2019年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版

合集下载

第十八届华杯赛决赛答案_小高B

第十八届华杯赛决赛答案_小高B

第十八届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学高年级组)一、填空题(每题10 分, 共80分)二、解答下列各题(每题10 分, 共40分, 要求写出简要过程)9.答案:106解答. 图中共有5条最长的水平线段和7条最长的垂直线段, 任意两条水平与任意两条垂直的就构成一个长方形, 一共有2102110)123456()1234(=⨯=+++++⨯+++(个).其中含“*”号有4×15+4×15-4×4=120-16=104 (个).所以不含含“*”号有210-104=106个.10.答案:9解答. 由于三角形AFC的面积和四边形DBEF的面积相等, 可得出三角形AEC 的面积等于三角形BDC的面积. 由BD:DA = 1:2, 得三角形BDC的面积等于三角形ABC面积的13, 即三角形AEC的面积等于三角形ABC面积的13. 那么EC等于BC的13, 得出EC = 6, 进而AD = 6, BD = 3, 最终AB = 9.11.答案:61解答. 设有n 个人, 每人植树x 棵, 则611132013⨯⨯==nx .可以说明:113⨯>n . 若33=n , 则每人植树61棵. 如果5人不参加植树, 则有305棵树, 其余28人每人多植3棵, 才种84棵树, 完不成任务. 可见, 113⨯>n .考虑n = 61. 此时, x = 33. 如果5人不参加植树, 则有165棵树要让56人多植树. 若每人多植2棵, 则56人多植了112256=⨯(棵)树, 完不成植树任务; 若每人多植3棵, 则56人多植了168356=⨯(棵), 完成了植树任务. 所以, n = 61符合要求.12. 答案:59解答.① 观察立体右面的正方体, 标有1个黑点的侧面到标有2个黑点的面, 再到标有4个黑点的面是以逆时针方向围绕这三个面的交点.② 观察中间上面的正方体, 既然从1个黑点到2个黑点, 再到4个黑点是逆时针, 则该正方体标有6个黑点的面的对面标有1个黑点.③ 观察立体左面的正方体, 正方体标有3个黑点的面紧邻标有2个黑点的面, 结合观察立体中间上面的正方体, 可知该正方体中, 标有4个黑点的侧面的对面的黑点有3个, 且底面标有5个黑点. 并且可知, 从1个黑点到2个黑点, 再到3个黑点是顺时针.所以, 四个完全相同的正方体, 黑点为1、2和3的三个侧面顺时针围绕公共顶点, 1对6, 2对5, 3对4. 所以, 立体中右面的正方体紧贴中间正方体的侧面有6个黑点; 立体中左面的正方体紧贴中间正方体的侧面有6个黑点; 立体中间上面的正方体紧邻下方正方体的侧面有5个黑点; 立体中间下面的正方体后面的侧面有2个黑点, 底面有可能是有1个黑点. 所以立体中间下面的正方体紧贴其他3个正方体的3个侧面黑点总数最少是8个.4个正方体黑点总数是84, 3对紧贴的侧面黑点总数最多是25, 所以, 立体的侧面(包括底面)所有黑点的总数最多是59.三、解答下列各题(每题15 分, 共30分, 要求写出详细过程)13.答案:4解答. 用右图代替题目中的12⨯小长方形. 对于拼成的正方形图形, 记过左上顶点的对角线为甲对角线, 另一条对角线为乙对角线.图A首先, 有如下观察:1) 当甲对角线是对称轴时,a)左上角的22⨯小正方形是图A的(1), (2), (3), (4) 中之一;b)右下角的22⨯小正方形是图A的(1), (2), (5), (6) 中之一;c)若右上角的22⨯小正方形是图A的(1), (2), (7), (8) 中的一个, 则左下角的22⨯小正方形分别是图A中的(1), (2), (9), (10);2) 当乙对角线是对称轴时,a)右上角的22⨯小正方形是图A的(1), (2), (7), (8) 中之一;b)左下角的22⨯小正方形是图A的(1), (2), (9), (10) 中之一;c)若左上角的22⨯小正方形是图A中的(1), (2), (3), (4) 之一, 则左下角的22⨯小正方形分别是图A中的(1), (2), (5), (6).根据上述观察, 注意到拼出的正方形中恰有八个星, 再去掉旋转重合的, 得到以下4种图形:14.解答. 记第一种、第二种和第三种分类分别分了i , j , k 类, 每类的盒子数目分别为i a a a ,,,21 , j b b b ,,,21 , k c c c ,,,21 ,令k j i n ++=.1) 因为i a a a ,,,21 , j b b b ,,,21 , k c c c ,,,21 包含了1到30的所有整数, 所以 30≥n . 另一方面,,15534652313030211553212121⨯==⨯=+++≥+++++++++++=⨯ kj i c c c b b b a a a所以 30=++=k j i n , 三种分类各自分类的类数之和是30.2) 不妨设301=a , 记这30个盒子的类为A 类. 因为30=++k j i , 必有14≤j 或14≤k , 不妨设14≤j . A 类的30个盒子分到这不超过14个类中去, 必有一类至少有三个盒子, 这三个盒子里的红球数相同并且黄球数也相同.。

