3x ﹣2y +1B .(2x ﹣3y )﹣(5z ﹣1)=2x ﹣3y +5z ﹣1C .﹣(3a +2b )﹣(c +d )=﹣3a ﹣2b ﹣c ﹣dD .﹣(a ﹣2b )﹣(2c ﹣d )=﹣a +2b ﹣2c ﹣d7.已知a +2b =5,则代数式3(2a ﹣3b )﹣4(a ﹣3b +1)+b 的值为( )A .14B .10C .6D .不能确定 8.化简:﹣[﹣(﹣a 2)﹣b 2]﹣[+(﹣b 2)]的结果是( )A .2b 2﹣a 2B .﹣a 2C .a 2D .a 2﹣2b 29.a b c -++的相反数是( ).A .a b c ++B .a b c ---C .a b c -++D .a b c -- 10.化简1132232x y y x ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭的结果是( )A .3yB .23x y --C .35x y --D .37x y --11.下列各代数式中与代数式(3)a b c --的值相等的是( )A .(3)a b c +-+B .(3)a b c +-C .(3)a b c ++D .(3)a b c +--12.已知一个多项式的 2 倍与3x 2+ 9x 的和等于-x 2+5x -2,则这个多项式是( )A .-4x 2-4x -2B .-2x 2-2x -1C .2x 2+14x -2D .x 2+7x -1二、填空题1.去括号(1)()a b c d +-+=________; (2)()a b c d --+=_________;(3)52(34)a b c d -+-=_________; (4)(23)a m b c d +-+=__________.2.如果x =﹣2,y =,那么代数式(4x 2﹣3xy )﹣3(x 2﹣xy )的值是 .3.有四个连续偶数,其中最小的一个是2n ,其余三个是 ,这四个连续偶数的和是 .4.一个多项式加上﹣2a +6等于2a 2+a +3,则这个多项式是 .5.一个长方形的长是2a ,宽是a +1,则这个长方形的周长为 .6.已知代数式()()22223a a b a a mb +--++的值与b 无关,则m 的值是________. 7.有理数a ,b ,c 在数轴上的位置如图所示,化简a -a b +-c a -=________.8.已知代数式A =2x 2+4xy ﹣3y +3,B =x 2﹣xy +2,若A ﹣2B 的值与y 的取值无关,则x 的值为 .9.若A =x 2+3xy +y 2,B =x 2﹣3xy +y 2,则A ﹣[B +2B ﹣(A +B )]化简后的结果为 (用含x 、y 的代数式表示).10.5x 2﹣4x +3﹣( x 2+ )=3x 2﹣4x ﹣7.三、解答题1.化简(1)()()2234322124x x x x -++-- (2)()()2222282334a b a b ab a b ab +---(3)3(a 2-ab)-5(ab +2a 2-1); (4)(3a -2a 2)-[5a -13(6a 2-9a)-4a 2].2.化简求值:(1)2(2a ﹣3b )+3(2b ﹣3a ),其中a =﹣2;(2)2(a 2﹣ab )﹣2a 2+3ab ,其中a ,b 互为倒数;(3)﹣3x ﹣2x 2+5﹣3x 2﹣2x ﹣5,其中x 2+x =﹣2.3.(1)求代数式323557x x x +--与322524x x x -+-+的和;(2)求代数式32311242a a -+与325328109a a --的差.4.嘉淇准备完成题目:化简:()()2268652Wx x x x ++-++,发现系数W 印刷不清楚.(1)他把W 猜成7,请你化简:()()22768652x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中W 是几?5.图a 是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)你认为图b 中的阴影部分的正方形的边长等于 ;(2)请用两种不同的方法求图b 中阴影部分的面积;(3)观察图b ,你能写出下列三个代数式之间的等量关系吗?代数式:(m +n )2,(m ﹣n )2,mn ;(4)若x ,y 都是有理数,x ﹣y =4,xy =5,求x +y 的值.。

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
六、拓展与延伸
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。

人教版七年级数学上册第2章 2.2.2 去括号 培优训练 (含答案)

人教版七年级数学上册第2章    2.2.2  去括号   培优训练  (含答案)

