超静定结构解决思路

合集下载

用力法求解超静定结构

用力法求解超静定结构

用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。

用力法是一种经典的结构分析方法,常用于求解超静定结构。

本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。

一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。

用力法适用于各种类型的结构,包括梁、柱、桁架等。

二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。

2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。

通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。

3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。

平衡方程包括力的平衡条件和力的矩平衡条件。

4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。

变形方程可以根据结构的刚度和约束条件来确定。

5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。

6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。

如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。

三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。

假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。

1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。

2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。

3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。

4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。

力学超定静结构计算

力学超定静结构计算

1、超静定结构的特性:与静定结构比较,超静定结构有如下特性:内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。

2、超静定次数的确定:结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。

在超静定结构上去掉多余约束的基本方式,通常有如下几种:(1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。

举例(2)断一根弯杆、去掉一个固定端,相当于去掉三个约束。

举例(3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。

举例返回顶部3、几点注意:①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。

对于无铰闭合框结构其超静定次数=3×闭合框数。

如图10-2所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静定次数为3×5-(1+1+3)=15次。

D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。

②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。

如图10-1结构。

③在确定超静定次数时,要将内外多余约束全部去掉。

如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。

④在支座解除一个约束,用一个相应的约束反力来代替,在结构内部解除约束,用作用力和反作用力一对力来代替。

如图10-1结构所示。

⑤只能去掉多余约束,不能去掉必要的约束,不能将原结构变成瞬变体系或可变体系。

如图10-4结构中A点的水平支杆不能作为多余约束去掉。

如图10-5结构中支杆a,b和链杆c不能作为多余约束去掉,否则就将原结构变成了瞬变体系。

返回顶部1、超静定结构的求解思路:欲求解超静定结构,先选取一个便于计算结构作为基本体系,然后让基本体系与原结构受力一致,变形一致即完全等价,通过这个等价条件去建立求解基本未知量的基本方程。

超静定结构的解法

超静定结构的解法

超静定结构的解法
迭代解法主要利用迭代计算的方法,在每次迭代中修正应力和应变的分布,直到趋于稳定。

该方法的基本步骤如下:
1.假设受力的初始状态,即假设一些节点处的节点位移和内力;
2.利用结构的几何约束和材料力学性质,计算一些节点处的内力和位移;
3.判断内力和位移是否满足力学静平衡条件,若满足则计算结束,否则进入下一步;
4.通过一定的修正方法,调整节点内力和位移;
5.重复步骤2至步骤4,直到内力和位移满足力学静平衡条件。

迭代解法的优点是通用性强,适用于各种超静定结构,但收敛速度较慢,计算量较大。

弹性势能法是利用结构的势能原理,将结构的力学行为转化为弹性势能的变化来求解结构的内力和位移。

该方法的基本步骤如下:
1.根据结构的受力情况和约束条件,建立适当的势能表达式;
2.利用力学静平衡方程,将势能表达式表示为内力和位移的函数;
3.求解势能的极值点,即通过对内力和位移偏导等于零,解得内力和位移的方程;
4.建立适当的边界条件,如位移边界条件和约束条件;
5.通过求解得到的方程,计算结构的内力和位移。