2020年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版

2020年第十八届华杯赛决赛小高年级(A)卷-试题及解析word版

总分第十八届华罗庚金杯少年邀请赛决赛试题A(小学高年级组)(时间2013年4月20日10:00~11:30)一、填空题(每小题10分,共80分)1.计算:19×0.125+281×81-12.5=________.解析:原式=(19+281-100)×0.125=200×0.125=252.农谚‘逢冬数九’讲的是,从冬至之日起,每九天分为一段,依次称之为一九,二九,……,九九,冬至那天是一九的第一天.2012年12月21日是冬至,那么2013年的元旦是________九的第________天.解析:31-21+1+1=12,12÷9=1…3,2013年的元旦是二九的第3天.3.某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是________.解析:设整数为A,分别被119977553,,,除后,所得的商分别为A A A A 911795735,,,;)1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。

所以A-1=315,A=316。

4.如右图,在边长为12厘米的正方形ABCD 中,以AB 为底边作腰长为10厘米的等腰三角形PAB .则三角形PAC 的面积等于________平方厘米.解析:过P点做PE⊥AB,由于三角形PAB为等腰三角形,所以AE=EB=6cm。

根据勾股定理:PE 2=102-62=64=82,所以PE=8cm。

S△PAB=12×8÷2=48cm 2,S△PCB=12×6÷2=36cm 2,S△PAC=48+36-12×12÷2=12cm 2。

第18届华杯赛决赛真题答案(小高组a卷)

第18届华杯赛决赛真题答案(小高组a卷)