人教版七年级上册第二章整式的加减2.2.2 去括号培优训练一.选择题(共10小题,3*10=30)1.化简-2a +(2a -1)的结果是( )A .4a -1B .-4a -1C .1D .-12.三个连续奇数,最小的一个是2n +1(n 为自然数),则这三个连续奇数的和为( )A .6n +6B .2n +9C .6n +9D .6n +33.长方形的一边等于3m +2n ,另一边比它大m -n ,则这个长方形的周长是( )A .14m +6nB .7m +3nC .4m +nD .6n +34.下列运算正确的是( )A .-2(3x -1)=-6x -1B .-2(3x -1)=-6x +1C .-2(3x -1)=-6x -2D .-2(3x -1)=-6x +25. 化简14(-4x +8)-3(4-5x)的结果是( ) A .-16x -10 B .14x -10C .56x -40D .-16x -46.一个长方形的周长为4m ,一边长为m -n ,则另一边长为( )A .3m +nB .2m +2nC .m +nD .m +3n7.化简[x -(y -z)]-[(x -y)-z]得( )A .2yB .2zC .-2yD .-2z8.下列各式与x3-5x2-4x+9相等的是( )A.(x3-5x2)-(-4x+9)B.x3-5x2-(4x+9)C.-(-x3+5x2)-(4x-9)D.x3+9-(5x2-4x)9.有理数a,b在数轴上的位置如图所示,则|a+b|-2|a-b|化简后为( )A.b-3a B.-2a-bC.2a+b D.-a-b10. 已知x-2y=3,则代数式6-2x+4y的值为()A.0 B.-1C.-3 D.3二.填空题(共8小题,3*8=24)11.去括号:(1)a+(b-c)=___________;(2)(a-b)+(c-d)=_______________;(3)(a+b)-(-c+d)=_______________.12. 去括号,合并同类项:-3(a+b)+(2a-b)=_________________=_________.13. 某校三个班开展了为灾区献爱心捐款活动,一班捐了x元,二班比一班捐的2倍少15元,三班捐的比一班捐的一半多32元,则这三个班一共捐款____________元.14.(1)若m,n互为相反数,则8m+(8n-3)的值是____;(2)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为__.15.如图所示是两种长方形铝合金窗框,已知窗框的长都是y米,窗框宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个,则共需铝合金_________________米.16.如果当x=1时,代数式2ax3+3bx+4的值是5,那么当x=-1时,代数式2ax3+3bx +4的值是____.17.若a2-ab=9,且ab-b2=6,则a2-b2=____,a2-2ab+b2=____.18. 已知x +4y =-1,xy =5,则(6xy +7y)+[8x -(5xy -y +6x)]的值是___________..三.解答题(共7小题,46分)19. (6分) 化简:(1)(x +2y)-(-2x +y);(2)(-b +3a)-2(a -b);(3)3a 2+2(a 2-a)-4(a 2-3a);(4)2(-3a 2+2a -1)-2(a 2-3a -5).20. (6分) 先化简,再求值:(1)(4x 2-3x)-2(x 2+2x -1)-(x 2+x -1),其中x =-3;(2)-3(13n -mn)+2(mn -12m),其中m +n =-3,mn =2.21. (6分) 一艘轮船在武汉和南京两港之间航行,若轮船在静水中的航速为a千米/时,水流速度为12千米/时.(1)轮船顺流航行5小时的行程是多少?(2)轮船逆流航行4小时的行程是多少?(3)两个行程相差多少?22. (6分) 嘉淇准备完成题目:化简:(■x2+6x+8)-(6x+5x2+2).发现系数“■”印刷不清楚.(1)他把“■”猜成3,请你化简:(3x2+6x+8)-(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“■”是几?23. (6分) 观察下列各式:(1)-a+b=-(a-b);(2)2-3x=-(3x-2);(3)5x+30=5(x+6);(4)-x-6=-(x+6).探索以上四个式子中括号的变化情况,它和去括号法则有什么不同?利用你探索出来的规律,解答题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.24. (8分) 化简求值:(1)2(a2-ab)-3(2a2-ab),其中a=-2,b=3;(2)a-2[3a+b-2(a+b)],其中a=-20,b=10.25. (8分) 有理数a,b,c在数轴上的位置如图所示,化简:|a+c|-|a-b-c|+2|b-a|-|b+c|.参考答案1-5DCADB 6-10CBCAA11.a +b -c ,a -b +c -d ,a +b +c -d12. -3a -3b +2a -b ,-a -4b13. (72x +17) 14. -3,615. (16x +14y)16. 317. 15,318. 319. 解:(1)原式=x +2y +2x -y =3x +y(2)原式=-b +3a -2a +2b =a +b(3)原式=3a 2+2a 2-2a -4a 2+12a =a 2+10a(4)原式=-6a 2+4a -2-2a 2+6a +10=-8a 2+10a +820. 解:(1)原式=x 2-8x +3,当x =-3时,原式=36(2)原式=5mn -m -n ,当m +n =-3,mn =2时,原式=1321. 解:(1)5(a +12)千米(2)4(a -12)千米(3)5(a +12)-4(a -12)=(a +108)(千米)22. 解:(1)(3x 2+6x +8)-(6x +5x 2+2)=3x 2+6x +8-6x -5x 2-2=-2x 2+6(2)设“■”是a ,则原式=(ax 2+6x +8)-(6x +5x 2+2)=ax 2+6x +8-6x -5x 2-2=(a -5)x 2+6,∵标准答案的结果是常数,∴a -5=0,解得a =523. 解:它与去括号正好是相反的过程,添加括号后,括号前是“+”号,括到括号里各项都不变符号;括号前面是“-”号,括到括号里各项都改变符号.所以:-1+a 2+b +b 2=-(1-b)+(a 2+b 2)=-(-2)+5=724. 解:(1)原式=2a 2-2ab -6a 2+3ab =-4a 2+ab.当a =-2,b =3时,原式=-4×(-2)2+(-2)×3=-22(2)原式=a -2[3a +b -2a -2b]=a -2(a -b)=a -2a +2b =-a +2b.当a=-20,b=10时,原式=-(-20)+2×10=4025. 解:由数轴可知:a+c<0,a-b-c>0,b-a<0,b+c<0.所以原式=-(a+c)-(a-b -c)-2(b-a)+(b+c)=-a-c-a+b+c-2b+2a+b+c=c。