弹性势能法的优点是求解过程相对简单,收敛速度较快,但要求结构能够满足一定的连通性和对称性条件。

在解超静定结构的过程中,还可以采用其他方法来辅助计算,如虚功法、位移法、能量法等。

此外,有些超静定结构也可以通过变形补偿或者加固措施等方法使之退化为静定结构,进而采用常规的静力计算方法来求解。

总之,解超静定结构是一个相对复杂的过程,需要利用附加条件和弹性支承约束来求解。

通过迭代解法和弹性势能法等方法可以得到结构的内力和位移,为实际工程中的设计和分析提供重要的参考和依据。

第八章超静定结构解法

第八章超静定结构解法

第八章超静定结构解法
超静定结构是指结构中的节点数超过了杆件数,即结构中的自由度超过了平衡条件的数量。

对于超静定结构的解法,需要进行位移计算和支反力计算。

位移计算可以通过以下步骤进行:
1.建立结构的刚度方程。

根据杆件的刚度和支座的自由度约束,可以建立结构的刚度矩阵。

刚度矩阵是一个n×n的矩阵,其中n是结构的自由度数量。

2.确定约束条件。

根据结构的支座约束,可以确定支座位移为零的约束条件。

3.应用边界条件。

将约束条件应用到刚度方程中,可以得到一个未知位移的方程组。

4.解未知位移。

通过解这个方程组,可以得到结构的未知位移值。

支反力计算可以通过以下步骤进行:
1.利用位移计算中得到的未知位移值,计算杆件的应力。

应力可以通过应变和材料的本构关系得到。

2.根据杆件的几何特征和应力,计算杆件的应力。

应力可以根据杆件的截面积和应力得到。

3.根据杆件的几何特征和应力,计算杆件的内力。

内力可以根据截面受力平衡的条件得到。

4.根据内力和支座约束,计算支座的反力。

反力可以通过力的平衡条件得到。

总的来说,超静定结构的解法需要进行位移计算和支反力计算。

在位移计算中,需要建立结构的刚度方程,并将约束条件以及边界条件应用到方程中,来解未知位移。

在支反力计算中,需要利用位移计算中得到的未知位移值,计算杆件的应力和内力,并根据杆件的几何特征和应力来计算支座的反力。

用力法解超静定结构

用力法解超静定结构

ቤተ መጻሕፍቲ ባይዱ
n1 X1 n2 X 2 nn X n np 0
(三)力法典型方程中系数和自由项的计算
1、主系数δii — 表示基本结构由于 Xi 1的单独作用,在Xi 的作用点并沿Xi的方向产生的位移; 图A
ii
M
2 i
dx
EI
2、副系数δij —iiijijip表的示作基MMM用EM本EEIiii2E点MMiIIMd结Ix并jjpd构dx沿dxx由Xi于的X方j 向 1产的生单的独位作移用;,图在B Xi
例2:试用力法计算图示超静定刚架,并绘内力图。
解: 1.选择基本体系
2.建立力法方程
d11X1+D1P=0
3.计算系数和自由项,绘 M1和MP图
11
1 EI
1 2
l
l
2 3
l
2
2l 3 3EI
1P
1 EI
1
2
l ql 2
2 3
l2
2 3
l
ql 2 8
l
2
17ql 4
24EI
4.计算X1 5.绘内力图
=1
结构称为力法基本结构
基本结构
力法基本方程 — 利用基本体系的变形状态与原结构
一致的条件所建立的确定多余未知
力的方程
BACK
11X1 1P 0
11
M1M1 dx 1 (1 l l 2 l) l3
EI
EI 2
3
3EI
1P
M1M p dx 1 (1 l 1 ql 2 3 l) ql 4
ql3
24EI l
1 ql2 8
3EI
5、绘内力图 M M1X1 M p V V1 X1 Vp

超静定结构两类解法

超静定结构两类解法

第六章位移法超静定结构两类解法:力法:思路及步骤,适用于所有静定结构计算。

结合位移法例题中需要用到的例子。

有时太繁,例。

别的角度:内力和位移之间的关系随外因的确定而确定。

→位移法,E,超静定梁和刚架。

于是,开始有人讨论:有没有别的方法来求解或换一个角度来分析…,what?我们知道,当结构所受外因(外荷载、支座位移、温度变化等)一定⇒内力一定⇒变形一定⇒位移一定,也就是结构的内力和位移之间有确定的关系(这也可以从位移的公式反映出来)。

力法:内力⇒位移,以多余力为基本未知量…,能否反过来,也就是先求位移⇒内力,即以结构的某些位移为基本未知量,先想办法求出这些位移,再求出内力。

这就出现了位移法。

目前通用的位移法有两种:英国的、俄罗斯的,两者的实质是相同的。

以结构的某些结点位移作为基本未知量,由静力平衡条件先求出他们,再据以求出结构的内力和其它位移。

这种方法可以用于求解一些超静定梁和刚架,十分方便。

例:上面的例子,用位移法求解,只有结点转角一个未知量。

下面,我们通过一个简单的例子来说明位移法的解题思路和步骤:一个两跨连续梁,一次超静定,等截面EI=常数,右跨作用有均布荷载q,(当然可以用力法求解),在荷载q作用下,结构会发生变形,无N,无轴向变形,B点无竖向位移,只有转角ϕB。