第十八届华罗庚金杯少年数学邀请赛决赛试题 A 参考答案(小学高年级组)一、填空题(每题 10 分, 共 80 分)题号 1 2 3 4 5 6 7 8答案25 2, 3 316 12 62 74 94 54二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9.解答.例如(4 + 4 + 4) ÷ 4 = 3 ,4 - (4 - 4) ⨯ 4 = 4 ,(4 ⨯ 4 + 4) ÷ 4 = 5 ,(4 + 4) ÷ 4 + 4 = 6 .10.答案:25解答. 设比小明小的学生为x人,比小华小的学生为y人.因为比小明大的学生为2x人,所以全班学生共 N =3x +1人;又因为比小华大的学生为3y人,所以全班学生共N=4y+1人. 这样, N-1既是 3 的倍数, 又是 4 的倍数, 因此N-1是3⨯4=12的倍数. 这个班学生人数大于 20 而小于 30, 所以N-1只可能是 24. 因此这个班共有学生N=24+1=25人.11.答案:1.375解答.小虎划船的全部时间为120分钟,他每划行30分钟,休息10分钟,周期为40分钟, “华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解所以一共可分为 3 个 30 分钟划行时间段, 有 3 个 10 分钟休息划船时, 顺水的船速与逆水的船速之比为 4.5:1.5=3:1. 因为小虎要把船划到离租船处尽可能远, 他在划船的过程中只能换一次划船的方向, 而且是在尽可能远处. 分两种情况讨论.1)开始向下游划船, 设最远离租船处x千米. 因为回到租船处是逆水, 所以小虎只有 110 分钟可用. 由于划船时顺流速度是逆流速度的 3 倍, 所以用在向下游划船的时间不能超过半小时. 另外两次休息时间只能用在返程, 在休息期间内船向下游漂流了13⨯1.5 , 所以⎛ 1 ⎫x ÷4.5+  x + ⨯1.5⎪ ÷1.5 = 1.5 .3⎝ ⎭整理上式得x +3x +1.5=6.75,4x= 5.25,x =1.3125(千米).2)开始向上游划, 设最远离租船处y千米. 小虎可用 120 分钟, 有两次休息时间用在向上游. 所以⎛ 1 ⎫ ⎛ 1 ⎫y + ⨯1.5⎪ ÷1.5 +  y - ⨯1.5⎪ ÷ 4.5 = 1.5 .3 6⎝ ⎭ ⎝ ⎭整理上式得4 y+5 ⨯1.5 = 6.75 , 4 y= 5.5 , y =1.375(千米).6综合 1) 和 2) 的讨论, 小虎的船最多离租船处 1.375 千米.12.答案:不能解答. 设放的最小自然数为a,则放的最大自然数为a+23.于是这24个数的和为A= 12(2a+ 23).假设可能, 设每个正方形边上的数之和为S . 因为共有5个正方形, 这些和的和为5S . 因为每个数在这些和中出现两次, 所以有5S= 2A.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解记最小的 16 个数的和为B , 则B=8(2a+15) . 下面分两种情形讨论:(1)若 B ≤ S ,则S = 2 A = 24 (2a+ 23) ≥ 8(2a+15) , 9.8a+110.4 ≥16a+120 ,5 5不存在自然数 a 使得不等式成立.(2)情形 B > S 也是不可能的,因为此时不可能选择最大正方形边上的16个数使得这16 个数的和等于S .三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13.答案:5解答. 用右图代替题目中的2⨯1小长方形.因为题目所给的小长方形上下不对称,所以同一个小长方形在拼成的上下对称的正方形中, 不会既在上半部分也在下半部分. 这样, 就可以只考虑上半部分的不同情形.1)相邻的空白格在第一行最左边或最右边. 因为要排除旋转相同的, 所以只考虑相邻空白格在最右边的情况, 有下图所示的 2 种图形,2)相邻的空白格在第一行中间. 去掉旋转重合的, 有下图所示的 3 种图形,所有不同的图形为 5 种.14.答案:6036“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解解答. 令n = a1+ a2++ a2010 = b1 + b2 + + b2012 = c1 + c2 ++ c2013 ,其中, 所有的a i数字和相同, 所有的b j数字和相同, 所有的c k数字和相同. 两个自然数数字的和相同, 则它们除以 9 的余数相同, 即a i = 9u i + r, i =1, 2, , 2010,bj = 9v j + s, j =1, 2, , 2012,c k = 9w k + t, k =1, 2, , 2013.则n= 9 ⨯ (u1+u2+ +u2010 ) + 2010⨯r= 9 ⨯ (v1+v2+ +v2012 ) + 2012⨯s (1)= 9 ⨯ (w1+w2+ +w2013 ) + 2013⨯t,由上面的等式可得,9 ⨯ (u1+u2++ u2010 + 223 ⨯ r) + 3r = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(2)9 ⨯ (w1+w2++ w2013 + 223 ⨯ t) + 6 ⨯ t = 9 ⨯ (v1 + v2 ++ v2012 + 223 ⨯ s) + 5 ⨯ s ,(3) 由 (2) 可以得出s是 3 的倍数, 只能是 0, 3 或 6. 下面三种情况讨论:1)s =0.此时,对j=1, 2,, 2012 ,因为b j=9v j的数字和不为零,所以v j≥1. 则n =9⨯(v1+ v2++ v2012 ) ≥ 9 ⨯ 2012 = 18108 .2)s =6.此时“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解客服电话:400 650 0888 n =9(v1+ v2++ v2012 ) + 2012 ⨯ 6 ≥ 12072 .3)s =3,此时n= 9(v1+v2+ +v2012 ) + 2012 ⨯ 3 ≥ 6036 .可以取 r =2, t =1.而6036 = 3 + 3 + + 3 = 2 + 2 + + 2 +11 +11 + +112012 个x 个y 个=10 +10 + +10 +1 +1 + +1.=m 个n 个下面计算 x, y 与 m, n,⎧x + y =2010, ⎨ ⎧m + n =2013,⎨⎩10m+n= 6 0 3,6即6036 = 2⨯1786 +11⨯224 =10⨯447 +1566 = 3⨯2012.最终, 满足条件的最小自然数是 6036.“华杯赛”官网四大类网络课程√专题讲座√赛前串讲√真题详解√月月练讲解第 5 页共5页。

