高三数学第一轮复习 函数与方程教案 文

合集下载

高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.

第06讲 函数与方程(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第06讲 函数与方程(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第06讲函数与方程(5类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的命题载体内容,通常会结合其他知识点考查,需要掌握函数零点的定义,难度不定,分值为5-6分【备考策略】1.结合学过的函数图象,了解函数的零点与方程解的关系,会判断函数零点所在区间及零点个数2.结合具体连续函数及其图象的特点,了解函数零点存在定理3.了解用二分法求方程的近似解,能借助计算工具用二分法求方程近似解【命题预测】本节内容通常以函数为载体,考查函数零点,是新高考复习的重要内容1、函数的零点一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。

2、零点存在性定理如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响如果一个连续函数是单调函数,那么它的零点至多有一个。

因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。

要分析()f x 的性质与图象,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。

如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图象影响。

2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

2025届高中数学一轮复习课件:第三章 第8讲函数与方程(共84张PPT)

高考一轮总复习•数学
第25页
对点练 1(1)(2024·山西临汾模拟)函数 f(x)=log8x-31x的零点所在的区间是(
)
A.(0,1) B.(1,2) C.(2,3) D.(3,4)
(2)已知函数 f(x)=logax+x-b(a>0,且 a≠1).当 2<a<3<b<4 时,函数 f(x)的零点 x0
A.(0,1)
B.(1,2)
C.(2,3)(2)设函数 f(x)=13x-ln x,则函数 y=f(x)( ) A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1(1,e)内均无零点 C.在区间1e,1内有零点,在区间(1,e)内无零点 D.在区间1e,1内无零点,在区间(1,e)内有零点
Δ<0
__无__交__点____ ____无______
第10页
高考一轮总复习•数学
第11页
常/用/结/论 1.有关函数零点的结论 (1)若连续不断的函数 f(x)在定义域上是单调函数,则 f(x)至多有一个零点; (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号; (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.对于函数来说, 零点有与 x 轴相切的零点. 2.f(a)f(b)<0 是 y=f(x)在闭区间[a,b]上有零点的充分不必要条件.
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 函数零点 1.定义:对于函数 y=f(x)(x∈D),把满足___f(_x_)=__0___的实数 x 叫做函数 y=f(x)(x∈D) 的零点.

高考数学第一轮复习教案-专题2函数概念与基本初等函数

高考数学第一轮复习教案-专题2函数概念与基本初等函数
函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因 为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数 才是同一函数. (3)反函数
反函数的定义
设函数 y f (x)(x A) 的值域是 C,根据这个函数中 x,y 的关系,用 y 把 x 表
高考数学第一轮复习教案汇总【精华】
专题二 函数概念与基本初等函数
一、考试内容: 映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系. 指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用. 二、考试要求: (1)了解映射的概念,理解函数的概念. (2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法. (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数. (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和 性质. (5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、命题热点
y f 1(x)
(二)函数的性质 函数的单调性
定义:对于函数 f(x)的定义域 I 内某个区间上的任意两个自变量的值 x1,x2, ⑴若当 x1<x2 时,都有 f(x1)<f(x2),则说 f(x)在这个区间上是增函数; ⑵若当 x1<x2 时,都有 f(x1)>f(x2),则说 f(x) 在这个区间上是减函数.
奇函 数的定 义:如果 对于函 数f(x)的定 义域内 任意一 个x,都有 f(-x)=-f(x),那么 函数f(x)就叫 做奇函 数.

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

2022高考数学一轮总复习第二章函数概念与基本初等函数第1讲函数及其表示学案文(含答案)

