标准直齿圆柱齿轮的传动设计计算
齿轮齿条传动设计计算

齿轮齿条传动设计计算1.选用直齿圆柱齿轮齿条传动,精度等级为7级(GB-88),小齿轮材料为40Cr(调质)硬度为280HBS,齿条材料为XXX(调质)硬度为240HBS,小齿轮齿数为24,大齿轮齿数为无穷大。
2.按照齿面接触强度进行设计,通过设计计算公式计算得到齿轮传递的转矩为2.908×105N∙mm。
选用载荷系数K t1.3,齿宽系数φd0.5,材料的弹性影响系数ZE189.8MPa,小齿轮的接触疲劳强度极限σHlim1600MPa,齿条的接触疲劳强度极限σHlim2550MPa。
通过计算应力循环次数得到N16.113×104,接触疲劳寿命系数KHN11.7.根据失效概率为1%和安全系数S=1,计算得到接触疲劳许用应力[σH11020MPa。
3.计算小齿轮分度圆直径dt1为68.89mm,圆周速度v为0.029m/s,齿宽b为34.445mm,齿宽与齿高之比为2.87,齿高为6.46mm。
计算载荷系数根据速度v=0.029m/s、精度为7级,查图10-8得动载荷系数KV=1;由于是直齿轮,故KHα=KFα=1;根据表10-2得使用系数KA=1.5;根据表10-4用插值法得到7级精度、小齿轮为悬臂布置时的KHβ=1.250.再根据h=5.33和KHβ=1.250查图10-13得KFβ=1.185.因此,载荷系数K=KA×KV×KHα×KHβ=1.5×1×1×1.250=1.875.按实际的载荷系数校正所算得的分度圆直径,由式(10-10a)得d1t=31.875K/d1=68.89mm,因此d1=77.84mm。
计算模数m根据齿根弯曲强度设计,由式(10-5)得弯曲强度设计公式为:m≥(2KT1YFaYSa)/(φdz1[σF]3)确定公式内各计算数值:1.根据图10-20c,小齿轮的弯曲疲劳强度极限σFE1=500MPa,齿条的弯曲强度极限σFE2=380MPa。
标准直齿圆柱齿轮传动的强度计算

标准直齿圆柱齿轮传动的强度计算一、轮齿的受力分析图6-6所示为齿轮啮合传动时主动齿轮的受力情况,不考虑摩擦力时,轮齿所受总作用力f n将沿着啮合线方向,f n称为法向力。
f n在分度圆上可分解为切于分度圆的切向力f t和沿半径方向并指向轮心的径向力f r 。
圆周力f t=n径向力 f r= f t tg n (6-1)法向力 f n=n式中:d1为主动轮分度圆直径,mm;为分度圆压力角,标准齿轮=20°。
设计时可根据主动轮传递的功率p1(kw)及转速n1(r/min),由下式求主动轮力矩t1=9.55×106×(n mm)(6-2)根据作用力与反作用力原理,f t1=-f t2,f t1是主动轮上的工作阻力,故其方向与主动轮的转向相反,f t2是从动轮上的驱动力,其方向与从动轮的转向相同。
同理,f r1=-f r2,其方向指向各自的轮心。
二、载荷与载荷系数由上述求得的法向力f n 为理想状况下的名义载荷。
由于各种因素的影响,齿轮工作时实际所承受的载荷通常大于名义载荷,因此,在强度计算中,用载荷系数k 考虑各种影响载荷的因素,以计算载荷f nc 代替名义载荷f n 。
其计算公式为(6-3)式中:k 为载荷系数,见表6-3。
表6-3 载荷系数k二、齿根弯曲疲劳强度计算齿根处的弯曲强度最弱。
计算时设全部载荷由一对齿承担,且载荷作用于齿顶,将轮齿看作悬臂梁,其危险截面可用30o 切线法确定,即作与轮齿对称中心线成30o 夹角并与齿根过渡曲线相切的两条直线,连接两切点的截面即为齿根的危险截面,如图6-7所示。