2019年华杯赛高年级(A)卷详细解析word版

2019年华杯赛高年级(A)卷详细解析word版

第十八届华罗庚金杯少年邀请赛初赛试题A(小学高年级组)(时间2019年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1.2019.25×2019.75-2010.25×2015.75=()。

A.5 B.6 C.7 D.8解析:巧算问题原式=(2010.25+2)×(2015.75-2)-2010.25×2015.75=2015.75×2-2010.25×2-4=7答案为C。

2.2019年的钟声敲响了, 小明哥哥感慨地说: 这是我有生以来第一次将要渡过一个没有重复数字的年份。

已知小明哥哥出生的年份是19的倍数, 那么2019年小明哥哥的年龄是()岁。

A.16 B.18 C.20 D.22解析:简单数论。

从1990年~2019年,年份中都有重复数字,其中是19的倍数的数只有1900+95=1995,2019—1995=18(岁),所以选B。

3.一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一。

8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为()分钟。

A.22 B.20 C.17 D.16解析:周期问题。

下滑1米的时间是向上爬3米所用时间的三;爬一米和滑一米的时间相同,以爬三米,滑一米为一个周期;(3-1)×3+3=9m,青蛙第一次爬至离井口3米之处,(3-1)×4+1=9m,青蛙第二次爬至离井口3米之处,此时,青蛙爬了4个周期加1米,用时17分钟,所以青蛙每爬1m或滑1m所用时间为1分钟。

(12—3)÷(3-1)=4…1,青蛙从井底爬到井口经过5个周期,再爬2m,用时5×(3+1)+2=22分钟,选A。

小学奥数华杯赛试题及答案(第十八届第二期)

小学奥数华杯赛试题及答案(第十八届第二期)

小学奥数华杯赛试题及答案(第十八届第二期)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.这篇关于小学奥数华杯赛试题及答案(第十八届第二期),是小编特地为大家整理的,希望对大家有所帮助!试题一某公司有一项运动——爬楼上班,该公司正好在__大厦_楼办公。

一天编辑箫菲爬楼上班,她数了一下楼梯,每段有_级台阶,每层有2段。

她想我每一步走一级或二级。

那么我到公司走楼梯共有多少种走法呢?亲爱的小朋友你能帮萧菲解决这个难题吗?解析:如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:①当n=1时,显然只要1种走法,即a1=1。

②当n=2时,可以一步一级走,也可以一步走二级上楼,因此,共有2种不同的走法,即a2=2。

③当n=3时,如果第一步走一级台阶,那么还剩下二级台阶,由②可知有a2=2(种)走法。

如果第一步走二级台阶,那么还剩下一级台阶,由①可知有a1=1(种)走法。

根据加法原理,有a3=a1+a2=1+2=3(种)类推,有:a4=a2+a3=2+3=5(种)a5=a3+a4=3+5=8(种)a6=a4+a5=5+8=_(种)a7=a5+a6=8+_=_(种)a8=a6+a7=_+_=34(种)a9=a7+a8=_+34=55(种)a_=a8+a9=34+55=89(种)a_=a9+a_=55+89=_4(种)a_=a_+a_=89+_4=233(种)a_=a_+a_=_4+233=377(种)a_=a_+a_=233+377=6_(种)一般地,有an=an-1+an-2走一段共有6_种走法。

共有(_-1)_2=34(段)。

2019华杯赛决赛小学高年级组试题A答案详解

2019华杯赛决赛小学高年级组试题A答案详解

第十九届华罗庚金杯少年数学邀请赛决赛试题A (小学高年级组)一、填空题(每小题 10 分, 共80 分)1. 如右图, 边长为12米的正方形池塘的周围是草地, 池塘边A , B , C , D 处各有一根木桩, 且AB =BC =CD =3米. 现用长4米的绳子将一头羊拴在其中的某根木桩上. 为了使羊在草地上活动区域的面积最大, 应将绳子拴在 处的木桩上. 【考点】圆与扇形 【答案】B【解析】拴在B 处活动区域最大,为43圆。