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(30)

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(30)

章节测试题1.【答题】去括号并合并同类项:3(a-b)-(2a-b)=______.【答案】a-2b【分析】【解答】2.【题文】先去括号,再合并同类项:(1)-4x-(x-1);(2)3(ab-2c)+(-ab+3c).【答案】(1)-5x+1(2)2ab-3c【分析】【解答】3.【题文】多项式3x2-2x+1减去一个多项式A的差是4x2-3x+4,求这个多项式A.【答案】A=-x2+x-3【分析】【解答】4.【题文】先去括号,再合并同类项:(1)7(p-2q)-2(-3p-7q);(2)4(xyz-2xy)-(xyz-3z)+3(2xy-z).【答案】(1)13p(2)3xyz-2xy【分析】【解答】5.【题文】若x+y=3,xy=2,求(5x+2)-(3xy-5y)的值.【答案】11【分析】【解答】6.【题文】小明在计算一个多项式加上5ab+4bc-3ac,不小心看成减去5ab+4bc-3ac,算出结果为3ab-4bc+5ac,试求出原题目的正确答案.【答案】13ab+4bc-ac【分析】【解答】7.【答题】多项式-x2+2y2与3x2+2y2的和为______.【答案】2x2+4y2【分析】【解答】8.【答题】从多项式3a2+2b2里减去7b2-2a2+3,差是______.【答案】5a2-5b2-3【分析】【解答】9.【题文】化简:.【答案】-3x+y2【分析】【解答】10.【题文】化简:2(3xy2-2x2y)-3(2xy2-x2y)+4(xy2-2x2y).【答案】4xy2-9x2y【分析】【解答】11.【答题】已知A=2a2-3a,B=2a2-a-1.当a=-4时,A-B=()A. 8B. 9C. -9D. -7 【答案】B【分析】【解答】12.【答题】比2a2-3a-7少3-2a2的多项式是()A. -3a-4B. -4a2+3a+10C. 4a2-3a-10D. -3a-10【答案】C【分析】【解答】13.【答题】已知某三角形的第一条边的长为(2a-6)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少bcm,则这个三角形的周长为()A. (7a-4b)cmB. (7a-3b)cmC. (9a-4b)cmD. (9a-3b)cm【答案】C【分析】【解答】14.【答题】如果a,b互为相反数,则(3a-2b)-(2a-3b)=______.【答案】0【分析】【解答】15.【答题】(-3a2+2b-c)-______=4a2-2b+c.【答案】-7a2+4b-2c【分析】【解答】16.【题文】一个多项式与2a2-3b+c的差是4a2+3b+c,求这个多项式.【答案】6a2+2c【分析】【解答】17.【题文】化简:-3(a+b-c)-(a+b)+2(-a-c).【答案】-6a-4b+c【分析】【解答】18.【题文】小明去商店买了10元一支的钢笔a支,5元一本的笔记本b本和若干文具盒,共花了(30a+20b)元钱,小明买文具盒花了多少钱?【答案】(20a+15b)元【分析】【解答】19.【题文】如图,将边长为a的正方形剪去两个小长方形得到S图案,再将这两个小长方形拼成一个新的长方形,求新的长方形的周长.【答案】4a-8b【分析】【解答】20.【题文】已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.(1)求多项式A;(2)求出3A+B的正确结果;(3)当时,求3A+B的值.【答案】(1)-3x2-15x+19(2)-4x2-42x+53(3)【分析】【解答】。

