《数学思维训练导引》解析(五年级)

合集下载

第3讲五年级思维导引

第3讲五年级思维导引

◇ 第3讲◇行程问题(Ⅰ)【内容概述】涉及分数的行程问题,顺水速度、逆水速度与流速的关系,以及与此相关的问题。

环形道路上的行程问题。

解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑。

【典型问题】 ○挑○战级数:★★ 1.王师傅驾车从甲地开往乙地交货。

如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地。

可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米。

如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间602,现在从甲到乙花费了时间1÷55=551,所以从乙地返回到甲地时所需的时间只能是661501602=-。

即如果他想按时返回甲地,他应以每小时66千米的速度往回开。

○挑○战级数:★★ 北京市第二十二届《中小学数学教学》“数学解题能力展示”读者评选活动小学高年级组·初赛第7题2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地。

摩托车开始速度是每小时50千米,中途减速后为每小时40千米;汽车速度是每小时80千米,汽车曾在途中停驶10分钟,那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时间为:100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,公用1小时25分钟。

而小张先小李1小时出发,但却同时到达,所以小张从甲地到乙地共用了2小时25分钟,即2125小时。

以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x+40×(2125-x )=100,解得x=31。

所以小张驾驶的摩托车减速是在他出发后31小时。

方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时。

华罗庚学校思维训练导引五年级第三节

华罗庚学校思维训练导引五年级第三节

《华罗庚学校思维训练导引》五年级第三节五年级上学期 第06讲 几何问题第06讲 格点与割补【内容概述】正方形格点阵中多边形面积的计算公式,出现在各种形状的格点阵中的直线性的面积问题,以及借助构造格点阵求解的几何问题。

通过恰当的分割与拼补进行计算的面积问题。

【例题分析】1、 如下图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?分析:颜色相同的点,面积形同,将其进行互相转换,拼成一个正方形。

详解:正方形2个,转换而成的正方形4个,蓝点的正方形面积是21正方形面积 ∴用粗线围成的图形的面积是2+4+0.5=6.5平方厘米评注:本题主要考察相同面积图形的转换。

2、 如下图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD 面积是多少平方厘米?分析:同上。

答案:20平方厘米3、 如图(1)是常见的一副七巧板的图,图(2)使用这副七巧板的7块板拼成的小房子图,那么,第2块板的面积等于整副图的面积的几分之几?第4块板与第7块板的面积的和等于整副图的面积的几分之几?(1) (2) (3)分析: 颜色相同的点,面积形同详解:图中每个红色点的面积等于整副图的面积的161 ∴第2块板的面积等于整副图中两个红色点的图形面积和,即整个图形的81。

同理,第4块板与第7块板的面积的和等于整副图的面积的163。

4、 把正三角形每边三等分,将各边的中间段取来向外面做小正三角形,得到一个六角形。

再将这个六角形的各个“角”(即小正三角形)的两边三等分,又以它们的中间段向外作更小的正三角形,这样就得到如图所是的图形。

如果这个图形的面积是1,那么原来的正三角形面积是多少?分析:要计算的是红色三角形的面积,通过连线计算出红色三角形中所含的紫色三角形的个数占原图形中紫色三角形个数的几分之几。

详解:红色三角形中所含的紫色三角形(1+17)×9÷2=81原图形中紫色三角形个数81+2×3+11×3=120原来的正三角形面积是4027112081=⨯5、 如图,正六边形ABCDEF的面积是6平方厘米,M是AB中点,N是CD中点,P是EF中点。