高考数学一轮总复习学案:第1讲函数及其表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A)对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.直线x =a (a 是常数)与函数y =f (x )的图象有0个或1个交点. 2.几个常用函数的定义域(1)分式型函数,分母不为零的实数集合. (2)偶次方根型函数,被开方式非负的实数集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}.(5)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是相等函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(3)若集合A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (4)分段函数是由两个或几个函数组成的.( )(5)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)√ (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)解分段函数不等式时忘记范围; (3)用换元法求解析式,反解时忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(多维探究) 角度一 求函数的定义域(1)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1](2)(2020·高考北京卷)函数f (x )=1x +1+ln x 的定义域是________. 【解析】 (1)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .(2)函数f (x )=1x +1+ln x 的自变量满足⎩⎪⎨⎪⎧x +1≠0,x >0,所以x >0,即定义域为(0,+∞).【答案】 (1)B (2)(0,+∞)求解函数定义域的策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f [g (x )]的定义域;②若y =f [g (x )]的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简. (2)求出定义域后,一定要将其写成集合或区间的形式. 角度二 已知函数的定义域求参数(1)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( )A .-2B .-1C .1D .2(2)若函数y =ax +1ax 2-4ax +2的定义域为R ,则实数a 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,12B .⎝ ⎛⎭⎪⎫0,12C . ⎣⎢⎡⎦⎥⎤0,12 D .⎣⎢⎡⎭⎪⎫0,12 【解析】 (1)因为-2x +a >0, 所以x <a2,所以a2=1,所以a =2.(2)由ax 2-4ax +2>0恒成立, 得a =0或⎩⎪⎨⎪⎧a >0,Δ=(-4a )2-4×a ×2<0,解得0≤a <12. 【答案】 (1)D (2)D已知函数定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( )A .(2,+∞)B .(1,2)C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2] 3.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:因为函数y =mx -1mx 2+4mx +3的定义域为R ,所以mx 2+4mx +3≠0,所以m =0或⎩⎪⎨⎪⎧m ≠0,Δ=16m 2-12m <0,即m =0或0<m <34, 所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.答案:⎣⎢⎡⎭⎪⎫0,34求函数的解析式(师生共研)(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )的解析式为________________.(2)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )的解析式为________________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________________.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为______________. 【解析】 (1)(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1, 所以f (t )=lg2t -1, 即f (x )的解析式是f (x )=lg2x -1(x >1). (2)(配凑法)因为f ⎝⎛⎭⎪⎫x 2+1x 2=⎝ ⎛⎭⎪⎫x 2+1x 22-2,所以f (x )=x 2-2,x ∈[2,+∞).(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (4)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg 2x -1(x >1) (2)f (x )=x 2-2,x ∈[2,+∞) (3)f (x )=x 2-x +3 (4)f (x )=2x求函数解析式的4种方法(1)配凑法:由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),得f (x )的表达式.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=_______. 解析:方法一(换元法):令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).方法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,则f (x )=________________. 解析:因为2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,① 把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)3.已知函数f (x +1)=x +2x ,则f (x )的解析式为________________. 解析:方法一(换元法):设t =x +1,则x =(t -1)2,t ≥1,代入原式得f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.方法二(配凑法):因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1, 即f (x )=x 2-1,x ≥1. 答案:f (x )=x 2-1(x ≥1)分段函数(多维探究) 角度一 分段函数求值(1)设函数f (x )=⎩⎪⎨⎪⎧x 2-2x,x ≤0,f (x -3),x >0,则f (5)的值为( )A .-7B .-1C .0D .12(2)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f [f (-9)]=________.(3)(2021·广东省七校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2(3-x ),x ≤02x -1,x >0,若f (a -1)=12,则实数a =________.【解析】 (1)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D .(2)因为函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,所以f (-9)=lg 10=1,所以f [f (-9)]=f (1)=-2.(3)当a -1≤0,即a ≤1时,log 2(4-a )=12,4-a =212,故a =4-212,不满足a ≤1,舍去.当a -1>0,即a >1时,2a -1-1=12,2a -1=32,解得a =log 23,满足a >1.综上可得a =log 23.【答案】 (1)D (2)-2 (3)log 23分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f [f (a )]的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程(1)已知函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <0,3x ,x ≥0,若f [f (-1)]=9,则实数a =( )A .2B .4C .133D .4或133(2)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0,若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8【解析】 (1)因为-1<0,所以f (-1)=a -2, 所以f (a -2)=9. 当a -2≥0,即a ≥2时, 3a -2=9,解得a =4.当a -2<0,即a <2时,2(a -2)+a =9,解得a =133(舍去).综上可知a =4.故选B . (2)由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=8.当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D .【答案】 (1)B (2)D(1)若分段函数中含有参数,则直接根据条件选择相应区间上的解析式代入求参; (2)若是求自变量的值,则需要结合分段区间的范围对自变量进行分类讨论,再求值. 角度三 分段函数与不等式(一题多解)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 方法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.所以不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即为1<2-2x ,解得x <0.所以不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .方法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,只有当⎩⎪⎨⎪⎧2x <0,x +1≥0或2x <x +1<0时,满足f (x +1)<f (2x ),故x <0,所以不等式f (x +1)<f (2x )的解集为(-∞,0).【答案】 D涉及与分段函数有关的不等式问题,主要表现为解不等式,当自变量取值不确定时,往往要分类讨论求解;当自变量取值确定,但分段函数中含有参数时,只需依据自变量的情况,直接代入相应解析式求解.1.(2021·长沙市统一模拟考试)已知函数f (x )=⎩⎪⎨⎪⎧log 3 x ,x >0,x 2,x ≤0,则f [f (-3)]=( )A .-2B .2C .-1D .1解析:选D .f (-3)=3,则f [f (-3)]=f (3)=log 33=1.故选D .2.设f (x )=⎩⎪⎨⎪⎧3-x+a ,x ≤2,f (x -1),x >2,若f (3)=-89,则实数a =( )A .1B .-1C .19D .0解析:选B .f (3)=f (3-1)=f (2)=3-2+a =-89,解得a =-1.3.(2021·六校联盟第二次联考)已知函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0,若f (x -4)>f (2x -3),则实数x 的取值范围是( )A .(-1,+∞)B .(-∞,-1)C .(-1,4)D .(-∞,1)解析:选C .函数f (x )=⎩⎪⎨⎪⎧1+x 2,x ≤0,1,x >0在(-∞,0]上是减函数,在(0,+∞)上函数值保持不变,若f (x -4)>f (2x -3),则⎩⎪⎨⎪⎧x -4<0,2x -3≥0或x -4<2x -3≤0,解得x ∈(-1,4).故选C .4.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:由题可知,1-a 与1+a 异号,当a >0时,1-a <1,1+a >1, 所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去).当a <0时,1-a >1,1+a <1, 所以-1+a -2a =2+2a +a , 解得a =-34.答案:-34核心素养系列2 数学抽象——函数的新定义问题定义函数问题是指给出阅读材料,设计一个陌生的数学情境,定义一个新函数,并给出新函数所满足的条件或具备的性质;或者给出函数,再定义一个新概念(如不动点),把数学知识与方法迁移到这段阅读材料,考生需捕捉相关信息,通过归纳、探索,发现解题方法,然后解决问题.若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列四个函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos (πx ).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .②④ C .①②D .③④【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,所以①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,所以②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,所以③不是“1的饱和函数”;对于④,注意到f ⎝ ⎛⎭⎪⎫13+1=cos 4π3=-12,f ⎝ ⎛⎭⎪⎫13+f (1)=cos π3+cos π=-12,即f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫13+f (1),所以④是“1的饱和函数”.综上可知,其中是“1的饱和函数”的所有函数的序号是②④.【答案】 B处理新定义函数问题的常用方法(1)联想背景:有些题目给出的新函数是以熟知的初等函数(如一次函数、二次函数、指数函数、对数函数、三角函数等)为背景定义的,可以通过阅读材料,分析有关信息,联想背景函数及其性质,进行类比,捕捉解题灵感,然后解决问题.(2)紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.(3)巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.(4)构造函数:有些定义型函数可看成是由两个已知函数构造而成的.1.对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数,下列函数中是准偶函数的是( )A .f (x )=xB .f (x )=x 2C .f (x )=tan xD .f (x )=cos (x +1)解析:选D .由题意可得准偶函数的图象关于直线x =a (a ≠0)对称,即准偶函数的图象存在不是y 轴的对称轴.选项A ,C 中函数的图象不存在对称轴,选项B 中函数的图象的对称轴为y 轴,只有选项D 中的函数满足题意.2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3;③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④解析:选C .对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .。