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷(解析版)

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷(解析版)

2019年人教版七年级上册数学《第2章整式的加减》单元测试卷一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.24.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.45.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.16.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是38.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为千米.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=.14.和统称为整式.15.单项式﹣的次数是.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.2019年人教版七年级上册数学《第2章整式的加减》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列各式符合代数式书写规范的是()A.a8B.C.m﹣1元D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、书写形式正确,故本选项正确;C、正确书写形式为(m﹣1)元,故本选项错误;D、正确书写形式为x,故本选项错误,故选:B.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式是解答此题的关键.2.七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m【分析】根据全班人数=女生人数÷女生所占百分比即可列式求解.【解答】解:∵七年级1班有女生m人,女生占全班人数的40%,∴全班人数是.故选:A.【点评】本题考查了列代数式,列代数式时,要注意语句中的关键字,根据题意找出数据之间的联系,并准确的用代数式表示出来.3.当x=2时,ax+3的值是5;当x=﹣2时,代数式ax﹣3的值是()A.﹣5B.1C.﹣1D.2【分析】由当x=2时,代数式ax+3的值为5就可得到一个关于a的方程,求出a的值,再把a 的值及x=﹣2代入代数式就可求出代数式的值.【解答】解:根据题意得2a+3=5,解得:a=1,把a=1以及x=﹣2代入,得:ax﹣3=﹣2﹣3=﹣5.故选:A.【点评】此题的关键是据已知条件求出a的值,再根据已知条件求代数式的值.4.若﹣3x m y2与2x3y2是同类项,则m等于()A.1B.2C.3D.4【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【解答】解:因为﹣3x m y2与2x3y2是同类项,所以m=3.故选:C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.5.如果单项式x a+b y3与5x2y b的和仍是单项式,则|a﹣b|的值为()A.4B.3C.2D.1【分析】由题意可知x a+b y3与5x2y b是同类项,然后分别求出a与b的值,最后代入求值即可.【解答】解:由题意可知:a+b=2,3=b,∴a=﹣1,b=3,∴原式=|﹣1﹣3|=4,故选:A.【点评】本题考查了合并同类项法则和同类项定义的应用,关键是能根据题意得出方程a+b=2,3=b.6.下列说法正确的是()A.单项式是整式,整式也是单项式B.25与x5是同类项C.单项式的系数是,次数是4D.是一次二项式【分析】根据整式、同类项、单项式和多项式的概念,紧扣概念逐一作出判断.【解答】解;A、整式包括单项式和多项式,所以单项式是整式,但整式不一定是单项式,故本选项错误;B、25与x5指数相同,但底数不同,故本选项错误;C、单项式的系数是,次数是4,正确;D、中的不是整式,故本选项错误.故选:C.【点评】主要考查了整式的有关概念.要正确掌握整式、同类项、单项式和多项式的概念.7.下列关于单项式的说法中,正确的是()A.系数是2,次数是2B.系数是﹣2,次数是3C.系数是,次数是2D.系数是,次数是3【分析】直接利用单项式次数与系数确定方法分析得出答案.【解答】解:单项式的系数是,次数是3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.8.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选:C.【点评】此题主要考查了如何确定多项式的项数和次数,难点是通过计算确定多项式的次数.9.一个多项式A与多项式B=2x2﹣3xy﹣y2的差是多项式C=x2+xy+y2,则A等于()A.x2﹣4xy﹣2y2B.﹣x2+4xy+2y2C.3x2﹣2xy﹣2y2*D.3x2﹣2xy【分析】首先表示出A=B+C,然后去括号合并同类项.【解答】解:A=B+C=(2x2﹣3xy﹣y2)+(x2+xy+y2)=2x2﹣3xy﹣y2+x2+xy+y2=3x2﹣2xy.故选:D.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.合并同类项时把系数相加减,字母与字母的指数不变.10.x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3B.1C.﹣2D.2【分析】原式去括号合并得到最简结果,根据结果与x的值无关,即可确定出a与b的值,进而求出﹣a+b的值.【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.二.填空题(共5小题)11.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.12.一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【分析】根据题意先得轮船在逆水中航行的速度为“静水中的速度﹣水流速度”,再得3小时航行的路程.【解答】解:由题意得,该轮船在逆水中航行3小时的路程为3(50﹣a)千米.【点评】本题考查了代数式的列法,正确理解题意是解决这类题的关键.13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=﹣4.【分析】根据a与b互为相反数,c与d互为倒数,可以得到:a+b=0,cd=1.代入求值即可求解.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∴(a+b)3﹣4(cd)5=0﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了相反数,倒数的定义,正确理解定义是关键.14.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.15.单项式﹣的次数是3.【分析】根据单项式的次数的定义直接求解.【解答】解:单项式﹣的次数为3.故答案为3.【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.三.解答题(共4小题)16.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.17.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【分析】第一个窗户射进的阳光的面积=长方形面积﹣半径为的一个半圆的面积;第二个窗户射进的阳光的面积=长方形面积﹣半径为的2个圆的面积.【解答】解:第一个窗户射进的阳光的面积为ab﹣×π()2=ab﹣第二个窗户射进的阳光的面积为ab﹣2×π()2=ab﹣∵>∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.要能根据图形得到窗户射进的阳光的面积的计算公式.18.已知a,b为常数,且三个单项式4xy2,axy b,﹣5xy相加得到的和仍然是单项式.那么a和b 的值可能是多少?说明你的理由.【分析】因为4xy2,axy b,﹣5xy相加得到的和仍然是单项式,它们y的指数不尽相同,所以这几个单项式中有两个为同类项.那么可分情况讨论:(1)若axy b与﹣5xy为同类项,则b=1,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0;(2)若4xy2与axy b为同类项,则b=2,这两个式子相加后再加一个式子仍是单项式,说明这两个式子相加得0.【解答】解:(1)若axy b与﹣5xy为同类项,∴b=1,∵和为单项式,∴;(2)若4xy2与axy b为同类项,∴b=2,∵axy b+4xy2=0,∴a=﹣4,∴.【点评】本题考查的知识点是:三个单项式相加得到的和仍然是单项式,它们y的指数不尽相同,这几个单项式中有两个为同类项,并且相加得0.19.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出答案.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点评】此题主要考查了多项式以及绝对值,正确得出m的值是解题关键.。

