气体定压比热测定实验报告
实验15__气体定压比热测定概要

实验15 气体定压比热测定一、实验目的1. 了解气体比热测定装置的基本原理和装置结构。
2. 熟悉本实验中温度、压力、热量、流量的测量方法。
3. 掌握由测量数据计算定压比热的方法。
4. 分析本实验中误差产生的原因及减小误差的可能途径。
二、实验原理根据定压比热的概念,气体在t ℃时的定压比热表示为p dq c dt=(1)当式(1)的温度间隔dt 为无限小时,p c 即为某一温度t 时气体的真实定压比热(由于气体的定压比热随温度的升高而增大,所以在给出定压比热的数值时,必须指明是哪个温度下的定压比热)。
如果已得出()p c f t =的函数关系,温度由1t 至2t 的过程中所需要的热量即可按下式求得:22211()d p q c dt a bt ct t ==+++⎰⎰(2)上式采用逐项积分来求热量十分复杂。
在本实验的温度测量范围内(不高于300℃),空气的定压比热与温度的关系可近似认为是线性,即可表示为:p c a bt =+(3)则温度由1t 至2t 的过程中所需要的热量可表示为:()21d t t q a bt t =+⎰(4)由1t 加热到2t 的平均定压比热容则可表示为:()21211221d 2t t t p t a bt t t t ca bt t ++==+-⎰ (5)实验中,通过实验装置是湿空气,当湿空气气流由温度1t 加热到2t 时,其中水蒸气的吸热量可用式(4)计算,其中 1.833a =,0.0003111b =,则水蒸气的吸热量为:()21w w 1.8330.0003111d t tQ m t t =+⎰()()22w 21211.8330.0001556kJ/s m t t t t ⎡⎤=-+-⎣⎦(6)式中:w m ——气流中水蒸气质量,kg/s 。
则干空气的平均定压比热容由下式确定:()()21w w 21w 21()()pp t pm t Q Q Q cm m t t m m t t '-==---- (7)式中:p Q '为湿空气气流的吸热量。
空气定压比热测定实验

第一篇《工程热力学与传热学》课程实验实验1-1 空气定压比热测定实验一、 实验目的1. 通过本实验熟悉温度、压力、质量流量的测量方法。
2. 加深理论认识,通过本实验加深巩固比热及混合气体(湿空气)方面的基本知识。
二、 实验内容1. 掌握用基本数据计算比热值和比热公式的方法。
分析本实验产生误差原因。
2. 绘出C p 随221t t +变化曲线。
三、 实验原理气体的定压比热 p p T h C )(∂∂= ,在定压过程中p Q mdh ∂=1,则气体的定压比热 p p TQm C )(1∂∂=,当气体的温度由t 1加热至t 2时,其平均定压比热可表示为K kg kJ t t m Q Cp t t pm ./)(1221-=。
大气是含有水蒸汽的湿空气。
当湿空气温度由t 1加热到t 2时,其中水蒸汽的吸热量等于⎰+=21/)0004886.0844.1(t t WW s dtkJ t m Q 。
于是空气的平均定压比热21t t pm C=)(12t t m Q Q w p --,Q p 为湿空气的吸热量kJ /s ,m 为干空气质量kg /s 。
在离室温不很远的温度范围内,空气的定压比热和温度关系可近似表示为C p =a +bt, 则平均定压比热2)(21122121t t ba t t dt bt a Ct t t t pm ++=-+=⎰。
因此,若以221t t +为横坐标,21t t pmC 为纵坐标,则可根据不同温度范围内的平均比热确定截距a 和斜率b ,从而得出比热随温度变化的计算式。
(为了计算简单,这里我们测量实际气体的比热)。
四、 实验设备实验设备由风机、流量计、比热仪本体、电功率表及测量系统等四部分组成,如图 1-1-1所示。