五年级数学思维训练导引(奥数)第14讲 行程问题五

五年级数学思维训练导引(奥数)第14讲  行程问题五

第十四讲行程问题五1.邮递员早晨7点出发送一份邮件到对面的村里,从邮局开始先走12千米的上坡路,再走6千米的下坡路.上坡的速度是3千米/时,下坡的速度是6千米/时,请问:(1)邮递员去村里的平均速度是多少?(2)邮递员返回时的平均速度是多少?(3)邮递员往返的平均速度是多少?2.费叔叔开车回家,原计划按照40千米/时的速度行驶.行驶到路程的一半时发现之前的速度只有30千米/时,那么在后一半路程中,速度必须达到多少才能准时到家?3.一辆汽车原计划6小时从A城到B城.汽车行驶了一半路程后,因故在途中停留了30分钟.如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?4.甲、乙两人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次从后面追上乙时,甲的速度就减少l米/秒,而乙的速度增加0.5米/秒,直到乙比甲快.请问:领先者到达终点时,另一人距终点多少米?5.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米,在运动过程中它们不断地调头.如果把出发算作第零次调头,那么相邻两次调头的时间间隔依次是1秒,3秒,5秒,…,即是一个由连续奇数组成的数列.问:两只蚂蚁爬行了多长时间才能第一次相遇?6.龟兔赛跑,全程1.04千米.兔子每小时跑4千米,乌龟每小时爬0.6千米.乌龟不停地爬,但兔子却边跑边玩,兔子先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟…一请问:先到达终点的比后到达终点的快多少分钟?7.如图14-1所示,甲、乙两人绕着一个正方形的房子玩捉迷藏.正方形ABCD 的边长为24米,甲、乙都从A点出发逆时针行进.甲出发时,乙要靠在A点的墙壁上数10秒后再出发.已知甲每秒跑4米,乙每秒跑6米,且两人每到达一个顶点都需要休息3秒钟.请问:乙出发几秒后第一次追上甲?8.刘老师从家到单位时,前13的路程骑车,后面的路程乘车;从单位回家时,前58的路程乘车,后面的路程骑车,结果去单位的时间比回家的时间少2分钟,已知刘老师骑车每小时行8千米,乘车每小时行16千米.请问:刘老师家到单位的距离是多少千米?9.甲、乙两人分别从A、B两地同时出发,6小时后在中点相遇;若甲每小时多走4千米,乙提前1小时出发,则仍在中点相遇.那么两地相距多少千米?10.如图14-2所示,A与B、B与C之间的公路长度相等,且每段公路上都有限速标志(单位:千米/时).甲货车从A出发,乙货车从C出发,并且两车在A、C之间往返行驶.结果当甲车到达C后再返回到B时,乙车刚好第一次到达B.已知甲、乙两车在各段公路上均以所能达到的最快速度行驶(不会超过车子本身的最高时速,也不能超过公路上的最高限速),且甲车的最高时速是乙车的4倍,那么甲车的最高时速是多少?1.如图14-3所示,一只蚂蚁沿等边三角形的三条边爬行,在三条边上它每分钟分别爬行50厘米、20厘米、40厘米.蚂蚁由A点开始,如果顺时针爬行一周,平均速度是多少?如果顺时针爬行了一周半,平均速度又是多少?2.甲、乙两班进行越野行军比赛,甲班以4千米/时的速度走了路程的一半,又以6千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4千米/时的速度行进,另一半时间以6千米/时的速度行进.问:甲、乙两班哪个班将获胜?3.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶10分钟.请问:小张驾驶的摩托车是在他出发多少小时后减速的?4.男、女两名田径运动员在长120米的斜坡上练习跑步(如图144所示,坡顶为 A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.已知男运动员上坡速度是每秒3米,下坡速度是每秒5米,女运动员上坡速度是每秒2米,下坡速度是每秒3米.请问:两人第一次迎面相遇的地点离A点多少米?第二次迎面相遇的地点离 A点多少米?5.小明和小强从400米环形跑道的同一点出发,背向而行.当他们第1次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向.两人的速度在运动过程中始终保持不变,小明每秒跑3米,小强每秒跑5米,试问:当他们第99次相遇时,相遇点距离出发点多少米?6.在一条南北走向的公路上有A、B两镇,A镇在B镇北面4.8千米处.甲、乙两人分别同时从A镇、B镇出发向南行走,甲的速度是每小时9千米,乙的速度是每小时6千米.甲在运动过程中始终不改变方向,而乙向南走3分钟后,便转身往回走2分钟,接着按照先向南走3分钟,再向北走2分钟的方式循环运动.请问:两人相遇的地点距B镇多少千米?7.如图14-5所示,正方形边长是100米,甲、乙两人同时从A、B沿图中所示的方向出发,甲每分钟走75米,乙每分钟走65米,且两人每到达一个顶点都需要休息2分钟.