运用材料力学的方法,可得轮齿弯曲强度校核的公式为= ≤或σf =≤(6-4)或由上式得计算模数m的设计公式m≥ (6-5)式中:=b/d1称齿宽系数(b为大齿轮宽度),由表6-4查取;称为齿形系数,由图6-8查取;[]为弯曲许用应力,由式6-8计算。
表6-4齿宽系数=b/d1三、齿面接触疲劳强度计算齿面接触疲劳强度计算是为了防止齿间发生疲劳点蚀的一种计算方法,它的实质是使齿面节线处所产生的最大接触应力小于齿轮的许用接触应力,齿面接触应力的计算公式是以弹性力学中的赫兹公式为依据的,对于渐开线标准直齿圆柱齿轮传动,其齿面接触疲劳强度的校核公式为≤或≤ (6-6)将上式变换得齿面接触疲劳强度的设计公式d1≥ (6-7)式中:“±”分别用于外啮合、内啮合齿轮;z e为齿轮材料弹性系数,见表6-5;z h为节点区域系数,标准直齿轮正确安装时z h =2.5;[σh]为两齿轮中较小的许用接触应力,由式6-9计算;u为齿数比,即大齿轮齿数与小齿轮齿数之比。
齿轮传动设计计算实例.docx

各类齿轮传动设计计算实例例1设计铳床中的一对标准直齿圆柱齿轮传动。
C 知:传递功率P = 7.5kw .小齿轮转速 m=1450r/mm 、传动比< = 2.08.小齿轮相对轴乐为不对称布誉,两班制,毎年I •作300d (天),使用 期限为5a (年九解,(1)选择齿轮材料及粘度等级考應此对齿轮传递的功率不大,故大、小齿轮都选用软齿而。
小齿轮选用4OCr,调质•齿而峡度为240〜260HBS ;大齿轮选用45钢,调质,齿而硬度为220HBS (表8.5)•因是机床用齿轮,由表8.10选7精度,要求齿山丙1糙度R a < 1.6〜3.2“” .(2)按齿面接触疲劳强度设讣因两齿轮均为钢制齿轮,所以山(8.28)式得2叫S 誹确定冇关参数如下:1) 齿数乙和齿宽系数Pd収小齿轮齿轮勺=30,则大齿轮齿数z 2=i Zl =2.08x30 = 62.4・圆整z 2 = 62 o 实际传动比i 0 = — = — = 2.067◎ 30传动比误基 = 2 08-2.067 = 0 6%<2-5% 町用。
i2.08齿数比u = /0 = 2.067由表8.9 取忆= 0.9 (因非对称布置及软齿而)2) 转矩T,P7 5T. =9.55xl06—= 9.55xl06x —/nw = 4.94xl04mm“I 14503) 載荷系数K由表8.6取K = 1.35I )许用接触应力0〃]曲图 8. 33c 査得 o Hhmi = 775M/U o Hhml = 520M 內 由式(8.33)计算应力循环次数NzN u = 6叽5 = 60 x 14 50 x 1 x (16x 300 x 5)= 2.09xl09N"由图& 34査得接傩疲劳的寿命系数Z 灯i =0.89 , Z 附2 =0.93 通过齿轮和一般匚业齿轮,按一般可靠度要求选取A S Z/ =1.0-所以计算两轮的许用接触卜/故得笛胖689.81叭1.0MFd = 483・6MFd520x0.93心"6处竺怦=7643』站心仆心x (2.076 + l)〃吩59.40MV <Pd lt \pH F V 0.9x2.076x483 62I )许用弯曲应力\a F ]由式(8.34)由图& 35c 森得:= 290MPa 厂 2L0MPa由图8. 36査得试验齿轮的咸力修正系数 按一般可靠度选取安全系数 计算阳轮的许用弯曲应力[J =叽上/ f = 290X 2X 0.SS = 40&32M 〃1 h S N1.25[]=m = 210x2x09 Mpa = 302.4M 九 1 J - S N 1.2、将求得的各参数代入式(8.29〉2K1\F 严厂亠丫刖bnrzi= 2x1.35x4.94x2 x2 52x1.625咖55X 22 X 30= 82・76MFa<E[= 80 18MF% 订 2故轮齿齿根穹曲彼劳强度足够。