且B点是一个刚结点传递M;变形时各杆端不能发生相对转动和移动,刚结点所连接的杆件之间角度受力以后不变。

也就是AB、BC杆在结点B处的转角是相同的。

原结构的受力和变形情况和b是等价的。

B当作固定端又产生转角ϕB。

a(原结构)AB:BC:b如果把转角ϕB 当作支座位移这一外因看,则原结构的计算就可以变成两个单跨超静定梁来计算。

显然,只要知道ϕB ,两个单跨静定梁的计算可以用力法求解出全部反力和内力,现在的未知量是ϕB (位移法的基本未知量)。

关键:如何求ϕB ?求出ϕB 后又如何求梁的内力?又如何把a ⇒b 来计算? 我们采用了这样的方法:假定在刚结点B 附加一刚臂(▼),限制B 点转角,B ⇒固定端(无线位移,无转动)(略轴向变形)原结构就变成了AB 、BC 两个单跨超静定梁的组合体:AB : ,BC :但现在和原结构的变形不符,ϕB ,所以为保持和原结构等效,人为使B 结点发生与实际情况相同的转角ϕB (以Z 1表示,统一)。

力法解超静定结构时的思维方法

力法解超静定结构时的思维方法
所以根据原则1,Fpb造成B点位移是 方向向上.
作用点在B点.
现在求Fpb.先设一个大小为单位1的力f,方向向上,作用与B点,则B点位移为 .
很显然
Fpb× =
所以Fpb=5/16F Fpa=11/16FMp=3FL/16.
总结,力法对超静定结构的分析的过程的主体就是求出多余未知力的过程.要将多余约束化为多余未知力和约束条件.使用约束条件求出多余未知力造成的结构的位移.反推多余力.使得结构变成静定结构.求出其他力.
在这里b点是一个铰支在这种条件下只提供竖直向上的约束反力它对整个梁的作用与一个竖直向上的力相同但铰支同时保证了另一个效果即b点竖直位移为0
用力法进行超静定梁受力分析时的思维方法
解一个超静定结构,力法是最基本的方法,所有结构力学书籍中都有详细介绍.本文通过最基本的例子,说明这种方法的思维过程.
现有一个超静定梁结构AB受力情况如下(图1),外力F作用在梁的终点,梁长度为L,求此情况下梁AB的约束反力.
图2
对多出的力Fpb进行分析.这里使用以下思பைடு நூலகம்原则.
1.位移微小的情况下,结构某点的位移等于各个外力造成位移的线性相加.
2.当某个力大小方向作用点已知时,它所造成的结构位移是一定的,反过来如果知道某个力造成的结构位移和这个力的作用点已知时,这个力也是唯一确定的.注意:位移回推力时解不唯一,必须确定力大小或作用点中的一个.
(以上两条是很显然的吧?)
现在分析多余未知约束力Fpb的作用效果.
我们首先将Fpb去掉得到一个静定的系统,分析此时B点位移,已知在有Fpb时B点位移为0,因此Fpb造成B点位移与其他力造成的B点位移大小相等方向相反图3
图3
这个结构十分明显,如果没有Fpb约束,B点位移是

力法求解超静定结构的步骤:

力法求解超静定结构的步骤:

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。

二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。

即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。

多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。

多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。

即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。

3、物理条件:即变形或位移与内力之间的物理关系。

精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。

力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。

五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超静定结构
超静定结构
静定结构是没有多余约束的结构,结构体系中任何一个约束去掉后,结构都失去稳定性,成为机构,因而也就不能够继续承担荷载。

因此,静定结构是相对危险的,任意约束失效后都会导致整体结构的失效。

为了保证结构的安全性,需要对于静定结构增加约束,成为有多余约束的结构——超静定结构。

超静定结构有多余约束,当其中某个约束失效后,所承担的作用由其他约束承担,整体结构仍处于稳定状态,可以继续承担荷载,但是,超静定结构在失去部分或全部多余约束后,内力会出现重新分布的现象,是否破坏要重新计算。

超静定结构的思路
对于超静定结构,静定结构的解题思路是难以解决的:静定结构中无论是外力还是内力,均依靠力系平衡方程或方程组实现,但超静定结构的多余约束导致有效方程数少于未知数的数量。

因此,超静定问题宜从以下方面思考:
首先,如果结构整体是平衡的,结构内部任意组成部分、点、段落也一定是平衡的;
其次,对于任意多余约束是可以去掉的,并以相应的约束力来替代的,替代之后的结构各个部分依然平衡切除替代点外没有任何变化;
第三,结构中任意相临的、距离为0 的两点间的相对位移与转角均为0;
第四,弹性结构体系中,各个构件受力后产生的变形是协调的。