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

2.2 整式的加减一.填空题1.去括号:﹣2(m﹣3)=.2.若a3b y与﹣2a x b是同类项,则y x=.3.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么2a﹣b=.4.计算(1﹣2a)﹣(2﹣2a)=.5.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.6.若﹣3x m y3与2x2y n是同类项,则|m﹣n|的值是7.若mn=m﹣3,则mn+4m+8﹣5mn=.8.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.9.已知﹣a=5,则﹣[+(﹣a)]=.二.选择题10.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab11.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.012.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣413.已知:|a|=2,|b|=3,且|a﹣b|=b﹣a,则(8a2b﹣7b2)﹣(4a2b﹣5b2)=()A.30B.﹣66C.30或﹣66D.﹣30或6614.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a215.下列各运算中,计算正确的是()A.4xy+xy=5xyB.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy16.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x317.若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.1118.给出下列结论:①单项式﹣的系数为﹣;②x与y的差的平方可表示为x2﹣y2;③化简(x+)﹣2(x﹣)的结果是﹣x+;④若单项式ax2y n+1与﹣ax m y4的差是同类项,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个19.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2B.4C.﹣2D.﹣420.若A=x2y﹣2xy,B=xy2﹣3xy,则计算3A﹣2B的结果是()A.2x2y B.3x2y﹣2xy2C.x2y D.xy221.化简m3+m3的结果等于()A.m6B.2m6C.2m3D.m922.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y23.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+424.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5三.解答题25.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.26.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.27.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.28.(1)设A=2a2﹣a,B=a2+a,若a=- ,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.参考答案一.填空题1.﹣2m+6;2.1;3.﹣3;4.﹣1;5.5x﹣2y;6.1;7.20;8.﹣或;9.﹣5;二.选择题10-24:CACAA ACDCA BCCBC三.解答题25.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.26.解:原式=4x2y-(6xy-12xy+6-x2y-1)=4x2y-(-6xy-x2y+5)=4x2y+6xy+x2y-5=5x2y+6xy-5当x=2,y=−时,原式=5×4×(−)+6×2×(−=-10-6-5=-21;27.解:(1)2A-3B=2(3x2+3y2-2xy)-3(xy-2y2-2x2)=6x2+6y2-4xy-3xy+6y2+6x2=12x2+12y2-7xy;(2)由题意可知:2x-3=±1,y=±3,∴x=2或1,y=±3,由于|x-y|=y-x,∴y-x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)-7xy=12(x2+2xy+y2-2xy)-7xy=12(x+y)2-31xy=12×25-31×6=114,当y=3,x=1时,原式=12×16-31×3=99.28.解:(1)A-2B=(2a2-a)-2(a2+a)=2a2-a-2a2-2a=-3a,当a=−)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1-9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1-9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.。

沪科版七年级上册数学第2章 整式加减 去括号、添括号


知1-练
感悟新知
知识点 2 添括号法则
知2-练
在解答本节的问题(1)时,也可以先分别算出甲、乙 两面墙的油漆面积再求和,这时就需添括号,即 (2ab-πr2)+(ab-πr2) =2ab-πr2+ab-πr2 =2ab+ab-πr2-πr2 = (2ab+ab)-(πr2+πr2).
感悟新知
归纳
感悟新知
化简:(3x2+4x)-(2x2+x)+(x2-3x-1). 例3
错解:原式=3x2+4x-2x2+x+x2-3x-1
=2x2+2x-1.
知1-练
错解分析:错解中-(2x2+x)去括号时,只改变了2x2项的 符号,而没有改变x项的符号,这是去括号时 最容易犯的错误之一,做题时一定要注意.
正确解法:原式=3x2+4x-2x2-x+x2-3x-1=2x2-1.
观察 比较4+ (-a+b) =4-a+b, 4-(-a+b) =4+a-b. 在去括号前后,括号里各项的符号有什么变化.
习题2.1第8题, 为这里归纳法 则作了铺垫.
感悟新知
总结
知1-讲
一般地,我们有如下的去括号法则: (1)如果括号前面是“+”号,去括号时把括号连同它 前面的“+”号去掉,括号内的各项都不改变符号. (2)如果括号前面是“-”号,去括号时把括号连同它 前面的“-”号去掉,括号内的各项都改变符号.
知1-讲
(1)所添括号前面是“+”号,括到括号内的各项都不 改变符号; (2)所添括号前面是“-”号,括到括号内的各项都改 变符号.
感悟新知
知2-讲
添括号括号前面是“-”号,括 到括号里的各项都改变符号.
感悟新知
知2-练
将多例项4 式3x2-2x2+4x-5添括号后正确的是( )

人教版七年级数学上册课件 2-2-2 去括号

= 3a + 1 - 2a + 3 = (3a - 2a) + (1 + 3) = a + 4.
+ (x - 3) = x - 3 - (x - 3) = - x + 3
1 + (a - b) = a - b -1 - (a - b) = - a + b
典例精析 例1 化简下列各式.
(1) 8a + 2b + (5a - b); (2) (5a - b) - 3(a2 - 2b). 解:(1) 原式 = 8a + 2b + 5a - b = (8a + 5a) + (2b - b)
画出行程图求解
冻土地段 非冻土地段
格尔木
拉萨
路程:___1_0_0_u___ km _1_2_0_(_u__-_0_._5_) __km
___1_0_0_u_+__1_2_0_(u__-_0_._5_)___km 两地段相差:___1_0_0_u_-__1_2_0_(u__-_0_._5_)____km
- (a 遂宁期末) 下列各题去括号所得结果正确的是
( B) A. x2 - (x - y + 2z) = x2 - x + y + 2z B. x - (-2x + 3y - 1) = x + 2x - 3y + 1 C. 3x - [5x - (x - 1)] =3x - 5x - x + 1 D. (x - 1) - (x2 - 2) = x - 1 - x2 - 2
例3 先化简,再求值: 3y2 - x2 + 2(2x2 - 3xy) - 3(x2 + y2),其中 x = 2,y = -1.