2. 在所有是20的倍数的正整数中, 不超过2019并且是14的倍数的数之和是 . 【考点】最小公倍数,等差数列 【答案】14700【解析】[]14014,20=,141402014=⎥⎦⎤⎢⎣⎡,()1470014321140=+++⨯Λ.3. 从1~8这八个自然数中任取三个数, 其中没有连续自然数的取法有 种. 【考点】计数 【答案】20【解析】解法一:枚举法(1)三奇数:135、137、157、357,4个; (2)三偶数:246、248、268、468,4个;(3)两奇一偶:136、138、158、147、358、257,6个; (4)两偶一奇:247、258、146、148、168、368,6个; 共4+4+6+6=20种.解法二:排除法1~8中任取三个数,有5638 C 种不同的取法其中三个连续数有6种(123~678)两个连续数有5+4+4+4+4+4+5=30种(如124、125、126、127、128等) 则满足题意的取法有56—6—30=20种.4. 如右图所示, 网格中每个小正方格的面积都为1平方厘米. 小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成, 小线段的端点在格子点上或在格线上), 则这个剪影的面积为 平方厘米.【考点】格点与面积 【答案】56.5【解析】如图(见下页),通过分割和格点面积公式可得小马总面积为56.5个正方形,即面积为56.5平方厘米。

第十八届华杯赛决赛答案_小中B

第十八届华杯赛决赛答案_小中B

第十八届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学中年级组)一、填空题(每题10 分, 共80分)二、简答题(每题15 分, 共60分, 要求写出简要过程)9.答案:192解答. 因为(长方形ABFE的面积-蔬菜大棚的面积)-(长方形EFCD的面积-鸡场的面积)= 96,又, 蔬菜大棚的面积=鸡场的面积, 所以长方形ABFE的面积-长方形EFCD的面积= 96 ……(5分)因为BF=3CF, 即长方形ABFE的面积=3×长方形EFCD的面积,所以3×长方形EFCD的面积-长方形EFCD的面积= 96,即2×长方形EFCD的面积= 96. ……(10分)因此,长方形ABCD的面积= 长方形ABFE的面积+长方形EFCD的面积= 3⨯长方形EFCD的面积+长方形EFCD的面积= 4⨯长方形EFCD的面积= 2×96 = 192.……(15分)解答.U 车行驶 (5020)100250÷⨯=(千米), V 车行驶 (5025)100200÷⨯=(千米), W 车行驶 (505)1001000÷⨯=(千米), X 车行驶 (5010)100500÷⨯=(千米).4辆车最多可行驶的路程总计是250+200+1000+500=1950(千米). (说明:本题共5步, 每个式子做对得3分). 11. 答案:990解答. 由甲是乙的2倍多10块, 是丙的3倍多18块, 是丁的5倍少55块, 得甲102-=⨯乙, 甲183-=⨯丙, 甲555+=⨯丁,即15×甲15030-=⨯乙, 10×甲18030-=⨯丙, 6×甲33030+=⨯丁. ……(5分) 三式相加得31303030⨯=⨯+⨯+⨯甲乙丙丁,即6130303030⨯=⨯+⨯+⨯+⨯甲甲乙丙丁. ①又甲 + 乙 + 丙 + 丁 = 2013,所以30303030⨯+⨯+⨯+⨯甲乙丙丁302013=⨯. ②……(10分)将 ② 代入 ① 得61302013303361.⨯=⨯=⨯⨯甲所以, 3033990.=⨯=甲 ……(15分)解答. 设被染色的每两个球中的小号码为k, 则k取值1, 2, 3, 4, 5, 6, 7. 另一个被染色的球的号码可能是3,4,,10.++……(3分)k k采用列举法:k=1时, (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), 共7种;k=2时, (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), 共6种;k=3时, (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), 共5种;k=4时, (4, 7), (4, 8), (4, 9), (4, 10), 共4种;k=5时, (5, 8), (5, 9), (5, 10), 共3种;k=6时, (6, 9), (6, 10), 共2种;k=7时, (7, 10). 共1种.不同的染法数为1+2+3+4+5+6+7 = 28 (种). ……(15分)。