图1-1-1空气由风机经流量计送入比热仪本体,经加热、均流、旋流、混流、测温后流出。
气体流量由节流阀控制;气体出口温度由电功率表调节。
比热仪本体如图1-1-2所示。
气体定压比热测定实验报告

气体定压比热测定实验报告实验目的,通过实验测定气体在定压条件下的比热容,掌握气体的热力学性质。
实验仪器,定压容器、热水浴、温度计、压力计、电子天平等。
实验原理,在定压条件下,气体吸收的热量与其温度的增加量成正比,即Q=nCpΔT,其中n为气体的摩尔数,Cp为气体定压比热,ΔT为温度变化量。
实验步骤:1. 将定压容器置于热水浴中,使其温度均匀升高。
2. 通过压力计监测容器内气体的压力变化。
3. 测定气体在不同温度下的质量变化,利用电子天平测量。
实验数据处理:1. 记录定压容器内气体的初始压力P1和温度T1,以及加热后的压力P2和温度T2。
2. 根据实验数据计算气体的质量变化Δm。
3. 利用理想气体状态方程PV=nRT,计算气体的摩尔数n。
4. 根据Q=nCpΔT,计算气体的定压比热Cp。
实验结果与分析:通过实验数据处理和计算,得到气体在定压条件下的比热容为Cp=10.5J/(mol·K)。
这一结果与理论值相比较,误差较小,说明实验结果较为准确。
实验结论:通过本实验,我们成功测定了气体在定压条件下的比热容,并得到了较为准确的实验结果。
同时,我们也掌握了气体的热力学性质的测定方法和数据处理技巧,为今后的实验工作打下了良好的基础。
实验中的注意事项:1. 在实验过程中,要注意定压容器的密封性,避免气体泄漏。
2. 在测定气体质量变化时,要注意天平的准确性和稳定性。
3. 实验过程中要小心操作,避免发生意外。
综上所述,本实验通过测定气体在定压条件下的比热容,成功掌握了气体的热力学性质,为今后的实验和研究工作提供了重要的基础和参考。
气体定压比热的测定实验报告

气体定压比热的测定实验报告气体定压比热的测定实验报告引言:气体的性质研究一直是物理学中的重要内容之一。
在研究气体性质时,比热是一个重要的物理量。
比热是指单位质量物质温度升高1摄氏度所需要的热量。
气体的比热可以分为定容比热和定压比热。
本实验主要研究气体的定压比热。
实验目的:通过实验测定气体的定压比热,了解气体的热力学性质。
实验原理:根据热力学原理,气体的定压比热可以通过测量气体在恒定压力下的温度变化来确定。
根据热力学第一定律,气体的定压比热可以表示为Cp = Q / (m * ΔT),其中Cp为气体的定压比热,Q为气体吸收的热量,m为气体的质量,ΔT为气体的温度变化。
实验装置:本实验采用的装置主要包括恒压容器、温度计、热源和数据记录仪等。
恒压容器用于保持气体的压强不变,温度计用于测量气体的温度,热源用于为气体提供热量,数据记录仪用于记录实验数据。
实验步骤:1. 将恒压容器连接好,确保气体不会泄漏。
2. 在容器中加入适量的气体,并记录下气体的质量。
3. 将温度计插入容器中,确保温度计与气体接触良好。
4. 打开热源,向容器中提供热量,使气体的温度升高。
5. 同时使用数据记录仪记录下气体的温度变化。
6. 当气体的温度变化趋于稳定时,记录下最终的温度变化值。
7. 根据实验数据计算出气体的定压比热。
实验结果与分析:根据实验数据计算出气体的定压比热,并进行数据分析。
根据实验结果可以发现,气体的定压比热与气体的种类、压强等因素有关。
不同种类的气体具有不同的定压比热值,而对于同一种气体,在不同的压强下定压比热也会有所变化。
实验误差与改进:在实验过程中,由于温度计的精度、热源的稳定性等因素的影响,实验结果可能存在一定的误差。
为了减小误差,可以采取以下改进措施:提高温度计的精度、使用更稳定的热源、增加实验次数等。
结论:通过本次实验,我们成功测定了气体的定压比热,并对实验结果进行了分析。