标准直齿圆柱齿轮传动强度

标准直齿圆柱齿轮传动的强度可以根据以下步骤进行计算:
1.确定齿轮上所受的力。
这包括圆周力(Ft)、径向力(Fr)和法向力
(Fn)。
2.根据圆周力和齿轮的节圆直径(d1),计算出转矩(T1)。
转矩可以用公
式T1 = 2 × Ft × tanα来表示,其中α是啮合角,通常取值为20°。
3.根据转矩和齿宽,计算出弯曲应力。
弯曲应力可以用公式σ= Ft/Wb来表
示,其中Wb是齿宽。
4.根据齿根处的弯曲应力,计算出弯曲疲劳强度系数。
这个系数通常由实验
确定,也可以通过查阅相关设计手册获得。
5.根据弯曲疲劳强度系数和弯曲应力,计算出弯曲疲劳极限。
弯曲疲劳极限
可以用公式σHlim = k × Wb × Ft来表示,其中k是弯曲疲劳强度系数。
6.根据弯曲疲劳极限,计算出安全系数。
安全系数可以用公式H=σHlim/σH
来表示,其中σH是工作应力。
7.根据安全系数和弯曲应力,计算出许用弯曲应力。
许用弯曲应力可以用公
式σH=σHlim/S来表示,其中S是安全系数。
以上是标准直齿圆柱齿轮传动强度的计算步骤,希望能对您有所帮助。
圆柱齿轮传动强度的计算

圆柱齿轮传动的强度计算1 直齿圆柱齿轮传动的强度计算1.齿面接触疲劳强度计算为了保证在预定寿命内齿轮不发生点蚀失效,应进行齿面接触疲劳强度计算。
因此,齿轮接触疲劳强度计算准则为:齿面接触应力σH小于或等于许用接触应力σHP,即σH≤σHP赫兹公式由于直齿轮在节点附近往往是单对齿啮合区,轮齿受力较大,故点蚀首先出现在节点附近。
因此,通常计算节点的接触疲劳强度。
图a表示一对渐开线直齿圆柱齿轮在节点接触的情况。
为了简化计算,用一对轴线平行的圆柱体代替它。
两圆柱的半径ρ1、ρ2分别等于两齿廓在节点处的曲率半径,如图b所示。
由弹性力学可知,当一对轴线平行的圆柱体相接触并受压力作用时,将由线接触变为面接触,其接触面为一狭长矩形,在接触面上产生接触应力,并且最大接触应力位于接触区中线上,其数值为式中σH-接触应力(Mpa)Fn-法向力(N)L-接触线长度(mm)rS-综合曲率半径(mm);±-正号用于外接触,负号用于内接触ZE-材料弹性系数(),,其中E1、E2分别为两圆柱体材料的弹性模量(MPa);m1、m2分别为两圆柱体材料的泊松比。
上式表明接触应力应随齿廓上各接触点的综合曲率半径的变化而不同,且靠近节点的齿根处最大(图c、d)。
但为了简化计算,通常控制节点处的接触应力。
节点处的参数(1)综合曲率半径由图可知,,代入rE公式得式中:,称为齿数比。
对减速传动,u=i;对增速传动,u=1/i。
因,则有(2)计算法向力(3)接触线长度L引入重合度系数Ze,令接触线长度将上述参数代入最大接触应力公式得接触疲劳强度计算公式令,称为节点区域系数。
则得(1) 齿面接触疲劳强度的校核公式齿面接触疲劳强度的校核公式为(2) 齿面接触疲劳强度设计公式设齿宽系数,并将代入上式,则得齿面接触疲劳强度的设计公式式中:d1-小齿轮分度圆直径(mm);ZE-材料弹性系数(),按下表查取;注:泊松比m1=m2=0.3Z H-节点区域系数,考虑节点处轮廓曲率对接触应力的影响,可由下左图查取。