七年数学上册第2章整式的加减22整式的加减第2课时去括号习题课件

接力中,自己负责的一步正确的是( ) A.甲 B.乙 C.丙 D.丁
【点拨】6m+2n-(3m-n)=6m+2n-3m+n, 6m+2n-3m-n=6m-3m+2n-n,6m+3m-2n-n =(6m+3m)-(2n+n),(6m+3m)-(2n-n)=9m-n, 故丁的运算正确.
【答案】D
12.根据实际问题的要求列出式子,再去括号化简,使 结果达到___最__简_____.
2.把a-(-2b+c)去括号,结果正确的是( B ) A.a-2b+c B.a+2b-c C.a-2b-c D.a+2b+c
3.在等式a-( 是( C )
A.b-c C.-b+c
)=a+b-c中,括号内应填的多项式
B.b+c D.-b-c
4.下列各式中,去括号不正确的是( D ) A.x+2(y-1)=x+2y-2 B.x+2(y+1)=x+2y+2 C.x-2(y+1)=x-2y-2 D.x-2(y-1)=x-2y-2
D.x-3
*10.有理数a在数轴上的对应点的位置如图所示,则|a-4| +|a-11|化简后为( A )
A.7
B.-7
C.2a-15
D.无法确定
【点拨】由题意得5<a<10,则a-4>0,a-11<0. 故|a-4|+|a-11|=(a-4)-(a-11)=a-4-a+11=7.
*11.老师在做网络直播课时设计了一个接力游戏,用合作的 方式完成化简整式,规则是:每名同学只能利用前面一 名同学的式子,进一步计算,再将结果传给下一名同学, 最后解决问题.过程如图所示.
解:原式=12x-2x+23y2-32x+13y2=-3x+y2. 当 x=-2,y=23时,原式=-3×(-2)+232=6+49=598.
(2)5(3a2b-ab2)-(ab2+3a2b),其中 a=12,b=13. 解:原式=15a2b-5ab2-ab2-3a2b=12a2b-6ab2. 当 a=12,b=13时, 原式=12×122×13-6×12×132=12×14×13-6×12×19=1-13=23.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