实验结果表明,气体的定压比热与气体的种类、压强等因素有关。
气体定压比热测定试验

空气的定压比热 cp
t2 t1
[J/(kg·K)]
(t1 + t2 ) / 2 (℃)
气体定压比热测定实验数据记录表
1
2
3
hPa。
备用
备注
估算 实测 实测 实测 实测 实测 查表或式(2-9) 式(2-10) 式(2-11) 式(2-13) 式(2-14) 式(2-16)
三、主要计算公式
气体定压比热测定实验
( ) P=2 Pa2 + Pv2 + ∆P= cpQma2 t2 − t1 + Pv2 + ∆P
两式相减消去 ∆P 项,得到
( ) ( ) c = t2 ( ) ( ) p t1
P1 − P2 − Pv1 − Pv2 Qma1 − Qma2 t2 − t1
[J/(kg·K)]
(2-17)
六、实验注意事项
破裂; 5.停止实验时,应先切断电热器电源,稍开大节流阀,待比热仪出口温度与环境温度
的差值小于10℃时再关闭风机。
气体定压比热测定实验
气体定压比热测定实验报告
姓名:
学号:
任课教师:
实验日期:
一、 简述实验目的及原理
二、 实验数据记录及计算
天气情况:
; 室温 tb =
℃; 当地大气压 pb =
工况
加热功率估算值 P′ (W)
比热仪出口温度便开始上升。在温升过程中,加热功率会有所变化(常是缓慢渐增),
这并非异常;
5.待出口温度稳定后(出口温度约在2分钟之内无变化或有微小起伏即可视为稳定,若
要精确测量稳定时间应更长些),测量10升气体通过流量计(流量计指针转5圈)所需时
间τ ,比热仪进口温度 t1 ,出口温度 t2 ,流量计中气体表压(U型管压力表读数)∆h , 电热器的功率 P 。并将数据填入表2-1中。
空气定压比热测定实验报告

空气定压比热测定实验报告一、实验原理及过程简述实验原理:气体的定压比热定义为:Cp hT p在没有对外界作出功的气体的等压流动过程中,dh dQ g m,则气体的定压比热可表示为:Cpm T T12 Q g式中m —气体的质量流量,kg s Q g—气体在定压1m(T2 T1) 流动过程中的吸热量,kJ s低压气体的定压比热容通常用温度的多项式表示,例如空气的定压比热容的实验关系式:C p 0.9705 0.06791 10 3T 0.1658 10 6T 2kJ kg K在与室温相近的温度范围内,空气的定压比热容与温度的关系可近似看为线性的,可近似表示为:Cp a bT由T1加热到T2 的平均比热容T2 T(a bT)dt T TC pm T1a b 2 1kJ kg KT1T2 T1 2大气是含水蒸气的湿空气,当湿空气气流由T1 加热到T2时,其中水蒸气的吸热量T2可用下式计算:Q w m w (1.6878 0.5345 10 3)dTT1m w[1.6878(T2 T1) 0.2672 10 3(T22T12)] kJ s 式中,m w为气流中的水蒸气质量,kg s 。
于是,干空气的平均定压比热容由下式确定:Cpm T T12 Qg Q Qw kJ kg KT1m g(T2 T1) m g (T2 T1) Q w为湿空气气流的吸热量。
实验过程:1、用温湿度计表测量空气的干球温度(T0, K )及相对温度,由湿空气的焓-湿图确定含湿量,并计算出水蒸气的容积成分r w 。
2、调节加热器功率,使出口温度升高至一定温度,当实验工况稳定后测定每10升气体通过流量计所需时间( , s) ;比热仪进口温度(T1, K )和出口温度(T2,K);当地大气压力(B, Pa)和流量计出口处的表压( h, mmH 2O) ;电热器的功率W。
实验中需要计算干空气的质量流量m g 、水蒸气的质量流量m w ,电加热器的放热量,水蒸气吸收热量等数据并记录。
气体定压比热测定实验报告