第十八届华杯赛总决赛试题

第十八届华杯赛总决赛试题

第十八届华杯赛总决赛试题——必答题A 组试题组试题必答题A1 左下图是一个等腰梯形,左下图是一个等腰梯形,上底和两腰的长度是上底和两腰的长度是2,下底长度是4;右下图是一个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?个正六角星形,面积和等腰梯形的面积相等,问:正六角星形的周长是多少?必答题A2 将1,2,3,4分别填入下面的方格中,使得等式分别填入下面的方格中,使得等式+2× +3× +4× =22 成立,那么第一个方格填的数与第四个方格填的数之积是多少?成立,那么第一个方格填的数与第四个方格填的数之积是多少?必答题A3 右图的三角形ABC 中,D ,E 分别是所在边的中点,BC=6MN ,三角形GMN 的面积等于3平方厘米。

求三角形ABC 的面积。

的面积。

等腰梯形正六角星形面积相等,五个地块栽种四种不同颜色不能同色,不相邻的地块可以同色。

问共有多少种不同的栽种方案?E D C B A A黑板上写有数字1到9.请你擦掉其中的几个数字,使得剩下的数字的两两相这十个数字,你从黑板上最多能擦掉几个数字?乘积中,个位出现由0到9这十个数字,你从黑板上最多能擦掉几个数字?第十八届华杯赛总决赛试题——必答题B组试题组试题 必答题B1 在100至200之间有三个连续的自然数,其中最小的能被3整除,中间的能整除。

写出这样的三个连续自然数。

被5整除,最大的能被7整除。

写出这样的三个连续自然数。

必答题B2 边长分别为6厘米和8厘米的两张正方形纸板,放在一个边长为10厘米的大正方形内,大正方形内未被两小正方形纸板盖住的部分的面积最小值是多少平方厘米?厘米?必答题B3 自然数n是两个质数的乘积,它的包含1但不包含n的所有因数的和等于100,那么n=? 必答题B4 如图,三角形ABC中,∠ACB=90°,AC=1cm,AB=2cm.以B为中心,将三角形ACB顺时针旋转,使得点A落在边CB的延长线上A1点,此时点C落在点C1的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十八届华罗庚金杯少年邀请赛
决赛试题A (小学高年级组)
(时间2019年4月20日10:00~11:30)
一、填空题(每小题 10分, 共80分)
1.计算: 19×0.125+281×8
1-12.5=________. 解析:原式=(19+281-100)×0.125
=200×0.125
=25
2.农谚‘逢冬数九’讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2019年12月21日是冬至, 那么2019年的元旦是________九的第________天.
解析:31-21+1+1=12,12÷9=1…3,2019年的元旦是二九的第3天.
3.某些整数分别被119977553,,,除后, 所得的商化作带分数时, 分数部分分别是92725232,,,, 则满足条件且大于1的最小整数是________.
解析:设整数为A, 分别被119977553,,,除后, 所得的商分别为A A A A 911795735,,,; )1(911921911)1(7972179)1(5752157)1(3532135-++=-++=-++=-++=A A A A A A A A ,,,显然,当A-1是[3,5,7,9]的时候满足题意。

所以A-1=315,A=316。

4.如右图, 在边长为12厘米的正方形ABCD 中, 以AB 为底边作腰长为10厘米的等腰
三角形PAB . 则三角形PAC 的面积等于________平方厘米.
解析:过P 点做PE ⊥AB,由于三角形PAB 为等腰三角形,所以AE=EB=6cm 。

根据勾股定理:PE 2=102-62=64=82,所以PE=8cm 。

S △PAB=12×8÷2=48cm 2,S △PCB=12×6÷2=36cm 2,
S △PAC=48+36-12×12÷2=12 cm 2。

5.有一筐苹果, 甲班分, 每人3个还剩11个; 乙班分, 每人4个还剩10个; 丙班分, 每人5个还剩12个. 那么这筐苹果至少有________个.
解析:11≡2(mod3)=2;10≡2(mod4)=2;12≡5(mod5)=2,所以苹果数除以3,4,5都余2,
[3,4,5]=60, 这筐苹果至少有60+2=62个.
6.两个大小不同的正方体积木粘在一起, 构成右图所示的立体图形, 其中, 小积木
的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长
为3, 则这个立体图形的表面积为________.
解析:如图所示,四个三角形面积都是1×2÷2=1,
所以小积木一个面的面积是32-1×4=5。