基于上面的基本思路,对于超静定结构常用的方法是力法与位移法。

力法
力法是计算超静定结构的基本方法,是利用结构的变形协调来实现的。

力法的基本思路是:
弹性结构体系中,各个构件受力后产生的变形是协调的;
除去多余约束后,以约束力替代原约束,并与结构等效;
除去约束后的结构在其上的外力系[P]的作用下,会产生各种变形,其中在除去约束后的原约束点的位移是:[Δ
]
结构原有的约束力也会导致结构在约束点的相关变形:[x][δ],[x]:除去的多余的约束,[δ]:当多余约束为 1 时的各个约束点变形。

但是在原结构中,被除去的多余约束点由于约束的作用,其相应的位移为0,因此有:
[x][δ] +[Δp] =0
如果设多余约束为n个,则力法线性方程组为:
x1δ11 + x2δ12 + x3δ13+…… + x nδ1n +Δ1p = 0
x2δ21 + x2δ22 + x3δ23+…… + x nδ2n +Δ2p = 0
x3δ31 + x2δ32 + x3δ33+…… + x nδ3n +Δ3p = 0
…… …… …… …… …… …… …… …… ……
x nδn1 + x2δn2 + x3δn3+…… + x nδnn +Δnp = 0
其中:x i:第i个多余约束所形成约束反力,是
未知数;
δij:如果第j个多余约束位置上,作用有与该多余约束性质相同的单位力,所形成的位于第i 个约束反力位置上的变形量;
x iδij:第j个多余约束所形成约束力,导致的位于第i个约束反力位置上的变形量;
Δip:除去多余约束后,结构外荷载系产生的,位于第i 个约束反力位置上的变形量;
根据虚功原理,可以求得δij,且根据互等定理,δij = δji ;同样,根据虚功原理也可以求得Δip,因此方程组是可解的;
求解出x1,x2,x3…… x n后,可将其视为与外荷载系共同作用于除去多余约束的静定结构
的荷载,随即可以求解并绘制相应的静定结构的内力图,进而求出最大内力截面与最大应力的位
置与量值,进行相关校核。

例题
位移法
位移法也是计算超静定结构的基本方法,是利用结构的受力协调来实现的。

结构、荷载与边界约束如图,对于该超静定结构,分析如下:
结构在荷载作用下会发生相应的变形,对于A节点来讲,可以认为外作用与变形是两次分别发生的,然后叠加至一个结构上:
首先A点是固定的,在外部作用下,发生杆件变形,并在A点形成了不协调的内力,依靠附加的外部作用时A点维持原有的形态;其次A点在发生转角变形,直到消除由于外部作用所形成的内力的不协调,外部作用消失。

对于A点来讲,两次过程都会产生相应的内力,叠加至一个结构上后,与结构最初受力并产生变形的状态相一致,产生的内力在该点是平衡的。

假设A点的转角为Z,则有:Z r+R p=0,
其中:R p—在A点被固定的第一个过程中,荷载于A点产生的周边反力。

Z —在第二个过程中,能够消除A点不协调作用的变形;
r —A点产生单位转角时所形成的反力;
当结构中存在多个外荷载作用与多处变形时,方程以方程组来表示:
设附加约束为n个,
Z1r11 + Z2r12 + Z3r13+…… + Z n r1n +R1p = 0
Z2r21 + Z2r22 + Z3r23+…… + Z n r2n +R2p = 0
…… …… …… …… …… …… …… …… ……
Z n r n1 + Z2r n2 + Z3r n3+…… + Z n r nn +R np = 0
Z i:第i 个附加约束的位移,是未知数;
r ij:第j个附加约束,产生单位位移,所形成的位于第i 个附加约束位置上的内力,是可以求得的;
Z i r ij:第j个附加约束,产生实际位移,所形成的位于第i 个附加约束位置上的内力;
R ip:结构外荷载系产生的,位于第i 个附加约束位置上内力。

根据基本常数,可以求得rij,且根据位移互等定理,r ij = r ji;
根据基本常数也可以求得R ip,因此方程组是可解的;
求解出Z1,Z2,Z3…… Z n后,对于结构中的不同杆件进行变形与荷载产生的内力叠加,求解并绘制相应的内力图,进而求出最大内力截面与最大应力的位置与量值,进行相关校核。

例题。

相关文档
最新文档