新人教A版版高考数学一轮复习第二章函数概念与基本初等函数函数与方程教案文

新人教A版版高考数学一轮复习第二章函数概念与基本初等函数函数与方程教案文

一、知识梳理1.函数的零点函数零点的概念对于函数y =f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y =f(x)(x∈D)的零点方程的根与函数零点的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点函数零点的存在性定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,若f(a)·f (b)<0,则y=f(x)在(a,b)内存在零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.二、习题改编1.(必修1P92A组T5改编)函数f(x)=ln x—错误!的零点所在的大致范围是()A.(1,2)B.(2,3)C.错误!和(3,4)D.(4,+∞)答案:B2.(必修1P88例1改编)f(x)=e x+3x的零点个数是()A.0 B.1C.2D.3答案:B3.(必修1P92A组T4改编)函数f(x)=x错误!—错误!错误!的零点个数为.答案:1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.()(3)二次函数y=ax2+bx+c(a≠0)在b2—4ac<0时没有零点.()(4)若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.()答案:(1)×(2)×(3)√(4)√二、易错纠偏错误!(1)忽略限制条件致误;(2)错用零点存在性定理致误.1.函数f(x)=(x—1)ln(x—2)的零点个数为()A.0 B.1C.2D.3解析:选B.由x—2>0,得x>2,所以函数f(x)的定义域为(2,+∞),所以当f(x)=0,即(x—1)ln(x—2)=0时,解得x=1(舍去)或x=3.2.已知函数f(x)=2ax—a+3,若∃x0∈(—1,1),使得f(x0)=0,则实数a的取值范围是.解析:依题意可得f(—1)·f(1)<0,即(—2a—a+3)(2a—a+3)<0,解得a<—3或a>1.答案:(—∞,—3)∪(1,+∞)函数零点所在区间的判断(师生共研)(一题多解)函数f(x)=log3x+x—2的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】法一(定理法):函数f(x)=log3x+x—2的定义域为(0,+∞),并且f(x)在(0,+∞)上单调递增,图象是一条连续曲线.由题意知f(1)=—1<0,f(2)=log32>0,f(3)=2>0,根据零点存在性定理可知,函数f(x)=log3x+x—2有唯一零点,且零点在区间(1,2)内.法二(图象法):函数f(x)的零点所在的区间转化为函数g(x)=log3x,h(x)=—x+2图象交点的横坐标所在的范围.作出两个函数的图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.【答案】B错误!判断函数零点所在区间的方法方法解读适合题型定理法利用函数零点的存在性定理进行判断能够容易判断区间端点值所对应函数值的正负图象法画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断容易画出函数的图象设f(x)=3x—x2,则在下列区间中,使函数f(x)有零点的区间是()A.[0,1] B.[1,2]C.[—2,—1] D.[—1,0]解析:选D.因为f(x)=3x—x2,所以f(—1)=3—1—1=—错误!<0,f(0)=30—0=1>0,所以f(—1)·f(0)<0.函数零点个数的判断(师生共研)(一题多解)函数f(x)=错误!的零点个数为()A.3B.2C.1D.0【解析】法一(方程法):由f(x)=0,得错误!或错误!解得x=—2或x=e.因此函数f(x)共有2个零点.法二(图形法):函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点.【答案】B错误!判断函数零点个数的3种方法(1)方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点.(3)图形法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.已知函数f(x)=错误!则f(x)的零点个数为()A.0 B.1C.2D.3解析:选C.当x>1时,令f(x)=ln(x—1)=0,得x=2;当x≤1时,令f(x)=2x—1—1=0,得x=1.故选C.函数零点的应用(师生共研)设函数f(x)=错误!(1)若a=1,则f(x)的最小值为;(2)若f(x)恰有2个零点,则实数a的取值范围是.【解析】(1)若a=1,则f(x)=错误!作出函数f(x)的图象如图所示.由图可得f(x)的最小值为—1.(2)当a≥1时,要使f(x)恰有2个零点,需满足21—a≤0,即a≥2,所以a≥2;当a<1时,要使f(x)恰有2个零点,需满足错误!解得错误!≤a<1.综上,实数a的取值范围为错误!∪[2,+∞).【答案】(1)—1(2)错误!∪[2,+∞)错误!利用函数零点求参数取值范围的方法及步骤(1)常用方法(2)一般步骤1.函数f(x)=2x—错误!—a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)解析:选C.由题意,知函数f(x)在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以错误!即错误!解得0<a<3,故选C.2.已知函数f(x)=错误!若函数g(x)=f(x)—m有3个零点,则实数m的取值范围是.解析:画出函数f(x)=错误!的图象,如图所示.由于函数g(x)=f(x)—m有3个零点,结合图象得0<m<1,即m∈(0,1).答案:(0,1)3.若函数f(x)=4x—2x—a,x∈[—1,1]有零点,则实数a的取值范围是.解析:因为函数f(x)=4x—2x—a,x∈[—1,1]有零点,所以方程4x—2x—a=0在[—1,1]上有解,即方程a=4x—2x在[—1,1]上有解.方程a=4x—2x可变形为a=错误!错误!—错误!,因为x∈[—1,1],所以2x∈错误!,所以错误!错误!—错误!∈错误!.所以实数a的取值范围是错误!.答案:错误!核心素养系列5直观想象——用图形快速解决的常见几类题直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述分析数学问题,建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路.一、利用图形研究函数的性质【解析】由已知条件得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,1正确;当—1≤x≤0时,0≤—x≤1,f(x)=f(—x)=错误!错误!,函数y=f(x)的部分图象如图所示:由图象知2正确,3不正确;当3<x<4时,—1<x—4<0,f(x)=f(x—4)=错误!错误!,因此4正确,故正确命题的序号为124.【答案】124错误!作出函数图象,由图象观察可得函数的定义域、值域、最值、单调性、奇偶性、极值点等性质,并将这些性质用于转出条件求得结论.二、利用图形解不等式使log2(—x)<x+1成立的x的取值范围是.【解析】在同一直角坐标系内作出y=log2(—x),y=x+1的图象,知满足条件的x∈(—1,0).【答案】(—1,0)错误!f(x),g(x)之间大小不等关系表现为图象中的上下位置关系,画出两个函数的图象,根据函数图象的交点和图象的相对位置确定所求不等式的解集.三、利用图形求解不等式中的参数范围若不等式|x—2a|≥错误!x+a—1对x∈R恒成立,则a的取值范围是.【解析】作出y=|x—2a|和y=错误!x+a—1的简图,依题意知应有2a≤2—2a,故a≤错误!.【答案】错误!错误!对含有参数的函数不等式问题,一般将不等式化简,整理、重组、构造两个函数,一个含有参数,一个不含参数,研究两个函数的性质,画出两个函数的图象,观察参数的变化如何带动含参函数图象的变化,根据两函数图象的相对位置确定参数满足的不等式,解不等式得出参数a的取值范围.四、利用图形研究零点问题已知函数f(x)=2x+x,g(x)=log3x+x,h(x)=x—错误!的零点依次为a,b,c,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c【解析】在同一直角坐标系下分别画出函数y=2x,y=log3x,y=—错误!