标准直齿圆柱齿轮传动强度计算

§8-5 标准直齿圆柱齿轮传动的强度计算一.齿轮传动承载能力计算依据轮辐、轮缘、轮毂等设计时,由经验公式确定尺寸。
若设计新齿,可参《工程手册》20、22篇,用有限元法进行设计。
轮齿的强度计算:1.齿根弯曲强度计算:应用材料力学弯曲强度公式WMb =σ进行计算。
数学模型:将轮齿看成悬臂梁,对齿根进行计算,针对齿根折断失效。
险截面上,γcos ca p --产生剪应力τ,γsin ca p 产生压应力σc ,γcos .h p M ca =产生弯曲应力σF 。
分析表明,σF 起主要作用,若只用σF 计算齿根弯曲疲劳强度,误差很小(<5%),在工程计算允许范围内,所以危险剖面上只考虑σF 。
单位齿宽(b=1)时齿根危险截面的理论弯曲应力为220cos .66*1cos .S h p S h p W M ca ca F γγσ===令αcos ,,b KF L KF p m K S m K h tn ca S h ====,代入上式,得()αγαγσcos cos 6.cos cos ..6220S h t S h t F K K bm KF m K b m K KF ==令 αγc o sc o s 62S h Fa K K Y =Fa Y --齿形系数,表示齿轮齿形对σF 的影响。
Fa Y 的大小只与轮齿形状有关(z 、h *a 、c *、α)而与模数无关,其值查表10-5。
齿根危险截面理论弯曲应力为 bmY KF Fat F =0σ 实际计算时,应计入载荷系数及齿根危险剖面处的齿根过渡曲线引起的应力集中的影响。
bmY Y KF SaFa t F =σ式中:Sa Y --考虑齿根过渡曲线引起的应力集中系数,其影响因素同Fa Y ,其值可查表10-5。
2.齿根弯曲疲劳强度计算校核公式 []F Fa Sa Sa Fa t F Y Y bmd KT bm Y Y KF σσ≤==112 MPa令1d bd =φ,d φ--齿宽系数。
直齿圆柱齿轮传动设计

直齿圆柱齿轮传动设计首先,设计直齿圆柱齿轮传动需要确定齿轮的参数。
齿轮的参数包括模数m、齿数z、齿宽b、压力角α等。
模数决定了齿轮的尺寸,一般根据传动功率、转速等参数进行估算。
齿数z决定了齿轮的传动比,一般根据传动机构的要求确定。
齿宽b根据齿轮的载荷大小进行估算。
压力角α一般选取20°、22.5°、25°等常用的值。
确定了这些参数后,可以根据齿轮的几何特征进行齿轮的绘制。
接下来,需要计算直齿圆柱齿轮的传动比。
传动比一般定义为输入轴的转速与输出轴的转速之比,可以根据齿轮参数和传动机构的要求进行计算。
传动比的计算公式为:传动比=输出轴齿轮齿数/输入轴齿轮齿数在计算传动比时,还需要考虑两个齿轮的模数是否相等,如果不相等,需要进行修正。
修正公式为:修正传动比=传动比×(模数2/模数1)其中,模数1为输入轴齿轮的模数,模数2为输出轴齿轮的模数。
当修正传动比计算完成后,可以根据实际需求进行调整。
然后,需要进行齿轮的强度校核。
齿轮的强度校核是为了保证齿轮在正常工作状态下不会产生破坏。
常用的齿轮强度计算理论有力学强度设计法和面强度设计法。
力学强度设计法主要考虑齿轮的破坏形式为齿面弯曲破坏,通过计算齿面弯曲强度和弯曲疲劳强度来进行判断。
面强度设计法主要考虑齿轮的破坏形式为齿面所受的接触压力引起的疲劳破坏,通过计算齿面强度和疲劳寿命来进行判断。