求甲从出发到第一次看见乙所用的时间.8.甲、乙两人分别从A、B两地同时出发相向而行,20分钟后在某处相遇.如果甲每分钟多走15米,而乙比甲提前2分钟出发,则相遇时仍在此处.如果甲比乙晚4分钟出发,乙每分钟少走25米,也能在此处相遇.那么A、B两地之间相距多少千米?9.小明准时从家出发,以3.6千米/时的速度从家步行去学校,恰好提前5分钟到校.某天,当他走了1.2千米,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课,后来算了一下,如果小明从家开始就跑步,可以比一直步行早15分钟到学校.那么他家离学校多少千米?小明跑步的速度是每小时多少千米?10.甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点.如果甲车速度不变,乙车每小时多行5千米,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,则相遇地点距C点16千米.请问:A、B 两地间的距离是多少千米?11.李刚骑自行车从甲地到乙地,要先骑一段上坡路,再骑一段平坦路,他到乙地后,立即返回甲地,来回共用了3小时.李刚在平坦路上比上坡路每小时多骑6千米,下坡路比平坦路每小时多骑3千米,还知道他在第1小时比第2小时少骑5千米,第2小时比第3小时少骑3千米,其中,第2小时骑了一段上坡路,又骑了一段平坦路,请问:(1)李刚骑上坡路所用的时间是多少分钟?(2)李刚骑下坡路所用的时间是多少分钟?(3)甲、乙两地之间的距离是多少千米?12.如图14-6所示,有4个村镇A、B、C、D,在连接它们的3段等长的公路AB、 BC、CD上,汽车行驶的最高时速限制分别是60千米/时、20千米/时和30千米/时,一辆客车从A镇出发驶向D镇,到达D镇后立即返回;一辆货车同时从D镇出发,驶向B镇.两车相遇在C镇,而当货车到达B镇时,客车又回到了C镇,已知客车和货车在各段公路上均以其所能达到且被允许的最大速度行驶,货车在与客车相遇后自身所具有的最高时速比相遇前提高了18,求客车的最高时速.1.学校组织春游,同学们下午一点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下午七点回到学校,已知他们的步行速度平地为4千米/时,上山为3千米/时,下山为6千米/时.请问:同学们一共走了多少千米?2.男、女两名运动员在长350米的斜坡AB(A为坡顶、B为坡底)上跑步,二人同时从坡顶出发,在A、B间往返奔跑,已知速度如图14-7所示,那么男运动员第二次追上女运动员的位置距坡顶多少米?3.甲、乙两车从A、B两地同时出发相向而行,5小时相遇;如果乙车提前1小时出发,则在不到中点13千米处与甲车相遇;如果甲车提前1小时出发,则过中点37千米后与乙车相遇.求甲车与乙车的速度差.4.如图14-8,在一条马路边有A、B、C、D四个车站,甲、乙两辆相同的汽车分别从A、D两地出发相向而行,在BC的中点相遇,已知它们在AB、BC、CD 上的速度分别为30千米/时、40千米/时、50千米/时.如果甲晚出发1小时,则它们将在B点相遇;如果乙在每一段上的速度都减半,而甲的速度不变,它们的相遇地点离B点65千米.请求出A,D之间的距离.5.如图14-9,正方形ABCD是一条环形公路.已知汽车在AB上时速是90千米,在 BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米,从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC的中点M,同时反向各发出一辆汽车,它们将在AB上一点N相遇,问:AN占AB的几分之几?6.在400米环形跑道上进行10000米赛跑.乙始终保持一个画定的速度前进;甲刚开始的速度比乙慢,但一直没有被乙追上.计时到30分0秒时甲开始加速并保持这个速度;36分0秒时甲追上乙,46分0秒时甲再次追上乙,47分40秒时甲到达终点.问:计时到几分几秒时乙到达终点?7.圆形跑道的40%是平路,60%则设置了跨栏(如图14-10中粗线部分).甲、乙两人的平路速度分别为5米/秒和6米/秒,跨栏速度分别为4米/秒和3米/秒.第一次两人从A点出发逆时针跑,甲先跑了5秒钟,然后乙再出发.结果两人在跑第一圈的时候相遇了两次,且两次相遇的间隔为15秒,问:(1)跑道总长为多少米?(2)如果两人从A点出发顺时针方向跑,而且在跑第一圈的时候也相遇了两次,且两次相遇时间间隔为45秒,那么甲和乙应该谁先跑,先跑多少秒?(3)如果两人从A点出发按顺时针方向跑,而且在跑第一圈的时候相遇两次,那么后跑的人最少晚出发几秒钟?8.如图14-11所示,正方形跑道的周长为360米,甲、乙两人同时从正方形跑道的 A点出发,按顺时针方向行进,甲的速度始终为5米/秒;乙最初的速度为6米/秒,第一次拐弯后速度减少13:第二次拐弯后速度增加12,第三次拐弯后速度减少13,第四次拐弯后速度增加12……如此下去.请问:出发后多少秒甲、乙两人第1次相遇,相遇地点在何处?出发后多少秒他们第100次相遇,相遇地点在何处?(注意:两人在一起即为相遇.)。

五年级数学思维训练导引(奥数)第17讲计算综合一

五年级数学思维训练导引(奥数)第17讲计算综合一

第十七讲计算综合一1.计算:(1) 1248163264128256;(2)111111111248163264128256;2.计算:23456333333.3.计算:199519951995199519951995 200920092009200920092009.4.计算:131435 415263342556.5.1111111111 123456789100 2342342342L.6.规定新运算“*”为:a*b=3×a-2×b.(1)计算:456*(*) 345;(2)已知456*(*)345x,求x.7.图17-1中除了每行两端的数之外,其余每个数都是与它相连的上一行的两个数的平均数,例如: 2.75是2.5和3的平均数.请问:第100行中的各数之和是多少?8.有这样一列数,前两个数分别是O和1,从第三个数开始,每一个数都是前两个数的和:0,1,1,2,3,5,8,13,2l,34,…,请问:这个数列的第1000个数除以8所得的余数是多少?9.观察下面的数阵:112112321123432112345432112345L L L L L,,,,,,,,,,根据前五行数所表达的规律,求:(1)3367这个数在由上至下的第几行?在这一行中,它是由左向右的第几个?(2)第28行第19个数是什么?10.观察数列11211232112343211222333334444444L ,,,,,,,,,,,,,,,,,求:(1)数列中第150项;(2)数列中前300项的和.1.如图17-2,有一个边长为81厘米的等边三角形,将它每条边都三等分,以中间那一份为边向外作等边三角形,得到图17-3.由图17-3通过同样方法又得到图17-4.如果再由图17-4通过同样方法得到一个新的图形,试问:这个新的图形的周长是多少?2.计算:(1)23456712222222;(2)234567111111113333333.3.某工厂生产一种新型的乒乓球,第一天生产出了若干个,接下来每天的产量恰好是前一天的 1.5倍,且每天都生产整数个乒乓球.请问:第一周的总产量至少是多少?4.计算:123246100200300 234468200300400LL.5.计算:222 771999199919(9) 881999199919981998.6.对于任意的两个自然数日和易,规定新运算“Θ”为:Θ(1)a b a a(2)(1)a a bL.如果(3)315600x,求x工的值.7.定义新运算a b为a与b之间(包含a、b所有与a奇偶性相同的自然数的平均数,例如:714(791113)410,1810(1816141210)5 14.(1)计算:1019;(2)在算式99□(19)=80的方框中填入恰当的自然数后可使等式成立,请问:所填的数是什么?8.1至2008这2008个自然数的所有数字之和是多少?9.有一串数如下:1,2,4,7,11,16,….它的规律是:由1开始,依次加1,加2,加3,…,逐个产生这串数,直到第50个数为止,求第50个数除以3的余数.10. 70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于与它相邻的两个数之和.这一行最左边的几个数是这样的:0,1,3,8,21,….请问:这列数中除以6余1的数有多少个?11.观察数列1131351357120052007 ,,,,,,,,,;,,, 24466688881020082008L规律,问:(1)数列中第2008项是什么?(2)数列中前2008项的和是多少?12.将从1开始的自然数按照如图17-5所示的规律排成数阵,数1000所在的行与列中分别有一个最小的数,求这两个数的和.1.求所有分母为360的最简真分数的和.2.有一种运算“*”,满足以下条件:①2*35;②**a b b a;a b c a b a c.(这里的“+”是通常的加号)③*()**请计算:8*9.3.下面的数列是按某种规律排列的:1,3,4,7,11,18,29,47,….试问:(1)其中第300个数被6除余几?(2)如果数列按第n组含有n个数的规律分组,成为:(1),(3,4),(7,11,18),…,那么第300组内各数之和除以6的余数是多少?4.如图17.6所示的三角形数阵中,从第2行起,每行都是把上一行抄一遍,然后在相邻两数之间填入它们的和.请问:第999行各数之和被7除所得的余数是多少?5.有一个圆,第一次用一条直径将圆周分成两个半圆周,在每个分点上标上1;第二次,再将两个半圆周分别分成两个14圆周,在新产生的分点上标上相邻两数之和的12;第三次,再将四个14圆周分别分成两个18圆周,在新产生的分点上标上相邻两数之和的13;第四次,再将八个18圆周分别分成两个116圆周,在新产生的分点上标上相邻两数之和的14……如此进行了100次.请问:最后圆周上的所有数之和是多少?6.将非零自然数按照图17-7中的规律不断写出,发现有些数被写出多次,还有些数永远不会出现,请问:99在数表中共出现过几次?最后一次位于哪里?最小的永不出现的数是多少?7.请写出5个不同的最简分数,分子都是2,而且这5个分数组成一个等差数列.y x x y z x y z,8.规定运算“”对任意的x、y,、z都满足5,()()5试求20091949.。

五年级数学思维训练导引(奥数)第18讲 应用题拓展

五年级数学思维训练导引(奥数)第18讲  应用题拓展

第十八讲应用题拓展1.水果店运来了西瓜和哈密瓜共234个.如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?2.有429名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有一些女生报名参赛,这时男生和女生的人数比变为11:10.请问:后来报名的女生有多少人?3.松鼠一家三口出门采摘松果,松鼠爸爸采得最快,他每采摘7颗松果,松鼠妈妈只能采摘6颗;松鼠宝宝采得最慢,他每采摘2颗,松鼠妈妈已经采摘了3颗.一天下来,他们一共采摘了340颗松果,试问:其中有多少颗是松鼠宝宝采的?4.育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?5.小明将100枚棋子分成三堆,已知第一堆比第二堆的2倍还多,第二堆比第三堆的2倍也要多,请问:第三堆最多有多少枚棋子?6.博雅小学五年级有200人,在一次数学竞赛中,参赛人数的18获得优胜奖,413获得鼓励奖,其余的人没有得奖.试问:该校五年级学生中有多少人没有参加这次数学竞赛?7.甲、乙、丙三堆棋子总共有100多枚,先从甲堆分一些棋子给另外两堆,使得乙、丙两堆的棋子数增加l倍;接着,从乙堆分一些棋子给另外两堆,使得甲、丙两堆各增加2倍;最后,从丙堆分一些棋子给另外两堆,使得甲、乙两堆各增加3倍,此时甲、乙、丙三堆棋子数的比是1:2:3.请问:原来三堆棋子各有多少枚?8.今年,爷爷的年龄是小明年龄的6倍,若干年后,爷爷的年龄将是小明年龄的5倍.再过若干年,爷爷的年龄将是小明年龄的4倍.求爷爷今年的年龄.9.甲、乙、丙三人各有一些书.甲、乙共有54本,乙、丙共有79本,已知三人中书最多的那个人书的数量是书最少的人的2倍.请问:乙有多少本书?10.龙泉乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费,这个月小宇家比小达家多交了9角6分钱的电费(用电按整度计算).问:小宇家和小达家各交了多少电费?1.红旗小学共有师生1081人,其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?2.小悦去商店买了4斤水果糖、2斤奶糖和3斤巧克力糖.如果每块糖果的重量都相同,奶糖和巧克力糖一共有160块,那么水果糖有多少块?3.万泉小学的师生在植树节栽种柳树、杨树和槐树共860棵,其中柳树和杨树棵数的比为3:4,杨树与槐树棵数的比为5:2.请问:这三种树各栽种了多少棵?4.某厂一月份与二月份生产零件的个数比为4:5.后来改进生产技术,三月份生产的零件个数与前两个月的总产量之比为4:3,且三月份比二月份多生产了1610个零件.请问:这家工厂第一季度共生产多少个零件?5.有48本书分给两组小朋友,已知第二组比第一组多5人,如果把书全都分给第一组,一部分小朋友每人能拿到5本,其他小朋友每人能拿到4本;如果把书全都分给第二组,一部分小朋友每人能拿到4本,其他小朋友每人能拿到3本,问:两组一共有多少人?6.若干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加数学竞赛.已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有1名男老师.问:在这些人中,爸爸有多少人?7.志远中学有三个年级,共900多名学生,其中初一的学生数恰好占学生总数的38,初三的学生恰好占学生总数的415.请问:志远中学初二有多少名学生?8.把100个人分成四队,第一队人数是第二队人数的113倍,是第三队人数的114倍,求第四队的人数.9.甲、乙、丙三人各有一些棋子,其中棋子数最多的人比最少的人多出60多枚棋子,甲先拿出自己的一半平分给乙、丙,然后乙拿出自己的13平分给甲、丙,最后丙拿出自己的14平分给甲、乙.这时三人的棋子数正好相同.请问:三个人一共有多少枚棋子?10.有两堆石头,如果从第一堆中取出20块石头放进第二堆,那么第二堆的石头是第一堆的2倍;如果从第二堆中取出一些石头放进第一堆,那么第一堆的石头是第二堆的6倍.问:第一堆中最少可能有多少块石头?11.北京市出租车的起步价是3公里以内10元,3公里后按每公里2元计费,当里程超过15公里后,超出部分按每公里3元计费.小悦、冬冬两人都从游乐园分别坐出租车回家,小悦比冬冬多花了23元.请问:小悦家距离游乐园最远是多少公里?(不足1公里按1公里计,假定两人回家一路上没有红绿灯,也没有堵车)12.团体游园购买公园门票的票价如图18-1所示,图18-1今有甲、乙两个旅游团,如果分别购票,两团总计应付门票费1142元.如果合在一起作为一个团体购票,应付门票费864元,问:这两个旅游团各有多少人?1.植物园里菊花与月季花的盆数之比是3:4,兰花与郁金香的盆数之比是5:6,菊花与郁金香的盆数之比是4:5.如果月季比兰花多50多盆,那么菊花比郁金香少多少盆?2.甲、乙、丙、丁包揽了班里期中考试的前四名.甲、乙的得分之和是108分,乙、丙的得分之和是149分,丙、丁的得分之和是121分,并且知道其中第一名的得分是第三名的2倍,那么第二名的得分是多少?3.有四人的体重都是整千克数,他们两两合称体重,共称了五次,称得的千克数分别是99、1 13、125、130、144.其中有两人没有一起称过,那么这两个人中较重的那个人的体重是多少千克?4.有若干盒卡片,每盒中卡片数一样多.把这些卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张,现在把所有卡片都分完,每人分到60张,而且还多出4张.问:共有多少个小朋友?5.某次考试共有100道题,每题一分,做错不扣分,甲、乙、丙三位同学分别得90分、70分、50分.其中3个人都做出来的题叫作“容易题”,只有1个人做出来的题目叫作“较难题”,没人做出来的题目叫作“特难题”,且“较难题”是“特难题”的3倍.又已知丙同学做出的题中超过80%的是“容易题”,但又不全是“容易题”,请问:“特难题”共有多少道?6.中关村一小、中关村二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满,现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则中关村二小要比中关村一小多租用这种车7辆.问两校参加这次春游的人数各是多少?7.工地要用每根长7.4米的原材料做100套钢筋,每套3根,长度分别为2.9米、1.5米、2.1米.请问:至少要用多少根原材料?8.四只猴子摘了一堆桃子,它们准备先回去睡一觉后再来分桃子.过了一会,其中一只猴子来了,它见别的猴子没来,便把桃子平分成4堆,发现余下3个,于是给其中三堆各多分了一个桃子,然后拿走余下的一堆跑掉了;又过一会儿,另一只猴子来了,它见别的猴子没来,把桃子也分成4堆,发现还是多出3个,于是也给其中三堆各多分了一个桃子,自己带着余下的一堆跑掉了;轮到另外两只猴子时,分别发生了同样的事情.如果最后一只猴子至少拿走了一个桃子,那么这堆桃子至少有多少个?。

华数思维训练导引五下

华数思维训练导引五下

华数思维训练导引五下华数思维训练导引——计算问题(六)估算与比较通分与裂项《思维训练导引》五年级下学期第11讲计算问题第06讲估算与比较通分与裂项1.除式12345678910111213÷31211101987654321计算结果的小数点后前三位数字是多少?解法一:A大于1234÷3122=0.3952??,A小于1235÷3121=0.3957??,0.3952小于A小于0.3957 答:计算结果的小数点后前三位数字是395。

解法二:1234÷3121≈0.3953≈0.395 答:计算结果的小数点后前三位数字是395。

2.计算下式的值,其中小数部分四舍五入,答案仅保留整数:33.333 -3.1415926÷0.618.解:33.333 -3.1415926÷0.618≈(100/3) -5=10000/9-5≈1111-5=1106 答:保留整数约等于1106。

3.在1,1/2,1/3,1/4,??。

1/99,1/100中选出若干个数使它们的和大于3,最少要选多少个数?解法一:1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/101+(1/2+1/3+1/6)+(1/4+1/8)+(1/5+ 1/10)+1/8+(1/9+1/11) =1+1+(3/8+1/8)+3/10+20/99=2+4/8+3/10+20/99 >2+1/2+3/10+20/100 =3答:最少要选出11个数。

解法二:1+1/2+1/3+1/4+1/5+1/6=1+(1/2+1/3+1/6)+1/4+1/5=2+1/4+1/5=2.453 答:最少要选出11个数。

4.数1/(1/10+1/11+1/12+??+1/19)的整数部分是几?解:1/10+1/11+1/12+??+1/1910*1/20=1/2所以1/1656/657大于52/53大于8/9. 7.24/31小于80/□0,所以(4)最小,3/8+8/20=31/40 答:(4)式最小,(4)=31/40。

(全)小学五年级数学思维训练50题(附解析及答案)

(全)小学五年级数学思维训练50题(附解析及答案)

(全)小学五年级数学思维训练50题(附解析及答案)小学五年级数学思维训练50题(附解析及答案)1.一副扑克牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2.爷爷对XXX说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和XXX现在的年龄吗?解:爷爷70岁,XXX10岁。

提示:爷爷和XXX的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3.某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

解:11,13,17,23,37,47。

4.在放暑假的8月份,XXX有五天是在姥姥家过的。

这五天的日期除一天是合数外,其它四天的日期都是质数。

这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。

问:XXX是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1),(a +1),(2a-1),(2a+1)。

由于(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。

经试算,只要当a=6时,满足题意,以是这五天是8月5,6,7,11,13日。

5.有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。

求这两个整数。

解:3,74;18,37。

提示:三个数字相同的三位数必有因数111。

因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。

6.在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。

五年级数学思维训练导引(奥数)第15讲 圆与扇形

五年级数学思维训练导引(奥数)第15讲  圆与扇形

第十五讲圆与扇形1.已知一个扇形的圆心角为120 0,半径为2,这个扇形的面积和周长各是多少?(π取3.14)2.已知一个扇形的面积为18.84平方厘米,圆心角为60。

,这个扇形的半径和周长各是多少?(π取3.14)3.(1)根据图15-1所给的数值,求这个图形的外周长和面积.(π取3.14)(2)如图15.2,有8个半径为1厘米的小圆,用它们圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周率π取3.14,那么花瓣图形的周长和面积分别是多少?4.如图15-3,求各图形中阴影部分的面积.(图中长度单位为厘米,π取3.14)5.如图154,求各图中阴影部分的面积.(图中长度单位为厘米,π取3.14)6.图15-5中甲区域比乙区域的面积大57平方厘米,且半圆的半径是10厘米.其中直角三角形竖直的直角边的长度是多少?(π取3.14)7.求图15-6中阴影部分的面积.(π取3.14)8.如图15-7,在3×3的方格表中,分别以A、E为圆心,3、2为半径,画出圆心角都是90 0的两段圆弧.图中阴影部分的面积是多少?(π取3.14)9.如图15-8,在一块面积为36平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板.问:余下的边角料的总面积是多少平方厘米?10.一条直线上放着一个长和宽分别为4厘米和3厘米的长方形I(图15-9).让这个长方形绕顶点B顺时针旋转90。

后到达长方形Ⅱ的位置,这样连续做三次,A点到达 E点的位置.求A点经过的总路程的长度.(圆周率按3计算)1.(1)已知一个扇形的半径为2厘米,弧长为3.14,这个扇形的面积是多少?(2)已知一个半圆形的面积是56.52平方厘米,求这个半圆形的周长.(π取3.14)2.如图15 -10,求各图中阴影部分的面积.(图中长度单位为厘米,π取3.14)3.如图15-11,直角三角形ABC的面积是45,分别以B、C为圆心,3为半径画圆.已知图中阴影部分的面积是35.58.请问:角A是多少度?(π取3.14)4.图15-12是一个直径是3厘米的半圆,AB是直径.如图15-13所示,让A点不动,把整个半圆逆时针转600,此时B点移动到C点.请问:图中阴影部分的面积是多少平方厘米?(π取3.14)5.图15-14中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心,如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?6.图15-15中有一个等腰直角三角形ABC,一个以AB为直径的半圆,和一个以BC为半径的扇形.已知AB =BC=10厘米,那么图中阴影部分的面积为多少平方厘米?(π取3.14)7.图15-16是由一个圆与一个直角扇形重叠组成的,其中圆的直径与扇形的半径都是4.图中阴影部分的面积是多少?(π取3.14)8.(1)如图15-17,已知外面大圆的半径是4,求正方形以及里面小圆的面积.(答案用π表示)(2)已知图15-18中正方形的边长为2,分别以其四个顶点为圆心的直角扇形恰好交于正方形中心,求图中阴影部分的面积.(答案用π表示)9.图15-19中有一个矩形和两个半径分别为5和2的直角扇形.请问:两个阴影部分的面积之差是多少?(π取3.14)10.(1)根据图15 -20中给出的数值,求这个图形的外周长和面积.(π取3.14)(2)如图15-21,有七根直径为5厘米的塑料管,用一根橡皮筋把它们扎成一捆,此时橡皮筋的长度是多少厘米?(π取3.14)11.如图15 -22,一只小狗被拴在一个边长为4米的正五边形的建筑物的一个顶点处,四周都是空地,绳长刚好够小狗走到建筑物外墙边的任一位置,小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3.14)12.(1)图15-23中正方形的边长是4厘米,圆形的半径是1厘米.当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)(2)图15 -24中等边三角形的边长是3厘米,圆形的半径是l厘米.当圆形绕等边三角形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)1.如图15-25,边长为4的正方形中依次挖去了四个半圆.阴影部分的面积是多少?(答案用π表示)2.如图15-26,直角三角形的三条边长度为6、8、10,它的内部放了一个半圆.图中阴影部分的面积是多少?(答案用π表示)3.图15 -27中是一个半径为10厘米,中心角为135 0(的扇形,D点、E 是弧BC的三等分点,那么阴影部分的面积为多少平方厘米?(π取3.14)4.如图15-28所示,有7个大小相同的圆叠放在一起.如果每个圆的面积都是10,那么阴影部分的面积是多少?5.图15-29中阴影部分为一个空心零件的设计图,该零件由三个半圆套成,其中最大半圆的直径为12厘米.该零件的面积为多少平方厘米?(π取3.14)6.把一个等腰直角三角形绕直角顶点逆时针旋转90度.如果它的直角边长为10,求它的斜边扫过的面积.(π取3.14)7.如图15-30,在一个正方形中恰好放了四个相同的半圆,每个半圆的直径恰好都在边上.一些线段的长度如图所示,那么中间的阴影面积与四个角上的阴影面积之差是多少?(π取3.14)8.一个等边三角形边长为2厘米,以它的每个顶点为圆心,边长为半径分别作一段弧形成一个曲边三角形,如图15-31.现在固定一个曲边三角形A,用另一个曲边三角形 B围绕着它滚动.那么B滚动一周回到原来位置的过程中,扫过的面积是多少平方厘米?(π取3.14)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学思维训练导引》解析(五年级)
思维导引解析1讲:循环小数与分数
思维导引解析2讲:和差倍分问题.
思维导引解析3讲:行程问题之三
思维导引解析4讲:数的整除
思维导引解析5讲:质数与合数
思维导引解析6讲:格点与割补
思维导引解析7讲:数字谜综合之一
思维导引解析8讲:包含与排除
思维导引解析9讲:复杂抽屉原理
思维导引解析10讲:逻辑推理之一
思维导引解析11讲:估算与比较、通分与裂项
思维导引解析12讲:行程问题之四
思维导引解析13讲:应用题综合之一
思维导引解析14讲:约数与倍数
思维导引解析15讲:余数问题
思维导引解析16讲:直线形面积
思维导引解析17讲:圆与扇形
思维导引解析18讲:数列与数表综合
导引解析19讲:数字谜综合之二
思维导引解析20讲:计数综合之一
1讲:循环小数与分数
仁华思维导引解析2讲:和差倍分问题
仁华思维导引解析3讲:行程问题之三
仁华思维导引解析4讲:数的整除
仁华思维导引解析5讲:质数与合数
仁华思维导引解析6讲:格点与割补。

相关文档
最新文档