的图象,如图,观察它们与y=—x的交点可知a<b<c,故选A.【答案】A错误!零点的个数等价于两函数图象交点的个数,零点的范围、大小可以转化为交点的横坐标的范围、大小,参数的取值范围通过图象的变化寻找建立不等式求解.1.函数f(x)=|x—2|—ln x在定义域内的零点的个数为()A.0 B.1C.2D.3解析:选C.由题意可知f(x)的定义域为(0,+∞),在同一直角坐标系中画出函数y1=|x—2|(x>0),y2=ln x(x>0)的图象,如图所示.由图可知函数f(x)在定义域内的零点个数为2.2.已知函数f(x)=错误!若f(a2)<f(2—a),则实数a的取值范围是.解析:函数f(x)的图象如图所示,由图象知函数f(x)在(—∞,+∞)上单调递增,所以a2<2—a,解得—2<a<1,故实数a的取值范围是(—2,1).答案:(—2,1)[基础题组练]1.(2020·福州期末)已知函数f(x)=错误!则函数y=f(x)+3x的零点个数是()A.0 B.1C.2D.3解析:选C.令f(x)+3x=0,则错误!或错误!解得x=0或x=—1,所以函数y=f(x)+3x 的零点个数是2.故选C.2.下列函数中,在(—1,1)内有零点且单调递增的是()A.y=log错误!xB.y=2x—1C.y=x2—错误!D.y=—x3解析:选B.函数y=log错误!x在定义域上单调递减,y=x2—错误!在(—1,1)上不是单调函数,y=—x3在定义域上单调递减,均不符合要求.对于y=2x—1,当x=0∈(—1,1)时,y=0且y=2x—1在R上单调递增.故选B.3.(2020·甘肃酒泉敦煌中学一诊)方程log4x+x=7的解所在区间是()A.(1,2)B.(3,4)C.(5,6)D.(6,7)解析:选C.令函数f(x)=log4x+x—7,则函数f(x)是(0,+∞)上的单调递增函数,且是连续函数.因为f(5)<0,f(6)>0,所以f(5)·f(6)<0,所以函数f(x)=log4x+x—7的零点所在区间为(5,6),所以方程log4x+x=7的解所在区间是(5,6).故选C.4.(2020·内蒙古月考)已知函数f(x)=x2—2|x|—m的零点有两个,则实数m的取值范围为()A.(—1,0)B.{—1}∪(0,+∞)C.[—1,0)∪(0,+∞)D.(0,1)解析:选B.在同一直角坐标系内作出函数y=x2—2|x|的图象和直线y=m,可知当m>0或m=—1时,直线y=m与函数y=x2—2|x|的图象有两个交点,即函数f(x)=x2—2|x|—m有两个零点.故选B.5.已知函数f(x)=x e x—ax—1,则关于f(x)的零点叙述正确的是()A.当a=0时,函数f(x)有两个零点B.函数f(x)必有一个零点是正数C.当a<0时,函数f(x)有两个零点D.当a>0时,函数f(x)只有一个零点解析:选B.f(x)=0⇔e x=a+错误!(x≠0),在同一直角坐标系中作出y=e x与y=错误!的图象,观察可知A,C,D选项错误,选项B正确.6.已知函数f(x)=错误!+a的零点为1,则实数a的值为.解析:由已知得f(1)=0,即错误!+a=0,解得a=—错误!.答案:—错误!7.(2020·新疆第一次适应性检测)设a∈Z,函数f(x)=e x+x—a,若x∈(—1,1)时,函数有零点,则a的取值个数为.解析:根据函数解析式得到函数f(x)是单调递增的.由零点存在性定理知若x∈(—1,1)时,函数有零点,需要满足错误!⇒错误!—1<a<e+1,因为a是整数,故可得到a的可能取值为0,1,2,3.答案:48.已知f(x)=x2+(a2—1)x+(a—2)的一个零点比1大,一个零点比1小,则实数a的取值范围是.解析:法一:设方程x2+(a2—1)x+(a—2)=0的两根分别为x1,x2(x1<x2),则(x1—1)(x2—1)<0,所以x1x2—(x1+x2)+1<0,由根与系数的关系,得(a—2)+(a2—1)+1<0,即a2+a—2<0,所以—2<a<1.故实数a的取值范围为(—2,1).法二:函数f(x)的图象大致如图,则有f(1)<0,即1+(a2—1)+a—2<0,得a2+a—2<0,所以—2<a<1.故实数a的取值范围是(—2,1).答案:(—2,1)9.设函数f(x)=ax2+bx+b—1(a≠0).(1)当a=1,b=—2时,求函数f(x)的零点;(2)若对任意b∈R,函数f(x)恒有两个不同的零点,求实数a的取值范围.解:(1)当a=1,b=—2时,f(x)=x2—2x—3,令f(x)=0,得x=3或x=—1.所以函数f(x)的零点为3或—1.(2)依题意,f(x)=ax2+bx+b—1=0有两个不同的实根,所以b2—4a(b—1)>0恒成立,即对于任意b∈R,b2—4ab+4a>0恒成立,所以有(—4a)2—4×(4a)<0⇒a2—a<0,解得0<a<1,因此实数a的取值范围是(0,1).10.已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)—f(x)=2x—1.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)—mx的两个零点分别在区间(—1,2)和(2,4)内,求m的取值范围.解:(1)由f(0)=2得c=2,又f(x+1)—f(x)=2x—1,得2ax+a+b=2x—1,故错误!解得a=1,b=—2,所以f(x)=x2—2x+2.(2)g(x)=x2—(2+m)x+2,若g(x)的两个零点分别在区间(—1,2)和(2,4)内,则满足错误!⇒错误!解得1<m<错误!.所以m的取值范围为错误!.[综合题组练]1.(一题多解)函数f(x)=2x—错误!零点的个数为()A.0 B.1C.2D.3解析:选B.法一:当x<0时,f(x)=2x—错误!>0恒成立,无零点;又易知f(x)=2x—错误!在(0,+∞)上单调递增,最多有一个零点.又f错误!=错误!—2<0,f(1)=2—1>0,所以有一个零点.故选B.法二:在同一平面直角坐标系中,作出函数y=2x和y=错误!的图象,如图所示.函数f(x)=2x—错误!的零点等价于2x=错误!的根等价于函数y=2x和y=错误!的交点.由图可知,有一个交点,所以有一个零点.故选B.2.已知命题p:“m=2”是“幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数”的充要条件;命题q:已知函数f(x)=ln x+3x—8的零点x0∈[a,b],且b—a=1(a,b∈N*),则a+b=5.则下列命题为真命题的是()A.p∧qB.(﹁p)∧qC.﹁qD.p∧(﹁q)解析:选A.对于命题p,若幂函数f(x)=(m2—m—1)x m在区间(0,+∞)上为增函数,则错误!解得m=2,所以命题p是真命题,﹁p是假命题.对于命题q,函数f(x)=ln x+3x—8在(0,+∞)上单调递增,且f(2)=ln 2—2<0,f(3)=ln 3+1>0,所以零点x0∈[a,b],且b—a=1(a,b∈N*),则a=2,b=3,a+b=5,所以命题q为真命题,﹁q为假命题.所以p∧q 是真命题,(﹁p)∧q,﹁q,p∧(﹁q)都是假命题.故选A.3.设函数f(x)=错误!(x>0).(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求错误!+错误!的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围.解:(1)如图所示.(2)因为f(x)=错误!=错误!故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b且f(a)=f(b),得0<a<1<b,且错误!—1=1—错误!,所以错误!+错误!=2.(3)由(1)中函数f(x)的图象可知,当0<m<1时,方程f(x)=m有两个不相等的正根.所以m的取值范围是(0,1).4.(创新型)已知函数f(x)=—x2—2x,g(x)=错误!(1)求g(f(1))的值;(2)若方程g(f(x))—a=0有4个实数根,求实数a的取值范围.解:(1)利用解析式直接求解得g(f(1))=g(—3)=—3+1=—2.(2)令f(x)=t,则原方程化为g(t)=a,易知方程f(x)=t在t∈(—∞,1)上有2个不同的解,则原方程有4个解等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g (t)(t<1)的图象,如图,由图象可知,当1≤a<错误!时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是错误!.。

湘教版高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第八节 函数与方程

湘教版高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第八节 函数与方程
上的图象是一条连续不断的曲线,那么“f(a)f(b)<0”是“y=f(x)在(a,b)内有零
点”的充分不必要条件.
3.用二分法求函数零点近似值
设函数y=f(x)定义在区间D上,其图象是一条连续曲线.求它在D上的一个零
点x0的近似值x,使它与零点的误差不超过给定的正数ε,即使得|x-x0|≤ε.
(1)在D内取一个闭区间[a,b]⊆D,使f(a)与f(b)异号,即f(a)·f(b)<0;
的零点个数为3.
研考点 精准突破
考点一
判断函数零点所在的区间
题组(1)函数f(x)=log3x+x-2的零点所在的区间为(
A.(0,1)
B.(1,2)
C.(2,3)
)
D.(3,4)
(2)(2023·四川攀枝花诊断测试)已知函数f(x)=lg x+2x-7的零点在区间
(k,k+1)(k∈Z)内,则k=(
(3)已知函数 f(x)=
A.1
B.2
C.3
)
D.4
1
- ,
2
≥ 0,
则函数 y=f(f(x))的零点个数为(
ln(-), < 0,
D.4
)
答案 (1)B
(2)C
(3)C
解析 (1)当 x∈[0,3π]时,由 f(x)=sin 2x-cos x=2sin xcos x-cos x=cos x(2sin x-1)
同号.
2.连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.
常用结论
1.周期函数如果存在零点,则必有无穷个零点.
2.若f(x)=g(x)-h(x),则函数f(x)零点的个数就是函数g(x),h(x)图象交点的个数.

2024届高考一轮复习数学教案(新人教B版):函数的零点与方程的解

2024届高考一轮复习数学教案(新人教B版):函数的零点与方程的解

§2.11函数的零点与方程的解考试要求 1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称α为函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x0∈(a,b),f(x0)=0. 2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)用二分法求函数零点的近似值适合于变号零点.(√)教材改编题1.观察下列函数的图象,判断能用二分法求其零点的是()答案A解析由图象可知,B ,D 选项中函数无零点,A ,C 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.2.函数y =3x -ln x 的零点所在区间是()A .(3,4)B .(2,3)C .(1,2)D .(0,1)答案B解析因为函数的定义域为(0,+∞),且函数y =3x在(0,+∞)上单调递减;y =-ln x 在(0,+∞)上单调递减,所以函数y =3x -ln x 为定义在(0,+∞)上的连续减函数,又当x =2时,y =32-ln 2>0;当x =3时,y =1-ln 3<0,两函数值异号,所以函数y =3x -ln x 的零点所在区间是(2,3).3.函数f (x )=e x +3x 的零点个数是()A .0B .1C .2D .3答案B解析由f ′(x )=e x +3>0,所以f (x )在R 上单调递增,又f (-1)=1e-3<0,f (0)=1>0,因此函数f (x )有且只有一个零点.题型一函数零点所在区间的判定例1(1)函数f (x )=ln x +2x -6的零点所在的区间是()A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案B解析由题意得,f (x )=ln x +2x -6,在定义域内单调递增,f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,则f (2)f (3)<0,∴零点在区间(2,3)上.延伸探究用二分法求函数f (x )=ln x +2x -6在区间(2,3)内的零点近似值,至少经过________次二分后精确度达到0.1()A .2B .3C .4D .5答案C解析∵开区间(2,3)的长度等于1,每经过一次操作,区间长度变为原来的一半,经过n 次操作后,区间长度变为12n ,故有12n ≤0.1,解得n ≥4,∴至少需要操作4次.(2)(2023·蚌埠模拟)已知x 1+12x=0,x 2+log 2x 2=0,33x --log 2x 3=0,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 1答案A解析设函数f (x )=x +2x ,易知f (x )在R 上单调递增,f (-1)=-12,f (0)=1,即f (-1)f (0)<0,由函数零点存在定理可知,-1<x 1<0.设函数g (x )=x +log 2x ,易知g (x )在(0,+∞)上单调递增,=-12,g (1)=1,即(1)<0,由函数零点存在定理可知,12<x 2<1,设函数h (x )-log 2x ,易知h (x )在(0,+∞)上单调递减,h (1)=13,h (x 3)=0,因为h (1)>h (x 3),由函数单调性可知,x 3>1,即-1<x 1<0<x 2<1<x 3.思维升华确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.跟踪训练1(1)(多选)函数f (x )=e x -x -2在下列哪个区间内必有零点()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案AD解析f (-2)=1e 2>0,f (-1)=1e-1<0,f (0)=-1<0,f (1)=e -3<0,f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0,所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.题型二函数零点个数的判定例2(1)若函数f (x )=|x |,则函数y =f (x )-12log |x |的零点个数是()A .5B .4C .3D .2答案D解析在同一平面直角坐标系中作出f(x)=|x|,g(x)=12log|x|的图象如图所示,则y=f(x)-12log|x|的零点个数,即f(x)与g(x)图象的交点个数,由图可知选D.(2)已知在R上的函数f(x)满足对于任意实数x都有f(2+x)=f(2-x),f(7+x)=f(7-x),且在区间[0,7]上只有x=1和x=3两个零点,则f(x)=0在区间[0,2023]上根的个数为() A.404B.405C.406D.203答案C解析因为f(2+x)=f(2-x),f(x)关于直线x=2对称且f(5+x)=f(-x-1);因为f(7+x)=f(7-x),故可得f(5+x)=f(-x+9);故可得f(-x-1)=f(-x+9),则f(x)=f(x+10),故f(x)是以10为周期的函数.又f(x)在区间[0,7]上只有x=1和x=3两个零点,根据函数对称性可知,f(x)在一个周期[0,10]内也只有两个零点,又区间[0,2023]内包含202个周期,故f(x)在[0,2020]上的零点个数为202×2=404,又f(x)在(2020,2023]上的零点个数与在(0,3]上的零点个数相同,有2个.故f(x)在[0,2023]上有406个零点,即f(x)=0在区间[0,2023]上有406个根.思维升华求解函数零点个数的基本方法(1)直接法:令f(x)=0,方程有多少个解,则f(x)有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)(2022·泉州模拟)设定义域为R的函数f(x)x|,x>0,x2-2x,x≤0,则关于x的函数y=2f2(x)-3f(x)+1的零点的个数为() A.3B.7C.5D.6答案B解析根据题意,令2f2(x)-3f(x)+1=0,得f (x )=1或f (x )=12.作出f (x )的简图如图所示,由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为7.(2)函数f (x )=36-x 2·cos x 的零点个数为______.答案6解析令36-x 2≥0,解得-6≤x ≤6,∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 的取值为-3π2,-π2,π2,3π2.故f (x )共有6个零点.题型三函数零点的应用命题点1根据零点个数求参数例3(2023·黄冈模拟)函数f (x )-x 2,x ≤2,3(x -1),x >2,g (x )=kx -3k ,若函数f (x )与g (x )的图象有三个交点,则实数k 的取值范围为()A .(22-6,0)B .(23-6,0)C .(-2,0)D .(25-6,0)答案D解析作出函数f (x )-x 2,x ≤2,3(x -1),x >2的图象,如图所示,设与y =4-x 2相切的直线为l ,且切点为P (x 0,4-x 20),因为y ′=-2x ,所以切线的斜率为k =-2x 0,则切线方程为y -4+x 20=-2x 0(x -x 0),因为g (x )=kx -3k 过定点(3,0),且在切线l 上,代入切线方程求得x 0=3-5或x 0=3+5(舍去),所以切线的斜率为k =25-6,因为函数f (x )与g (x )的图象有三个交点,由图象知,实数k 的取值范围为(25-6,0).命题点2根据函数零点的范围求参数例4(2023·北京模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.-∞,43 B.0,43C .(-∞,0) D.43,+∞答案B解析由f (x )=3x -1+ax x=0,可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <g (-1)=3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)因此实数a 思维升华根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练3(1)函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .0<a <3B .1<a <3C .1<a <2D .a ≥2答案A解析因为函数y =2x ,y =-2x 在(0,+∞)上单调递增,所以函数f (x )=2x -2x-a 在(0,+∞)上单调递增,由函数f (x )=2x -2x -a 的一个零点在区间(1,2)内得,f (1)×f (2)=(2-2-a )(4-1-a )=(-a )×(3-a )<0,解得0<a <3.(2)(2023·唐山模拟)已知函数f (x )x >0,2x ,x ≤0,若g (x )=f (x )-a 有3个零点,则实数a的取值范围为()A .(-1,0)1C.0{-1}答案B解析设h (x )=ln xx(x >0),则h ′(x )=1-ln xx 2,令h ′(x )>0,得0<x <e ,令h ′(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以h (x )max =h (e)=1e.因为函数g (x )=f (x )-a 有3个零点,所以方程f (x )=a 有3个解.作出函数y =f (x )和y =a 的图象如图所示,所以a 1课时精练1.(2022·焦作模拟)设函数f (x )=2x +x3的零点为x 0,则x 0所在的区间是()A .(-4,-2)B .(-2,-1)C .(1,2)D .(2,4)答案B解析易知f (x )在R 上单调递增且连续,f (-2)=14-23,f (-1)=12-13>0,所以x 0∈(-2,-1).2.用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在区间和第二次应计算的函数值分别为()A .(0,0.5),f (0.125)B .(0,0.5),f (0.375)C .(0.5,1),f (0.75)D .(0,0.5),f (0.25)答案D解析因为f (0)f (0.5)<0,由函数零点存在定理知,零点x 0∈(0,0.5),根据二分法,第二次应计算f f (0.25).3.函数f (x )2-2x -3,x ≤0,2x -3x +4,x >0的零点个数为()A .1B .2C .3D .4答案C解析当x ≤0时,令f (x )=x 2-2x -3=0,得x =-1(x =3舍去),当x >0时,令f (x )=0,得log 2x =3x -4,作出y =log 2x 与y =3x -4的图象,如图所示,由图可知,y =log 2x 与y =3x -4有两个交点,所以当x >0时,f (x )=0有两个零点,综上,f (x )有3个零点.4.已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则实数m 的取值范围为()-53,(0,+∞)-∞,-53∪(0,+∞)D.-53,答案D解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,1)<0,3)≥0,<0,+53≥0,解得-53≤m <0.因此,实数m 的取值范围是-53,5.已知函数f (x )-x ,x <0,+|x -1|,x ≥0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是()A .(1,2]B .(1,2)C .(0,1)D .[1,+∞)答案A 解析因为函数g (x )=f (x )-m 有三个零点,所以函数f (x )的图象与直线y =m 有三个不同的交点,作出函数f (x )的图象,如图所示,由图可知,1<m ≤2,即m 的取值范围是(1,2].6.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点分别为x 1,x 2,x 3,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 1<x 2答案C 解析函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点,即为y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的交点的横坐标,作出y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的图象,如图所示.可知x 2<x 3<x 1.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是()A .1B .2C .4D .6答案ABC 解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )x ,x ∈[0,π],sin x ,x ∈ π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(多选)(2023·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲,就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f(x)=2x+x B.f(x)=x2-x-3C.f(x)=12x+1D.f(x)=|log2x|-1答案BCD解析选项A,若f(x0)=x0,则02x=0,该方程无解,故该函数不是“不动点”函数;选项B,若f(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故该函数是“不动点”函数;选项C,若f(x0)=x0,则12x+1=x0,可得x20-3x0+1=0,且x0≥1,解得x0=3+52,故该函数是“不动点”函数;选项D,若f(x0)=x0,则|log2x0|-1=x0,即|log2x0|=x0+1,作出y=|log2x|与y=x+1的函数图象,如图,由图可知,方程|log2x|=x+1有实数根x0,即存在x0,使|log2x0|-1=x0,故该函数是“不动点”函数.9.已知指数函数为f(x)=4x,则函数y=f(x)-2x+1的零点为________.答案1解析由f(x)-2x+1=4x-2x+1=0,得2x(2x-2)=0,x=1.10.(2023·苏州质检)函数f (x )满足以下条件:①f (x )的定义域为R ,其图象是一条连续不断的曲线;②∀x ∈R ,f (x )=f (-x );③当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0;④f (x )恰有两个零点,请写出函数f (x )的一个解析式________.答案f (x )=x 2-1(答案不唯一)解析因为∀x ∈R ,f (x )=f (-x ),所以f (x )是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0,所以f (x )在(0,+∞)上单调递增,因为f (x )恰有两个零点,所以f (x )图象与x 轴只有2个交点,所以函数f (x )的一个解析式可以为f (x )=x 2-1(答案不唯一).11.已知函数f (x )2x ,x >0,x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.答案(1,+∞)解析方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.如图,在同一直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线y =-x +a 在y轴上的截距.由图可知,当a ≤1时,直线y =-x +a 与y =f (x )有两个交点,当a >1时,直线y =-x +a 与y =f (x )只有一个交点.故实数a 的取值范围是(1,+∞).12.已知函数f (x )x -1|,x ≤1,-2)2,x >1,函数y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则123422x x x x ++=________.答案12解析y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,即方程f (x )=a 有四个不同的解,即y =f (x )的图象与直线y =a 有四个交点.在同一平面直角坐标系中分别作出y =f (x )与y =a的图象,如图所示,由二次函数的对称性可得,x 3+x 4=4.因为1-12x =22x-1,所以12x +22x =2,故123422x x x x ++=12.13.已知函数f (x )=|e x -1|+1,若函数g (x )=f 2(x )+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案A 解析令t =f (x ),则函数g (t )=t 2+(a -2)t -2a ,由t 2+(a -2)t -2a =0得,t =2或t =-a .f (x )=|e x -1|+1x ,x ≥0,-e x ,x <0,作出函数f (x )的图象,如图所示,由图可知,当t =2时,方程f (x )=|e x -1|+1=2有且仅有一个根,则方程f (x )=|e x -1|+1=-a 必有两个不同的实数根,此时由图可知,1<-a <2,即-2<a <-1.14.已知函数f (x )=x +1x -sin x -1,x ∈[-4π,0)∪(0,4π],则函数f (x )的所有零点之和为________.答案0解析因为函数f (x )=x +1x-sin x -1=1x -sin x ,所以f (x )的对称中心是(0,0),令f (x )=0,得1x=sin x ,在同一平面直角坐标系中作出函数y =1x,y =sin x 的图象,如图所示,由图象知,两个函数图象有8个交点,即函数f (x )有8个零点,由对称性可知,零点之和为0.15.(2023·南昌模拟)定义在R 上的偶函数f (x )满足f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=e x -1,若关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则实数m 的取值范围为()D .(0,e -1)答案B 解析∵f (x )=f (2-x ),∴函数f (x )关于直线x =1对称,又f (x )为定义在R 上的偶函数,∴函数f (x )关于直线x =0对称,作出函数y =f (x )与直线y =m (x +1)的图象,如图所示,要使关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则函数y =f (x )的图象与直线y =m (x +1)有5个交点,m >e -1,m <e -1,即e -16<m <e -14.16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案,4e 2解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2ex .令h (x )=x 2ex ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e h (2)=4e2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ,4e 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与方程一、知识梳理:(阅读教材必修1第85页—第94页)1、方程的根与函数的零点(1)零点:对于函数,我们把使0的实数x叫做函数的零点。