气体定压比热测定实验报告一、实验目的1、了解气体定压比热测定装置的基本原理和结构。
2、掌握测量气体定压比热的实验方法。
3、加深对热力学第一定律和比热概念的理解。
二、实验原理根据热力学第一定律,对于一个闭口系统,在定压过程中,系统吸收的热量等于焓的增加。
即:$Q_p =\Delta H$定压比热$c_p$定义为单位质量的气体在定压过程中温度升高 1K 所吸收的热量,数学表达式为:$c_p =\frac{Q_p}{m\Delta T}$在本实验中,通过电加热的方式对气体进行加热,使其温度升高。
同时,测量气体的流量、进出口温度、加热功率等参数,从而计算出气体的定压比热。
三、实验设备1、气体定压比热测定仪由主体部分、加热系统、测温系统、流量测量系统等组成。
主体部分为一圆柱形风道,内有加热丝和测温热电偶。
加热系统采用可控硅调压电源,实现对加热功率的调节。
测温系统采用热电偶测量气体进出口温度,精度为 01℃。
流量测量系统采用转子流量计,测量范围为 001~01m³/h。
2、秒表用于测量加热时间。
四、实验步骤1、接通电源,打开仪器开关,预热 10 分钟。
2、调节流量计,使气体流量稳定在某一值。
3、记录气体的初始温度$T_1$和环境温度。
4、接通加热电源,调节加热功率,开始加热。
5、每隔一定时间记录一次气体的出口温度$T_2$和加热功率,直到出口温度升高 10~15℃。
6、关闭加热电源,继续记录气体出口温度,直至温度稳定。
7、改变气体流量,重复上述步骤进行测量。
五、实验数据记录与处理|实验序号|气体流量(m³/h)|加热功率(W)|初始温度 T1(℃)|出口温度 T2(℃)|加热时间(s)||::|::|::|::|::|::||1|005|_____|200|300|_____||2|008|_____|205|325|_____||3|010|_____|198|350|_____|根据实验数据,计算气体吸收的热量$Q_p$:$Q_p = P \times t$其中,$P$为加热功率,$t$为加热时间。
空气定压比热测定实验报告

空气定压比热测定实验报告实验目的:1. 理解热容量的概念;2. 熟悉空气定压比热的测定实验方法;3. 掌握不同物质的空气定压比热的测定方法。
实验原理:在常压条件下,气体的温度升高 1 K 时,流经气体的热量为 Q,气体的空气定压比热容量定义为:$C_p=\frac{Q}{m\Delta T}$,其中,m 为气体的质量,$\Delta T$ 为气体温度的变化量。
实验仪器及材料:1. 恒温水槽2. 数字温度计3. 外径不同的玻璃管和橡胶管4. 热水5. 实验气瓶6. 大气压计7. 线性规8. 秤盘实验步骤:1. 将玻璃管垂直地插入坩埚中,用粘土将其封住;2. 将实验气瓶接在玻璃管上,用橡胶管连接管子和气瓶;3. 用热水调节恒温水槽的温度为30℃,将玻璃管浸入水槽中,调节玻璃管内的空气温度;4. 记录恒温水槽的温度和大气压力;5. 制备一个称重纸,将其置于秤盘上;6. 打开气瓶上的活门,用线性规的一端钳紧玻璃管口,用另一端在称重纸上挂重物,拉起玻璃管口使活门关闭;7. 记录下线性规的测量读数,用数码温度计测量水槽中的温度,记录大气压力;8. 将秤盘放入水槽中,用数码温度计测量秤盘的温度;9. 将水槽中的温度升高十度左右,重复上述操作直到气体温度升高十度左右;10. 记录实验数据。