※精品试卷※2.2.2 去括号与添括号学校:___________姓名:___________班级:___________一.选择题(共15小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n3.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c4.﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.下列计算中正确的是()A.﹣3(a+b)=﹣3a+b B.﹣3(a+b)=﹣3a﹣b C.﹣3(a+b)=﹣3a+3b D.﹣3(a+b)=﹣3a﹣3b6.下列各式中与a﹣b﹣c的值不相等的是()A.a﹣(b+c)B.a﹣(b﹣c)C.(a﹣b)+(﹣c) D.(﹣c)﹣(b﹣a)7.下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1 B.2 C.3 D.48.下列去括号错误的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b﹣c C.2(a﹣b)=2a﹣b D.﹣(a﹣2b)=﹣a+2b 9.把a﹣2(b﹣c)去括号正确的是()A.a﹣2b﹣c B.a﹣2b﹣2c C.a+2b﹣2c D.a﹣2b+2c10.下列各式:①a﹣(b﹣c)=a﹣b+c;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2;③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y;④﹣3(x﹣y)+(a+b)=﹣3x﹣3y+a﹣b由等号左边变到右边变形错误的有()A.1个B.2个C.3个D.4个11.不改变多项式3b3﹣2ab2+4a2b﹣a3的值,把后三项放在前面是“﹣”号的括号中,以下正确的是()A.3b3﹣(2ab2+4a2b﹣a3) B.3b3﹣(2ab2+4a2b+a3)C.3b3﹣(﹣2ab2+4a2b﹣a3)D.3b3﹣(2ab2﹣4a2b+a3)12.下列变形中,不正确的是()A.a﹣b﹣( c﹣d )=a﹣b﹣c﹣d B.a﹣(b﹣c+d )=a﹣b+c﹣dC.a+b﹣(﹣c﹣d )=a+b+c+d D.a+(b+c﹣d )=a+b+c﹣d13.下列各式与代数式﹣b+c 不相等的是()A.﹣(﹣c﹣b)B.﹣b﹣(﹣c)C.+(c﹣b) D.+[﹣(b﹣c)]14.下列等式中成立的是()A.a﹣(b+c)=a﹣b+c B.a+(b+c)=a﹣b+cC.a+b﹣c=a+(b﹣c)D.a﹣b+c=a﹣(b+c)15.﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z二.填空题(共10小题)16.去括号a﹣(b﹣2)= .17.化简:﹣[﹣(﹣5)]= .※精品试卷※18.化简(2xy)﹣(x+3y)的结果是.19.在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣().20.﹣[a﹣(b﹣c)]去括号应得.21.已知1﹣()=1﹣2x+xy﹣y2,则在括号里填上适当的项应该是.22.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.23.在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣().24.x2﹣2x+y=x2﹣().25.在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是.三.解答题(共4小题)26.观察下列各式:①﹣a+b=﹣(a﹣b);②2﹣3x=﹣(3x﹣2);③5x+30=5(x+6);④﹣x﹣6=﹣(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1﹣b=﹣2,求﹣1+a2+b+b2的值.27.先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)28.阅读下面材料:计算:1+2+3+4+…+99+100如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)29.将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.※精品试卷※参考答案与试题解析一.选择题(共15小题)1.解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选:B.2.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.3.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.4.解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.解:﹣3(a+b)=﹣3a﹣3b,故选:D.6.解:A、a﹣(b+c)=a﹣b﹣c;B、a﹣(b﹣c)=a﹣b+c;C、(a﹣b)+(﹣c)=a﹣b﹣c;D、(﹣c)﹣(b﹣a)=﹣c﹣b+a.故选:B.7.解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.8.解:A、a﹣(b+c)=a﹣b﹣c,故本选项不符合题意;B、a+(b﹣c)=a+b﹣c,故本选项不符合题意;C、2(a﹣b)=2a﹣2b,故本选项符合题意;D、﹣(a﹣2b)=﹣a+2b,故本选项不符合题意;故选:C.9.解:a﹣2(b﹣c)=a﹣2b+2c.※精品试卷※故选:D.10.解:①a﹣(b﹣c)=a﹣b+c,正确;②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,故此选项错误;③﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,故此选项错误;④﹣3(x﹣y)+(a+b)=﹣3x+3y+a+b,故此选项错误;故选:C.11.解:因为3b3﹣2ab2+4a2b﹣a3=3b3﹣(2ab2﹣4a2b+a3);故选:D.12.解:A、a﹣b﹣( c﹣d )=a﹣b﹣c+d,此选项错误;B、a﹣(b﹣c+d )=a﹣b+c﹣d,此选项正确;C、a+b﹣(﹣c﹣d )=a+b+c+d,此选项正确;D、a+(b+c﹣d )=a+b+c﹣d,此选项正确;故选:A.13.解:因为﹣(﹣c﹣b)=c+b,与﹣b+c不相等,故选项A正确;﹣b﹣(﹣c)=﹣b+c,与﹣b+c相等,故选项B错误;+(c﹣b)=c﹣b,与﹣b+c相等,故选项C错误;+[﹣(b﹣c)]=﹣(b﹣c)=﹣b+c,与﹣b+c相等,故选项D错误;故选:A.14.解:A、应为a﹣(b+c)=a﹣b﹣c,故本选项错误;B、应为a+(b+c)=a+b+c,故本选项错误;C、a+b﹣c=a+(b﹣c),正确D、应为a﹣b+c=a﹣(b﹣c),故本选项错误.故选:C.15.解:﹣[x﹣(y﹣z)]=﹣(x﹣y+z)=﹣x+y﹣z.故选:A.二.填空题(共10小题)16.解:原式=a﹣b+2.故答案为:a﹣b+2.17.解:﹣[﹣(﹣5)]=﹣5.故答案为:﹣5.18.解:原式=2xy﹣x﹣3y故答案为:2xy﹣x﹣3y.19.※精品试卷※解:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by).故答案是:ay﹣by.20.解:原式=﹣a+(b﹣c)=﹣a+b﹣c.故答案为:﹣a+b﹣c.21.解:1﹣(1﹣2x+xy﹣y2)=1﹣1+2x﹣xy+y2=2x﹣xy+y2,故答案为:2x﹣xy+y2.22.解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).故答案为:a﹣(3b﹣c+2d).23.解:x2﹣y2+8y﹣4=x2﹣(y2﹣8y+4).故答案为:y2﹣8y+4.24.解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.25.解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6 =﹣7x2+6x+2,故答案为:﹣7x2+6x+2.三.解答题(共4小题)26.解:∵a2+b2=5,1﹣b=﹣2,∴﹣1+a2+b+b2=﹣(1﹣b)+(a2+b2)=﹣(﹣2)+5=7.27.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.28.解:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.29.解:(1)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,得到4x+3x﹣x=4x+(3x﹣x),4x﹣3x+x=4x﹣(3x﹣x),添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;※精品试卷※(2)①﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2+(3x3﹣2);②﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2﹣(﹣3x3+2);③它是五次四项式,按x的降幂排列是﹣3x5+3x3﹣4x2﹣2.。

相关文档
最新文档