这样,函数的零点就是方程0的实数根,也就是函数的图象与x轴交点的横坐标,所以方程0有实根。

(2)、函数的零点存在性定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在c,使得=0,这个C 也就是方程0的实数根。

(3)、零点存在唯一性定理:如果单调函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在唯一c,使得=0,这个C 也就是方程0的实数根。

(4)、零点的存在定理说明:①求在闭间内连续,满足条件时,在开区间内函数有零点;②条件的函数在区间(a,b)内的零点至少一个;③间[a,b]上连续函数,不满足,这个函数在(a,b)内也有可能有零点,因此在区间[a,b]上连续函数,是函数在(a,b)内有零点的充分不必要条件。

2、用二分法求方程的近似解(1)、二分法定义:对于区间[a,b]连续不断且的函数通过不断把区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。

(2)、给定精确度()用二分法求函数的零点近似值步骤如下:①确定区间[a,b],验证给定精确度();②求区间(a,b)的中点c;③计算(I)若=0,则c就是函数的零点;(II)若则令b=c,(此时零点);(III)若则令a=c,(此时零点);④判断是否达到精确度,若|a-b|,则得到零点的近似值a(或b),否则重复②--④步骤。

函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解,由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的程序,借助计算器或者计算机来完成计算。

二、题型探究[探究一]:函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.[探究二]:若函数y=f(x)在区间(a,b)内有零点,则y=f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲线,且有f(a)·f(b)<0呢?提示:不一定.由图(1)(2)可知.[探究三]:有二分法求方程的近似解例1:已知图象连续不断的函数在区间(a,b)(b-a=0.1)上有唯一零点,如果用“二分法”求个零点(精确度0.0001)的近似值,那么将区间等分的次数至少是(D)(A)7 (B)8 (C)9 (D)10例2:下列图象不能用二分法示这个函数的零点的是(3、5)(5)yo(3)Xyo(4)yooyX(2)(1)Xyo二、方法提升1、根据根的存在定量理,判断方程的根的取值范围是在高考题中易考的问题,这类问题只需将区间的两个端点的值代入计算即可判断出来。

、2、判断函数零点的个数问题常数形结合的方法,一般将题止听等式化为两个函数图象的交点问题。

3、 在导数问题中,经常在高考题中出现两个函数图象的交点的个数问题,要确定函数具体的零点的个数需逐个判断,在符合根的存在定量的条件下,还需辅以函数的单调性才能准确判断出零点的个数。