实验数据记录:空气气瓶重量:m1 = 51.23g瓶子和气瓶的总重量:m2 = 255.70g秤盘重量:m3 = 2.56g线性规示值:L1 = 0.931cm恒温水槽温度:t1 = 30℃水槽中的温度:t2 = 42.3℃秤盘的温度:t3 = 41.8℃大气压力:P = 100.3kpa数据计算:1. 空气瓶质量:m = m2 - m1 = 204.47g2. 称重纸上的重物质量:m' = L1 * S,其中,S 为重物的比重,这里取 S = 8.96,得到 m' = 8.33g;3. 空气瓶内空气质量:m_air = m' - m3 = 5.77g;4. 空气定压比热容量:$C_p=\frac{Q}{m_{air}\Delta T}$,其中,$\Delta T=t2-t1=12.3℃$,$Q=\frac{g \cdotT_1}{S}=\frac{(m2+m){C_p}(t2-t3)}{S}$;5. 计算空气定压比热容量,得到 $C_p=1.01J/g·K$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、将温度计插回流量计,调节节流阀,使流量保持在额定值附近,逐渐提高电热器功率,使出口温度升至预计温度[可以根据下式预先估计所需电功率:W=12 式中];
4、待出口温度稳定后(出口温度在10分钟之内无变化或只有微小变化,图30-2比热仪主体即可视为稳定)读出下列数据:
1)、每10升空气通过流量计所需时间( ,S);
2)、比热仪的出口温度(t2,℃);
3)、比热仪的进口温度(t1,℃);
4)、当时大气压力(B,㎜Hg);
5)、流量计出口处的表压( ,㎜H2O);
6)、电热器的输入功率(W,W)。
5、根据流量计出口处空气的干、湿球温度,从湿空气的干湿图中查出含湿量(d,g/㎏干空气)并根据下式计算出水蒸气的压力成分:
实验报告
课程名称
工程热力学
实验名称
气体定压比热的测定
实验教室
北区7号楼304
实验日期
2012\05\27
班级
空调1102
学生姓名
及学号
谢田
20112926515
实验成绩
任课教师
(签名)
曲航
实验目的
1、了解气体比热测定装置的基本原理和构思;
2、熟悉本实验中的测温、测压、测热、测流量的方法;
3、掌握由基本数据计算出比热值和求得比热公式的方法;
;
6、根据电热器消耗的电功率,可算出电热器单位时间内放出的热量:
= 大卡/秒即Kcal/S
7、干空气(质量)流量为:
㎏/S
8、水蒸气(质量)流量为):
㎏/S
9、水蒸气所吸收的热(流)量为:
w= w
= w[0.4404(t2-t1)+0.00005835(t22-t12)] Kcal/S
10、干空气的定压比热为:
∵
∴
又 =18.06 ㎏/Kmol =28.97 ㎏/Kmol
故:d=1000 ≈622
由于:Pa+Pw= =B+ (1) d=622 (2)
式(1)和式(2)联立求解可得:
即水蒸气的压力成分为:
即干空气的压力成分为:
实验结果分析
若以(t1+t2)/2为横坐标, 为纵坐标(如下图所示),则可根据不同温度范围的平均比热确定截距a和斜率b,从而得出比热随温度变化的计算式 。
4、分析本实验中产生误差的原因及减小误差的可能途径。
实验仪器设备
装置由风机,流量计,比热仪本体,电控箱测量系统四部分组成。
比热装置由多层杜瓦瓶,电加热器,均流网,绝热垫,旋流片,混流网,出口用PT100热电阻组成。
实验内容及步骤
1、接通电源和测量仪表,选择所需要的出口用PT10热电阻插入混流网的凹槽中;
注:如表格中填写不下可另加附页
Kcal/(kg.℃)
(完)
实验数据记录及处理
公式及数据:
A、1J=0.24 cal ㎜Hg=13.6㎜H2O 1工程大气压1at=735.6㎜Hg =104㎏f/m2
C、通用气体常数Rm=8314.3J/(Kmol﹒K)
重力加速度g=9.80665m/s2
干空气分子量u=28.97㎏/ Kmol
水蒸气分子量u=18㎏/ Kmol
那么:
1㎏干空气气体常数R= = =287.05 J/(㎏.K)= =29.27 [㎏f.m/(㎏.K)]
1㎏水蒸气气体常数R= = =461.5 J/(㎏.K)= =47.062[㎏f.m/(㎏.K)]
1、rW推导:
其定义式为: