概率的基本性质
概率的基本性质

(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),
高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件
量
9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.
概率的基本性质-高一数学课件(人教A版2019必修第二册)

10.1 随机事件与概率
10.1.4概率的基本性质
课程标准
1.结合具体实例,理解样本点和有限样本空间的含义,理解随机
事件与样本点的关系。了解随机事件的并、交与互斥的含义,
能结合实例进行随机事件的并、交运算;
2.结合具体实例,理解古典概型,能计算古典概型中简单随机事
件的概率;
3.通过实例,理解概率的性质,掌握随机事件概率的运算法则;
什么关系?(大家可以大胆猜想!)
探究 一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),
2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球. =“两次都摸
到红球”, =“两次都摸到绿球”.
(1)、这两个事件有什么关系?
(2)事件、事件的和事件是什么?
(3)()、()与( ∪ )的值有什么关系?
性质5:(概率的单调性) 如果 ⊆ ,那么() ≤ ().
新知讲解
问题4 摸球试验中, =“第一次摸到红球”, =“第二次摸到
红球”,“两个球中有红球”= ∪
(1)( ∪ )和() + ()相等吗?如果不相等,请你说明原
因,并思考如何计算( ∪ ).
( ∪ ) = () + () − ( ∩ ).
与性质3的区别是:性质3的事件是互斥的;
但性质6的事件是两个随机事件;
性质3是性质6的特殊情况.
概念生成
性质1:对任意的事件,都有() ≥ .
性质2:必然事件的概率为1,不可能事件的概率为0
即() = ,(∅) = .
(2)特殊的事件有哪些?他们的概率分别是多少?
(3)事件间有哪些特殊关系?他们的概率之间有哪些关系?
概率的基本性质【新教材】人教A版高中数学必修第二册课件

2,P(E∪F)=P(E)+P(F)=0.
特别地,当事件A或事件B至少有一个是不可能事件时,A∩B=∅,此时也有P(A∩B)=0.
12
因为P(A)=0.
45,P(AB)=0.
P(A1)+P(A2)+…+P(Am)
P(A)+P(B)-P(A∩B)
5
45,P(AB)=0.
12
2,P(E∪F)=P(E)+P(F)=0.
摸出白球的概率为 P(C).
因为 P(A)+P(B)=0.4,P(A)+P(C)=0.9,且 P(A)+P(B)+P(C)=1,
所以 P(C)=1-P(A)-P(B)=0.6,P(B)=1-P(A)-P(C)=0.1,
所以 P(B)+P(C)=0.7.
答案:A
0.6
2.若 E,F 是互斥事件,P(E)=0.2,P(E∪F)=0.8,则 P(F)=
事件 B 为对立事件,所以 P(B)=1-P(A)=1-0.95=0.05.
5.拔高练袋中装有大小、质地相同的红球、黑球、黄球、
1
3
绿球各若干个,从中任取一球,得到红球的概率是 ,得到黑球或
5
12
5
12
黄球的概率是 ,得到黄球或绿球的概率是 ,试求得到黑球、
黄球、绿球的概率各是多少.
解析:因为E,F是互斥事件,
P(A)+P(B)-P(A∩B)
解析:因为E,F是互斥事件,
解析:因为E,F是互斥事件,
15,所以P(B)=0.
提示:若事件A与事件B互斥,则A∩B为不可能事件,此时有P(A∩B)=0.
45,P(AB)=0.
10.1.4 概率的基本性质

10.1.4 概率的基本性质课标要求素养要求通过实例,理解概率的性质,掌握随机事件概率的运算法则.通过具体实例,抽象出概率的性质,掌握概率的运算方法,发展数学抽象及数学运算素养.教材知识探究甲、乙两人下棋,甲不输的概率是0.6,两人下成平局的概率是0.3.问题甲获胜的概率是多少?提示甲、乙两人下棋,甲不输的概率是0.6,两人下成平局的概率是0.3,则甲胜的概率是p=0.6-0.3=0.3.概率的基本性质一般地,概率有如下性质:概率的基本性质是解决与概率问题有关问题的重要依据,望同学们一定要牢记性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B). 性质5:如果A⊆B,那么P(A)≤P(B).性质6:设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).教材拓展补遗[微判断]1.任一事件的概率总在(0,1)内.(×)2.不可能事件的概率不一定为0.(×)3.必然事件的概率一定为1.(√)4.某产品分甲、乙、丙三级,其中乙、丙两级属于次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对产品抽查一件,恰好是正品的概率为0.96.(√)5.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于23.(√)提示 任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1,故1、2错. [微训练]1.在掷骰子的游戏中,向上的数字是5或6的概率是( ) A.16B.13C.12D.1解析 事件“向上的数字是5”与事件“向上的数字是6”为互斥事件,且二者发生的概率都是16,所以“向上的数字是5或6”的概率是16+16=13. 答案 B2.事件A 与B 是对立事件,且P (A )=0.2,则P (B )=________.解析 因A 与B 是对立事件,所以P (A )+P (B )=1,即P (B )=1-P (A )=0.8. 答案 0.83.事件A 与B 是互斥事件,P (A )=0.2,P (B )=0.5,求P (A ∪B ). 解 因为A 与B 互斥,故P (A ∪B )=P (A )+P (B )=0.2+0.5=0.7. [微思考]1.在同一试验中,设A ,B 是两个随机事件,若A ∩B =∅,则称A 与B 是两个对立事件,此说法对吗?提示 不对,若A ∩B =∅,仅能说明A 与B 的关系是互斥的,只有A ∪B 为必然事件,A ∩B 为不可能事件时,A 与B 才互为对立事件.2.在同一试验中,对任意两个事件A ,B ,P (A ∪B )=P (A )+P (B )一定成立吗? 提示 不一定.只有A 与B 互斥时,P (A ∪B )=P (A )+P (B )才成立.题型一 互斥事件概率公式的应用应用公式时要首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和【例1】(1)抛掷一个骰子,观察出现的点,设事件A为“出现1点”,B为“出现2点”.已知P(A)=P(B)=16,求出现1点或2点的概率.(2)盒子里装有6只红球,4只白球,从中任取3只球.设事件A表示“3只球中有1只红球,2只白球”,事件B表示“3只球中有2只红球,1只白球”.已知P(A)=310,P(B)=12,求这3只球中既有红球又有白球的概率.解(1)设事件C为“出现1点或2点”,因为事件A、B是互斥事件,由C=A∪B可得P(C)=P(A)+P(B)=16+16=13,所以出现1点或出现2点的概率是13.(2)因为A、B是互斥事件,所以P(A∪B)=P(A)+P(B)=310+12=45,所以这3只球中既有红球又有白球的概率是4 5.规律方法(1)公式P(A∪B)=P(A)+P(B),只有当A、B两事件互斥时才能使用,如果A、B不互斥,就不能应用这一公式;(2)解决本题的关键是正确理解“A∪B”的意义.【训练1】在某一时期内,一条河流某处的年最高水位在各个范围内的概率如下表:(1)[10,16);(2)[8,12);(3)[14,18).解记该河流这一处的年最高水位(单位:m)在[8,10),[10,12),[12,14),[14,16),[16,18)分别为事件A,B,C,D,E,且彼此互斥.(1)P(B∪C∪D)=P(B)+P(C)+P(D)=0.28+0.38+0.16=0.82.(2)P(A∪B)=P(A)+P(B)=0.1+0.28=0.38.(3)P(D∪E)=P(D)+P(E)=0.16+0.08=0.24.所以年最高水位(单位:m)在[10,16),[8,12),[14,18)的概率分别为0.82,0.38,0.24.题型二对立事件概率公式的应用若题中含有“至多”“至少”等字眼时,通常考虑用对立事件公式求解概率 【例2】 甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求: (1)甲获胜的概率; (2)甲不输的概率.解 (1)“甲获胜”和“和棋或乙获胜”是对立事件,所以“甲获胜”的概率p =1-12-13=16.即甲获胜的概率是16.(2)法一 设事件A 为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P (A )=16+12=23.法二 设事件A 为“甲不输”,可看成是“乙获胜”的对立事件,所以P (A )=1-13=23.即甲不输的概率是23.规律方法 对立事件也是比较重要的事件,利用对立事件的概率公式求解时,必须准确判断两个事件确实是对立事件时才能应用.【训练2】 某战士射击一次,未中靶的概率为0.05,求中靶的概率.解 某战士射击一次,要么中靶,要么未中靶,因此,设某战士射击一次,“中靶”为事件A ,则其对立事件B 为“未中靶”,于是P (A )=1-P (B )=1-0.05=0.95. 所以某战士射击一次,中靶的概率是0.95. 题型三 概率性质的综合应用【例3】 某初级中学共有学生2 000名,各年级男、女生人数如下表:0.19. (1)求x 的值;(2)现用分层随机抽样的方法在全校抽取48名学生,问:应在九年级中抽取多少名?每个个体被抽到的可能性都是nN(3)已知y ≥245,z ≥245,求九年级中女生比男生少的概率. 解 (1)∵x2 000=0.19,∴x =380.(2)九年级人数为y +z =2 000-(373+377+380+370)=500,现用分层随机抽样的方法在全校抽取48名学生,应在九年级抽取的人数为5002 000×48=12.(3)设九年级女生比男生少为事件A ,则A -为九年级女生比男生多或九年级男生和女生同样多.九年级女生数、男生数记为(y ,z ),由(2)知y +z =500,y ,z ∈N .满足题意的所有样本点是(245,255),(246,254),(247,253),…,(255,245),共11个,事件A -包含的样本点是(250,250),(251,249),(252,248),(253,247),(254,246),(255,245),共6个.∴P (A -)=611.因此,P (A )=1-611=511.规律方法 求某些较复杂事件的概率,通常有两种方法:一是将所求事件的概率转化成一些彼此互斥的事件的概率的和;二是先求此事件的对立事件的概率,再用公式求此事件的概率.这两种方法可使复杂事件概率的计算得到简化.【训练3】 某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.(1)求他乘火车或乘飞机去的概率; (2)求他不乘轮船去的概率;(3)如果他乘交通工具的概率为0.5,请问他有可能乘哪种交通工具?解 (1)记“他乘火车”为事件A ,“他乘轮船”为事件B ,“他乘汽车”为事件C ,“他乘飞机”为事件D .这四个事件两两不可能同时发生,故它们彼此互斥,所以P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7. 即他乘火车或乘飞机去的概率为0.7. (2)设他不乘轮船去的概率为p ,则 p =1-P (B )=1-0.2=0.8,所以他不乘轮船去的概率为0.8.(3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.一、素养落地1.通过学习概率的基本性质提升数学抽象素养.通过随机事件概率的运算培养数学运算素养.2.互斥事件概率的加法公式是一个基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率的加法公式P(A∪B)=P(A)+P(B).3.求复杂事件的概率通常有两种方法(1)将所求事件转化成彼此互斥事件的并事件;(2)先求其对立事件的概率,再求所求事件的概率.二、素养训练1.若A,B是互斥事件,P(A)=0.2,P(A∪B)=0.5,则P(B)等于()A.0.3B.0.7C.0.1D.1解析∵A,B是互斥事件,∴P(A∪B)=P(A)+P(B)=0.5,∵P(A)=0.2,∴P(B)=0.5-0.2=0.3.故选A.答案 A2.抛掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则()A.A⊆BB.A=BC.A+B表示向上的点数是1或2或3D.AB表示向上的点数是1或2或3解析A+B表示A与B的和事件,即A+B表示向上的点数是1或2或3,故选C.答案 C3.已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=()A.0.3B.0.6C.0.7D.0.8解析因为A与B互斥,B与C对立,所以P(B)=1-P(C)=0.4,P(A+B)=P(A)+P(B)=0.7.答案 C4.小明需要从甲城市编号为1~14的14个工厂或乙城市编号为15~32的18个工厂中选择一个去实习,设“小明在甲城市实习”为事件A,“小明在乙城市且编号为3的倍数的工厂实习”为事件B,则P(A+B)=()A.325 B.58 C.916 D.14解析P(A+B)=P(A)+P(B)=1432+632=58.答案 B基础达标一、选择题1.若A,B是互斥事件,则()A.P(A∪B)<1B.P(A∪B)=1C.P(A∪B)>1D.P(A∪B)≤1解析∵A,B互斥,∴P(A∪B)=P(A)+P(B)≤1(当A,B对立时,P(A∪B)=1). 答案 D2.某射手在一次射击中,射中10环、9环、8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为()A.0.5B.0.3C.0.6D.0.9解析此射手在一次射击中不超过8环的概率为1-0.2-0.3=0.5,故选A.答案 A3.从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13 B.14 C.16 D.112解析 从1,2,3,4中选取两个不同数字组成所有两位数为:12,21,13,31,14,41,23,32,24,42,34,43,共12个样本点,其中能被4整除的有:12,24,32,共3个样本点,所以这个两位数能被4整除的概率为p =312=14. 答案 B4.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78解析 由题意知4位同学各自在周六、周日两天中任选一天参加公益活动,有16种不同的选法,周六、周日都有同学参加公益活动有16-2=14(种)不同的选法,所以所求的概率为1416=78. 答案 D5.下列四种说法:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B ); ③若事件A ,B ,C 彼此互斥,则P (A )+P (B )+P (C )=1; ④若事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件. 其中错误的个数是( ) A.0B.1C.2D.3解析 对立事件一定是互斥事件,故①对;只有A ,B 为互斥事件时才有P (A +B )=P (A )+P (B ),故②错; 因A ,B ,C 并不一定包括随机试验中的全部样本点, 故P (A )+P (B )+P (C )并不一定等于1,故③错; 若A ,B 不互斥,尽管P (A )+P (B )=1, 但A ,B 不是对立事件,故④错. 答案 D 二、填空题6.口袋中有若干个大小形状完全相同的红球、黄球与蓝球,随机摸出一球,是红球的概率为0.45,是红球或黄球的概率为0.64,则摸出是红球或蓝球的概率是________.解析 由题意,得摸出是黄球的概率为0.64-0.45=0.19, ∴摸出是红球或蓝球的概率为:1-0.19=0.81. 答案 0.817.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________.解析 由题意知事件“甲夺得冠军”与“乙夺得冠军”互斥,故所求事件的概率为37+14=1928. 答案 19288.向三个相邻的军火库投一枚炸弹,炸中第一个军火库的概率为0.025,炸中第二、三个军火库的概率均为0.1,只要炸中一个,另两个也会发生爆炸,三个军火库都爆炸的概率为________.解析 设A 、B 、C 分别表示炸弹炸中第一、第二、第三军火库这三个事件,D 表示三个军火库都爆炸,则P (A )=0.025,P (B )=0.1,P (C )=0.1.其中A 、B 、C 互斥,故P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225. 答案 0.225 三、解答题9.一名射击运动员在一次射击中射中10环,9环,8环,7环,7环以下的概率分别为0.24,0.28,0.19,0.16,0.13.计算这名射击运动员在一次射击中: (1)射中10环或9环的概率; (2)至少射中7环的概率; (3)射中环数小于8环的概率.解 设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A ,B ,C ,D ,E ,可知它们彼此之间互斥,且P (A )=0.24,P (B )=0.28,P (C )=0.19,P (D )=0.16,P (E )=0.13.(1)P (射中10环或9环)=P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.(2)事件“至少射中7环”与事件E “射中7环以下”是对立事件,则P (至少射中7环)=1-P (E )=1-0.13=0.87. 所以至少射中7环的概率为0.87.(3)事件“射中环数小于8环”包含事件D “射中7环”与事件E “射中7环以下”两个事件,则P (射中环数小于8环)=P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29.10.袋中装有红球、黑球、黄球、绿球共12个.从中任取一球,取到红球的概率是13,取到黑球或黄球的概率是512,取到黄球或绿球的概率是512.试求取到黑球、黄球、绿球的概率各是多少.解 从袋中任取一球,记事件“取到红球”“取到黑球”“取到黄球”和“取到绿球”分别为A ,B ,C ,D ,则事件A ,B ,C ,D 显然是两两互斥的.由题意得⎩⎪⎨⎪⎧P (A )=13,P (B +C )=512,P (C +D )=512,P (A +B +C +D )=1, 则⎩⎪⎨⎪⎧P (B )+P (C )=512,P (C )+P (D )=512,13+P (B )+P (C )+P (D )=1,解得⎩⎪⎨⎪⎧P (B )=14,P (C )=16,P (D )=14,故取到黑球的概率是14,取到黄球的概率是16,取到绿球的概率是14.能力提升11.设事件A 的对立事件为B ,已知事件B 的概率是事件A 的概率的2倍,则事件A 的概率是________.解析 由题意得⎩⎨⎧P (A )+P (B )=1,P (B )=2P (A ),解得P (A )=13,P (B )=23. 答案 1312.某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:(1)求有4人或5(2)求至少有3人外出家访的概率.解 (1)设派出2人及以下为事件A ,3人为事件B ,4人为事件C ,5人为事件D ,6人及以上为事件E ,则有4人或5人外出家访的事件为事件C 或事件D ,C ,D 为互斥事件,根据互斥事件概率的加法公式可知,P (C +D )=P (C )+P (D )=0.3+0.1=0.4.(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,p =1-P (A )=1-0.1=0.9.创新猜想13.(多填题)掷一枚骰子的试验中,出现各点的概率为16,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件B -的概率为P (B -)=________,事件A +B - (B -表示事件B 的对立事件)发生的概率为________.解析 由题意知,B -表示“大于或等于5的点数出现”,则P (B -)=26=13,事件A 与事件B -互斥,由概率的加法计算公式可得P (A +B -)=P (A )+P (B -)=26+26=46=23. 答案 13 2314.(多填题)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是________,任取出2粒恰好不同色的概率是________.解析易知事件“从中取出2粒都是黑子”和“从中取出2粒都是白子”为互斥事件,故所求的概率为17+1235=1735.不同色的概率为1-1738=1835.答案17351835。
概率的基本性质(614)

P244-练习10 :抛掷一红一绿两颗质地均匀的六面体骰子,记下骰子朝上面的点数,若用x表示红色 骰子的点数,用y表示绿色骰子的点数,用(x,y)表示一次试验的结果,设A=“两个点数之和等 于8”,B=“至少有一颗骰子的点数为5”,C=“红色骰子上的点数大于4” (1)求事件A,B,C的概率;(2)求 A B, A B 的概率.
(4)统计某班同学们的数学测试成绩,事件“所有同学的成绩都大于60分”
的对立事件为“所有同学的成绩都小于60分”. ( × )
(5)若P(A)+P(B)=1,则事件A与B为对立事件. ( × )
掷骰子:A={1,2,3},B={1,3,5} A,B既不互斥也不对立
巩固——概率性质的运用
P241-例12.为了推广一 种饮料,某饮料生产企业开展了有奖促销活动:
能中奖的样本数为18个, P(能中奖) 18 3. 30 5
巩固——概率性质的运用
P242-1.已知, (1)若B⊆A,则P(A∪B)=_____,P(AB)=_______.
命中 环数
6
7
8
9 10
(2)若A,B互斥,则(A∪B)=_____,P(AB)=__0_____.
频率 0.1 0.15 0.25 0.3 0.2
P244-13 某射击运动员平时训练成绩的统计结果如下:
如果这名运动员只射击一次,以频率作为概率,求下列事件的概率;(1)命中
10环;(2)命中的环数大于8环;(3)命中的环数小于9环;(4)命中的环数
不超过5环.
分析:事件为命中某一 环数互斥
解:用x表示命中的环数,由频率表可得.
1 P(x 10) 0.2
解:样本空间可表示为 {(x, y) | x, y {1, 2,3, 4,5,6}} . ,n 36
概率的基本性质

描述事件发生的可能性大小的量度,记作 P(E),其中E为事件。
必然事件
不可能事件
指在一定条件下,一定发生的事件。其概 率为1。
指在一定条件下,一定不发生的事件。其 概率为0。
概率的公理化定义
公理化定义
基于公理体系的定义方式,通 过公理化方法,将概率定义为 一种满足特定性质的数学对象
。
可数性公理
所有的可能结果都是可数的, 即可以列出所有可能的结果。
04
CATALOGUE
概率的乘法规则
独立事件的乘法规则
定义
如果两个事件A和B相互独立,那么 P(A∩B) = P(A)P(B)。
解释
如果事件A和B是独立的,那么事件A 的发生与否不会影响事件B的发生,反 之亦然。因此,两个独立事件的概率 乘积等于它们各自的概率。
互斥事件的乘法规则
定义
如果两个事件A和B互斥,那么P(A∩B) = 0 。
02
CATALOGUE
概率的基本性质
非负性
总结词
所有概率值都是非负的。
详细描述
根据概率的定义,任何事件的概率值都是非负的,即大于等于零。这是因为概 率被定义为事件发生的次数除以所有可能事件的次数,因此其值不可能为负数 。
规范性
总结词
所有事件的概率总和为1。
详细描述
在一个有限概率空间中,所有事件的概率总和等于1。这是概率的规范性性质,它确保了所有可能的后果被完全 考虑在内,并且每个后果的概率都被正确地分配。
方差的性质
方差的大小取决于随机变量的取值范围和分布形状 ,方差越小,随机变量的取值越集中,分布越稳定 。
方差的计算公式
方差是每个样本点与均值的差的平方的平均 值。
概率的基本性质

概率的基本性质概率是用来描述随机事件发生的可能性的数学工具。
在统计学和数学中,概率具有一些基本的性质。
本文将介绍概率的基本性质,包括概率的定义、概率的性质以及概率的运算性质。
一、概率的定义:1. 随机事件:随机事件是对结果不确定的事件的称呼,例如掷硬币的结果可能是正面或反面,这就是一个随机事件。
2. 样本空间:所有可能结果的集合称为样本空间,用S表示。
例如,掷硬币的样本空间是{正面,反面}。
3. 事件:样本空间的子集称为事件,用A、B等表示。
例如,正面朝上是一个事件。
4. 概率:概率是随机事件发生的可能性的度量,用P(A)表示。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
二、概率的性质:1. 非负性:对于任何事件A,有0≤P(A)≤1。
2. 必然事件的概率:对于样本空间S,有P(S) = 1,即必然事件发生的概率为1。
3. 不可能事件的概率:对于空集∅,有P(∅) = 0,即不可能事件发生的概率为0。
4. 互斥事件的概率:如果两个事件A和B不可能同时发生,称它们为互斥事件,则有P(A∪B) = P(A) + P(B)。
5. 加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
这个公式表示事件A和B同时发生的概率等于各自发生的概率之和减去它们共同发生的概率。
6. 对立事件的概率:对于事件A的对立事件,记为A',有P(A') = 1 - P(A)。
这个公式表示事件A不发生的概率等于1减去事件A发生的概率。
三、概率的运算性质:1. 乘法规则:对于任意两个事件A和B,有P(A∩B) = P(B|A)P(A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率。
2. 全概率公式:对于一组互斥的事件B1,B2,...,Bn,它们的并集为样本空间S,有P(A) = ΣP(A|Bi)P(Bi),其中Σ表示求和。
3. 贝叶斯公式:对于一组互斥的事件B1,B2,...,Bn,它们的并集为样本空间S,有P(Bi|A) = P(A|Bi)P(Bi)/ΣP(A|Bj)P(Bj),其中P(Bi|A)表示在事件A发生的条件下事件Bi发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 概率的加法公式 ( 互斥事件至少 有一个发生的概率)
在掷骰子实验中,事件A={出现点1};
B={出现点2};C={出现的点数小于3};
A
B
C=A∪B
P(C)=p(A∪B)=p(A)+p(B)=1/6+1/6=1/3 当事件A与B互斥时, A∪B发生的概率为 P(A∪B)=P(A)+P(B)
3) 对立事件有一个发生的概率
题 2.1 1 ()求 A的 B 方 (2)求 程 SOA 的 ; B 最 .
AB: x0x y0yb2,
A
dH O
B
P O到AB的距离d为 b2 x02 y02
| AB|2 |OA|2 d2
2 b2(
b2
)2
2b
x02 y02 b2
x02 y02
x02 y02
1
b3
S |AB |d
2
x02y02b2 . x02y02
已知:诸葛亮的成功概率为0.90. 三个臭皮匠相互独立的成功概率 分别为:0.6,0.5,0.5. 证明:三个臭皮匠抵个诸葛亮.