最后,需要进行齿轮传动的精度校核。
直齿圆柱齿轮传动的精度校核主要有几何精度校核和运动精度校核。
几何精度校核包括齿轮齿宽误差、齿轮齿距误差和齿轮齿高误差等方面。
运动精度校核主要包括齿轮传动的轻载配合误差和重载配合误差两方面。
通过对齿轮传动的精度校核,可以保证齿轮传动的正常运行和传动精度。
综上所述,直齿圆柱齿轮传动的设计过程包括齿轮参数的选择、传动比的计算、齿轮的强度校核和精度校核。
在设计过程中,需要根据传动机构的要求和实际情况进行参数选择和计算,并进行强度和精度的校核。
齿轮传动设计计算实例(114)

解:
cos
mn 2a
z1
z2
4 30 60
2 190
0.9474
所以
1840
tan t
tan n cos
tan 20 cos1840
0.3640 0.9474
0.3842
d1
mn cos
z1
4 30 0.9474
mm 126.662mm
F2
2KT1 bm 2 z 2
YFa2YSa2
F1
YFa 2 YSa 2 YFa1YSa1
82.76 2.2881.734 MPa 2.52 1.625
80.18MPa< F 2
故轮齿齿根弯曲疲劳强度足够。
(4)计算齿根传动的中心距 a
a
m 2
z1
z2
2 2
db2 d 2 cos t 253.325 0.9335mm 236.479mm
例 3 试设计带式运输机减速器的高速级圆柱齿轮传动。已知输入功率 P 40kW ,小齿轮转速 n1 970r / min ,传动比 i 2.5 ,使用寿命为 10a(年)(设每年工作 300d(天)),单班制,电动机驱动,
(3)校核齿面接触疲劳强度
由式(8.45)
H 3.17Z E
KT u 1
bd 12 u
H
确定有关参数和系数:
1)分度圆直径
d1
mn z1 cos
3 24 cos1415
mm 74.29mm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准直齿圆柱齿轮的传动设计计算:
一.齿轮的受力分析:
圆周力Ft=Ft1=Ft2=2T1/d1=2T2/d2;
径向力Fr=Fr1=Fr2=Ft.tanа;
法向力Fn=Fn1= Fn2=Ft/COSа;式中:T1、T2为两齿轮的转距,N.mm;d1、d2为两齿轮的分度圆直径,mm;а为压力角,а=20°。
若P为传递的功率,KW;n1为小齿轮的转速,r/min;可得转矩:T1=9.55*106P/n1.式中T1的单位为N.mm。
二.轮齿的计算载荷:
上式分析的法向力Fn是作用在轮齿上的理想状况下的载荷,称为名义载荷,在强度计算时,需引用载荷系数K(新国标中用使用系数、动载系数、分布系数、分配系数等考虑多种因素的影响,本处为简化计算,仅用载荷系数表示。
)则计算载荷Fnc=KFn;载荷系数K值可根据载荷特性查设计手册表中所得。
三.齿面接触疲劳强度计算:
四.齿面疲劳强度计算的目的是为了防止齿面点蚀失效。
防止齿面点蚀的强度条件为:节点
处的计算接触应力应该小于齿轮材料的许用接触应力,即:σH≤〖σH〗。
齿面最大的计算接触应力,可用赫兹应力公式计算:
式中:σH的单位为Mpa;Fn为作用在轮齿上的法向力,N;b为轮齿的宽度,mm;ρ1,ρ2为两轮齿廓在节点处的曲率半径,mm;μ1,μ2为两轮材料的泊松比;E1、E2为两轮材料的弹性模量,Mpa;正号用于外啮合,负号用于内啮合。
令ZE=
ZE称为齿轮材料的弹性系数,
普通圆柱蜗杆的传动效率η=(100-3.5i)%。