这个立体图形的表面积为大积木的表面积加上小积木四个面的面积。

所以面积为6×32+4×5=74。

7.设n
是小于50
的自然数, 那么使得4n +5和7n +6有大于1
的公约数的所有n 的可能值之和
为 .
E
解析:设4n+5和7n+6大于1的公约数为A,则A∣(4n+5),A∣(7n+6)。

(4n+5)×7,(7n+6)×4
相减消去n,则差能被11整除,(4n+5)×7-(7n+6)×4=11,11是质数,所以A只能是11。

(4n+5),(7n+6)都是11的倍数,为了分别找出所有的n,2×(4n+5)-(7n+6)=n+4,11∣(n+4),所以n=7,18,29,40。

所以答案为7+18+29+40=94。

8.由四个完全相同的正方体堆积成如右图所示的立体, 则立体的表面上(包
括底面)所有黑点的总数至少是________.
解析:将黑点数转化为1,2,3,4,5,6,根据图可知,2与4,6,3,1相邻,则2与5
相对,4与6,1相邻,则4与3相对,1与6相对。

最左边的正方体左右两个面上是1和6,可以重叠6;
最右边的正方体重叠6;
最上面的正方体重叠5;
正中间左右两个面一起重叠7,上面重叠6。

所以正方体重叠面上的黑点最多是7+6+5+6+6=30,
立体的表面上所有黑点的总数至少是4×7×3—30=54。

二、解答下列各题(每题10分, 共40分, 要求写出简要过程)
9.用四个数字4和一些加、减、乘、除号和括号, 写出四个分别等于3, 4, 5和6的算式.
解析:(4+4+4)÷4=3,4+(4-4)÷4=4,(4×4+4)÷4=5,4+(4+4)÷4=6
10.小明与小华同在小六(1)班, 该班学生人数介于20和30之间, 且每个人的出生日期均不相同. 小明说: “本班比我大的人数是比我小的人数的两倍”, 小华说: “本班比我大的人数是比我小的人数的三倍”. 问这个班有多少名学生?
解析:根据小明,小华的话可知:六(1)班人数-1是3的倍数,也是4的倍数。

[3,4]=12,所以这个班有12×2+1=25名学生
11.小虎周末到公园划船, 九点从租船处出发, 计划不超过十一点回到租船处. 已知, 租船处在河的中游, 河道笔直, 河水流速1.5千米/小时; 船在静水中的速度是3千米/小时, 划船时, 每
划船半小时, 小虎就要休息十分钟让船顺水漂流. 问: 小虎的船最远可以离租船处多少千米? 解析:V顺:V逆:V水=4.5:1.5:1.5=3:1:1;注意逆水速度等于静水速度。

小虎每划船半小时,就要休息十分钟让船顺水漂流,120÷(30+10)=3,小虎休息三次,则船顺水漂流30分钟,则逆水时间里面有30分钟要和他抵消,相当于船没有动。

在剩下120-30-30=60分钟里要船能回到租船处,则逆水时间和顺水时间为V顺:V逆=3:1,所以顺水时间为60÷(3+1)=15分钟。

注意小虎的船最远可以离租船处,还需加上船顺水漂流10分钟的路程,
所以答案为:4.5×15÷60+1.5×10÷60=1.375km
12.由四个相同的小正方形拼成右图. 能否将连续的24个自然数分别放在图中所示的24个黑点处
(每处放一个, 每个数只使用一次), 使得图中所有正方形边上所放的数之和都
相等? 若能, 请给出一个例子; 若不能, 请说明理由.
解析:设这24个连续自然数为a,a+1,a+2,…,a+23。

注意:图中有五个正方形,五个正方形上共有16+4×8=48,仔细分析,每个数重
复用了2次。

假设能使得图中所有正方形边上所放的数之和都相等,且设这个和为A。

则有(a+a+1+a+2+…+a+23)×2=48a+552=5A
48≡3(mod5),552≡2(mod5),要48a+552是5的倍数,则48a除以5余3,即a要是5的倍数多1,不妨设a=5b+1,48a+552=48×5b+48+552=240b+600,所以A=48b+120
我们再来看大正方形上的16个数,即使是这24个数中最小的16个,它们的和是
5b+1+5b+2+5b+3+…5b+16=80b+136> A=48b+120
所以不能使得图中所有正方形边上所放的数之和都相等。

相关文档
最新文档