.
频率 f n ( A ) 是
英
概率 P ( A )的
法
近似值 , 概率
南斯拉夫
是频率的稳
英
定值 .
在相同条件n下 次重 试复 ,验 观察事A是 件否
发生 ,称n次试验中A事 出件 现的次nA 数 为为
若某事件发生当且仅当事件A或事 件B发生,则称此事件为事件A与事件 B的并事件(或和事件),记作A事件发生当且仅当事件A且 事件B发生,则称此事件为事件A与事 件B的交事件(或积事件),记作 A∩B(或AB)。
A A∩B B
若A∩B为不可能事件(A∩B= ),
题 2.1 1 ()求 A的 B 方 (2)求 程 SOA 的 ; B 最 .
A
dH
O
B
P
S1|AB |db3 2
x02y02b2 x02y02
令 tx0 2y0 2b2,y0 2a b2 2(a2x0 2)
令t
x02 y02 b2
a2 b2 a2
x02
a2 b2
b3t
b3
S t2 b2 b2
.
记出现“1点”,“2点”,…, “6点”分别为事件A1,A2,…, A6, 记“出现偶数点”为事件 P“ B( . 出现偶数)= 点”
解: N A52 218
lg3
lg9;lg1
3 lg
1 33 9
.
T2.0,1,,.9..可重复数字的三位个数数的 为252个.
解 :N910 1 09A 9 2252
.
T 3 A 2 2 .(A N 6 6 2 A 3 3 A 3 3 ) 2 (7 2 7)0 2 12
.
T4 C .1 3 N 64C 4 3C 4 2C 11 247
.
(2)某战士射击一次,击中 环数大于7的概率为0.6,击中 环数是6或7或8的概率为0.3, 则该战士击中环数大于5的概 率为0.6+0.3=0.9,对吗?为什 么?
2.甲、乙两个下棋,和棋的概 率为1/2,乙获胜的概率为1/3, 求:
(1)甲获胜的概率;P1
1111 23 6
(2)甲不输的概率。
.
试一试 判断事件A, B 是否为互斥, 相互独立事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第 1球罚中”, 事件B表示“第2球罚中”.
2.袋中有4个白球, 3个黑球, 从袋中取1球. 事件A:“取出的是白球”.事件B:“取出的是
黑3.球袋”中有4个白球, 3个黑球, 从袋中依此取 2球.事件A:“第一次取出的是白球”.事件 B:“第二次取出的是黑球” ( 不放回抽取)
事件 A出现的频 , fn(数 A).nnA为A出现的频 . 率
定义1:在一定条件下必然要发生的事件叫 必然事件。
例如:①木柴燃烧,产生热量; ②抛一石块,下落.
定义2:在一定条件下不可能发生的事件叫 不可能事件。
例如:③在常温下,焊锡熔化; ④在标准大气压下,且温度低于0℃时,冰融化.
定义3:在一定条件下可能发生也可能不 发生的事件叫随机事件。
O
B
OA PA 0
P ( x1, y1 ) ( x1 x0 , y1 y0 ) x12 x1 x0 y12 y1 y0 x1 x0 y1 y0 x12 y12 b2
同理 OB, PB0
x2x0y2y0 x22y22 b2
A, B均 在x直 0xy线 0yb2上 ,
AB :x0xy0y. b2.
在掷骰子试验中,事件“出现 偶数点”可以由哪些结果组成? 基本事件特点: (1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可 以表示成基本事件的和.
.
例1.从字母a,b,c,d中 任意取出两个不同字母的 实验中,有哪些基本事件?
.
探究公式
(1)在抛掷一枚硬币观察哪个面向上 的试验中“正面朝上”和“反面朝 上”这2个基本事件的概率分别是 多(2)少在?抛掷一枚骰子的试验中,出现 “1点”、“2点”、“3点”、“4 点”、“5点”、“6点”这6个基 本事件的概率分别是多少? (3)在掷骰子的试验中,事件“出 现偶数点”发生的概率是多少?
A D {次品 0,1,2 数 ,3,4,5,为 6,7,8} .
二:概率的基本性质
1.概率P(A)的取值范围
1) 必然事件B一定发生, 则 P(B)=1 2) 不可能事件C一定不发生, 则p(C)=0 3) 随机事件A发生的概率为 0<P(A) <1
4) 若A B, 则 p(A) P(B)
概率P(A)的取值范围: 0P(A)1
P2
1 2
1 6
2 3
相互独立事件及其同时发生的概率
1、事件的相互独立性
设A,B为两个事件,如果 P(AB)=P(A)P(B), 则称事件A与事件B相互独立。
即事件A(或B)是否发生,对事件B(或A)发 生的概率没有影响,这样两个事件叫做相互 独立事件。
已知:诸葛亮的成功概率为0.90. 三个臭皮匠的相互独立成功概率 分别为:0.6,0.5,0.5. 证明:三个臭皮匠抵. 个诸葛亮.
.
2.某检查员从一批产品中抽取8 件进行检查,观察其中的次品 数,记:A ={次品数少于5件}
B ={次品数恰有2件} C ={次品数多于3件} D ={次品数至少有1件}
A∩C=________.
A∩C={次品数为4}
.
2.某检查员从一批产品中抽取8 件进行检查,观察其中的次品 数,记:A ={次品数少于5件}
注: ①区别:互斥、对立事件和相互独立事件 的区别:
②如果事件A与B相互独立,那么A与B, A与B,A与B是不是相互独立的
相互独立
.
2、相互独立事件同时发生的概率公式: 两个相互独立事件A,B同时发生,即事件A•B发生
的概率为:P (A B )P (A )P (B )
一般地,如果事件A1,A2……,An相互独立, 那么这n个事件同时发生的概率等于每个事件 发生的概率的积,即 P(A1·A2……An)=P(A1)·P(A2)……P(An)
4.袋中有4个白球, 3个黑球, 从袋中依此取2 球.事件A为“第一次取出的是白球”.事件B为 “第二次取出的是白球”. ( 放回抽取)
.
.
问题情境 考察两个试验: (1)抛掷一枚质地均匀的硬币的试验; (2)掷一颗质地均匀的骰子的试验。
分别说出上述两试验的所有可 能的实验结果是什. 么?
每个结果之间都有什么关系?
B ={次品数恰有2件} C ={次品数多于3件} D ={次品数至少有1件}
B∩C =_____.
BC .
2.某检查员从一批产品中抽取8 件进行检查,观察其中的次品 数,记:A ={次品数少于5件}
B ={次品数恰有2件} C ={次品数多于3件} D ={次品数至少有1件}
AD_________
.
T13N. 10树状图列举
.
T1N 4. C3232321 1)甲乙相A同 B , 2) 甲 乙 不A相 B A同 C \B, C A,B,C
.
TN 1 A 5 7 4 2 .A 6 3 A 2 2 A 5 2 A 2 2 A 2 2 440
.
TN 1 (A 6 8 3 A .7 2 ) 2 (C 8 2 A 3 3 C 7 1 A 7 2 ) 60
.
已知:诸葛亮的成功概率为0.90. 三个臭皮匠的相互独立成功概率分别为:0.6, 0.5,0.5. 证明:三个臭皮匠抵个诸葛亮.
.
卷8.CBCC ;BCDC;B1,四 C;(0, 1),1;3; 16 8
4,3 55 2;4;3, 6;(3,1).
2
4
6.某 国 际 会 议 在 杭 州 ,为举做行好 服 务 ,工 作
b
.
b
b a2 b2
排 列 与 组(二 合)C综 BD 合CB; 1C; 41;; 4280 9, 0910n;66;10;1;02;144;600.T217(2)(3)不 能(1)用 . T1从 .1,3,5中 ,7,取 9 不a同 b,得l的 ga-lg的 b 不 同 值 的1个 8. 数 是
t
t
.
题 2.1 1 ()求 A的 B 方 (2)求 程 SOA 的 ; B 最 .
A
H
O
B
P
b3t
b3
St2b2 tb2 (0t
a2b2)
t
1 a2 b2 b,ba 2b时,
b3 a2 b2
Smax
a2
2 a2 b2 b, a 2b时,
b a2 b2
Smax