三、 反思感悟:。

五、课时作业:1.函数2243y x x =--的零点个数( C ).A. 0个B. 1个C. 2个D. 不能确定2.若函数1y ax =+在(0,1)内恰有一解,则实数a 的取值范围是( B ).A. 1a >-B. 1a <-C. 1a >D. 1a <3.函数()23x f x =-的零点所在区间为( C )A. (-1,0)B. (0,1)C. (1,2)D. (2,3)4.方程lg x +x =0在下列的哪个区间内有实数解( B ).A. [-10,-0.1]B. [0.1,1]C. [1,10]D. (,0]-∞5.函数()y f x =的图象是在R 上连续不断的曲线,且(1)(2)0f f >,则()y f x =在区间[1,2]上( D ).A. 没有零点B. 有2个零点C. 零点个数偶数个D. 零点个数为k ,k N ∈6、设1 (1)1() 1 (1).x x f x x ⎧≠⎪|-|=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有三个不同的实数解123x x x ,,,则222123x x x ++等于( A ) A.5 B.222b + C.13 D.213c + 7、)(x f 是定义在],[c c -上的奇函数,其图象如下图所示,令b x af x g +=)()(,则下列关于)(x g 的叙述正确的是( B )A .若0<a ,则函数)(x g 的图象关于原点对B .若02,1<<--=b a ,则方程)(x g =0有大于2的实根C .若2,0=≠b a ,则方程)(x g =0有两个实根D .若2,,1<≥b a ,则方程)(x g =0有三个实根8、已知()f x 是以2为周期的偶函数,当[0,1]x ∈时,()f x x =,那么在区间[1,3]-内,关于x 的方程()1f x kx k =++(其中k 走为不等于l 的实数)有四个不同的实根,则k 的取值范围是(C )A .(1,0)-B .1(,0)2- C .1(,0)3- D .1(,0)4- 9、定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 可能为( D )A.0B.1C.3D.510、已知)(x f 是定义在R 上的奇函数,其图象关于1=x 对称且021=⎪⎭⎫⎝⎛f ,则方程()0=x f 在()0,5内解的个数的最小值是 (D )A .4B .5C .6D .7A.(0,1)B.(1,2)C.(2,3)D.(3,4)13、函数的零点所在的区间是( B ) A ()0,1 B ()1,e C (),3e D ()3,+∞14、若方程xx 2)1ln(=+的根在区间))(1,(Z k k k ∈+上,则k 的值为( C ) A .1- B .1 C .1-或1 D .1-或215、设函数1()ln (0),3f x x x x =->则()y f x =(D) A.在区间1(,1),(1,)e e内均有零点。 B.在区间1(,1),(1,)e e 内均无零点。 C.在区间1(,1)e 内有零点,在区间(1,)e 内无零点。 D.在区间1(,1)e内无零点,在区间(1,)e 内有零点。16、设方程 x x lg 2=-的两个根为21,x x ,则 (D )A 021<x xB 121=x xC 121>x xD 1021<<x x17、已知{),0(34),0(3)(21<++≥=-x x x x x f x 则方程f (x )=2的实数根的个数是( D ) A.0 B.1 C.2 D.318、已知函数()22f x x ax a =-+在区间(),1-∞上有最小值,则函数()f x x 在区间()1,+∞上是( C) A.有两个零点 B.有一个零点 C.无零点 D.无法确定19、已知n m b a b x a x x f ,),)()((1)(<---=是)(x f 的零点,且n m <,则实数a 、b 、m 、n 的大小关系是( A )A .n b a m <<<B .b n m a <<<C .n b m a <<<D .b n a m <<<20、关于x 的方程2(x ①存在实数k ,使得方程恰有,使得方程恰有4个不同的实根;③存在实数k ,使得方程恰有,使得方程恰有8个不同的实根;其中假.命题的个数是( A ) A 21、条件p :2-≥a ;条件上存在0x ,使得0()0f x =成立,则p ⌝是q 的 (A )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分也非必要条件22、ax 2+2x+1=0至少有一个负实根的充要条件是( C )A.0<a ≤1B.a<1C.a≤1D.0<a≤1或a<023、已知函数3()y x ax x R =-∈在(1,2)有一个零点则实数a 的值范围是 (A )A.14a <<B.14a -<<C.1a < 或4a >D.44a -<<二、填空题24.函数2()56f x x x =-+的零点是 2或3 .25、若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是_a>1___.26、若函数f (x )=e x -2x-a 在R 上有两个零点,则实数a 的取值范围是_a>2-2ln2_27.函数3()231f x x x =-+零点的个数为 3 .28、定义域和值域均为[]a a ,-(常数0>a )的函数()x f y =和()x g y =的图像如图所示,给出下列四个命题:(1)方程()[]0=x g f 有且仅有三个解;(2)方程()[]0=x f g 有且仅有三个解;(3)方程()[]0=x f f 有且仅有九个解;(4)方程()[]0=x g g 有且仅有一个解。

那么,其中正确命题的个数是__(1)(4)___ 。

三、解答题29.已知二次方程2(2)310m x mx -++=的两个根分别属于(-1,0)和(0,2),求m 的取值范围.解:设()f x =2(2)31m x mx -++,则()f x =0的两个根分别属于(-1,0)和(1,2).所以{(1)(0)0(2)(0)0f f f f -⋅<⋅<,即{(21)10(107)10m m --⨯<-⨯<, ∴ 17210m -<<. 30.已知2()2(1)421f x m x mx m =+++-:(1)m 为何值时,函数的图象与x 轴有两个零点;解:(1){22(1)0(4)42(1)(21)0m m m m +≠-⨯+->,解得1m <且1m ≠-.(2)如果函数两个零点在原点左右两侧,求实数m 的取值范围.{2(1)0(0)210m f m +>=-<或{2(1)0(0)210m f m +<=->. 解得112m -<<.31、设关于x 的函数=)(x f ∈--+b b x x (241R ),(1)若函数有零点,求实数b 的取值范围;(2)当函数有零点时,讨论零点的个数,并求出函数的零点.解:(1)原函数零点的问题等价于方程)(0241R b b x x ∈=--+ 化简方程为124+-=x x b ,b b x +-=<<-∴112,01时当的解为)11(log 2b x +-=;综合①、②,得1)当01<<-b 时原方程有两解:)11(log 2b x +±=;2)当10-=≥b b 或时,原方程有唯一解)11(log 2b x ++=;3)当1-<b 时,原方程无解。

相关文档
最新文档