华杯赛小高近5年真题(附详解)20C
20届华杯赛试题及答案

20届华杯赛试题及答案华杯赛,全称“华罗庚数学竞赛”,是中国的一项全国性数学竞赛,旨在激发青少年对数学的兴趣,培养他们的数学思维和解决问题的能力。
20届华杯赛的试题和答案如下:# 20届华杯赛试题一、选择题(每题5分,共20分)1. 若a、b、c为正整数,且满足\( a^2 + b^2 = c^2 \),求证a、b、c中至少有一个是偶数。
2. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
二、填空题(每题5分,共30分)1. 一个圆的半径为5,求其面积。
2. 若\( x^2 - 5x + 6 = 0 \),求x的值。
三、解答题(每题25分,共50分)1. 证明:对于任意正整数n,\( 1^3 + 2^3 + ... + n^3 = (1 + 2+ ... + n)^2 \)。
2. 一个长方体的长、宽、高分别为a、b、c,求证其对角线的长度为\( \sqrt{a^2 + b^2 + c^2} \)。
# 20届华杯赛答案一、选择题答案1. 正确。
根据奇偶性的性质,偶数的平方是偶数,奇数的平方是奇数。
若a、b、c都是奇数,则\( a^2 + b^2 \)为偶数,与\( c^2 \)为奇数矛盾。
2. 斜边长度为5,根据勾股定理\( 3^2 + 4^2 = 5^2 \)。
二、填空题答案1. 圆的面积为\( 25\pi \)。
2. \( x = 2 \) 或 \( x = 3 \),根据因式分解\( (x - 2)(x - 3) = 0 \)。
三、解答题答案1. 证明:- 左边:\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)(1^2 + 2^2 + ... + n^2) - (1 + 2 + ... + n) \)。
- 右边:\( (1 + 2 + ... + n)^2 \)。
- 根据等差数列求和公式,\( 1 + 2 + ... + n = \frac{n(n + 1)}{2} \)。
第十九届华杯赛初赛解答_小高

第十九届华罗庚金杯少年数学邀请赛初赛试题(小学高年级组)(时间: 2013 年 3 月 15 日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 平面上的四条直线将平面分割成八个部分, 则这四条直线中至多有( )条直线互相平行.(A )0 (B )2(C )3 (D )4 【答案】C【解答】当4条直线都互相平行时, 平面被分成5个部分, 不满足要求, 因此最多只能3条直线互相平行.构造:有3条直线互相平行, 另外一条直线与它们都互相垂直, 此时平面被分成8个部分.2. 某次考试有50道试题, 答对一道题得3分, 答错一道题扣1分, 不答题不得分.小龙得分120分, 那么小龙最多答对了( )道试题.(A )40 (B )42(C )48 (D )50【答案】B【解答】得分120分, 说明至少需要答对40道题, 其余10道题不答, 满足题意.若答对41道题, 答错3道题, 其余题不答, 此时得分也是120分.若答对42道题, 答错6道题, 其余题不答, 此时得分也是120分.若答对43道题, 得分依然为120分, 需要再答错9道题, 此时至少需要有52道题, 52>50, 因此不满足题意.另一解答:设作对x 题, 做错y 题, 未答z 题, 则有:3-=120,++=50,x y x y z 合并两个等式, 得到:2-4=170-, =42+4z x z x , x 是非负整数, 尽可能大, 故=2, =42z x , 即小龙最多答对42道试题.3. 用左下图的四张含有4个方格的纸板拼成了右下图所示的图形. 若在右下图的16个方格分别填入1, 3, 5, 7(每个方格填一个数), 使得每行、每列的四个数都不重复, 且每个纸板内四个格子里的数也不重复, 那么A, B, C, D四个方格中数的平均数是()..(A)4 (B)5 (C)6 (D)7【答案】A【解答】如左下图, 用M, N, P, Q标记16个方格图最下面4个方格,因为1+3+5+7=16, 所以A+B+M+N=16, C+D+P+Q=16, 即A+B+M+N+C+D+P+Q=32. 又因为M+N+P+Q=16, 所以A+B+C+D=32-16=16.右上图是一种满足要求的填法, 且A, B, C, D四个方格中数的平均数是4.4.小明所在班级的人数不足40人, 但比30人多, 那么这个班男、女生人数的比不可能是().(A)2:3 (B)3:4 (C)4:5 (D)3:7【答案】D【解答】如果男、女生人数的比是2:3, 那么全班人数一定是5的倍数, 男生14人, 女生21人, 满足题意.如果男、女生人数的比是3:4, 那么全班人数一定是7的倍数, 男生15人, 女生20人, 满足题意.如果男、女生人数的比是4:5, 那么全班人数一定是9的倍数, 男生16人, 女生20人, 满足题意.如果男、女生人数的比是3:7, 那么全班人数一定是10的倍数, 但本班人数不足40人, 但比30人多, 所以男、女生人数的比不可能是3:7.5.某学校组织一次远足活动, 计划10点10分从甲地出发, 13点10分到达乙地, 但出发晚了5分钟, 却早到达了4分钟. 甲乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是( ).(A )11点40分 (B )11点50分 (C )12点 (D )12点10分【答案】B【解答】从10点10分到13点10分共有3个小时, 比计划时间少用9分钟, 即每小时少用3分钟, 少用5分钟的时候即是到达B 点的时间.此时需要5÷(3÷60)=100分钟, 即1小时40分钟, 所以到达B 点的时间是11点50分.6. 如右图所示, 7=AF cm, 4=DH cm, 5=BG cm, 1=AE cm. 若正方形ABCD 内的四边形EFGH 的面积为78 cm 2, 则正方形的边长为( )cm.(A )10 (B )11 (C )12 (D )13【答案】C【解答】用竖直线和水平线将正方形ABCD 分割为如右图所示的5个长方形, 中间长方形的面积是 4312⨯=, 所以,正方形的面积 = ()7812212144-⨯+=,正方形的边长是12.二、填空题 (每小题 10 分, 满分40分)7. 五名选手A, B, C, D, E 参加“好声音”比赛, 五个人站成一排集体亮相. 他们胸前有每人的选手编号牌, 5个编号之和等于35.已知站在E 右边的选手的编号和为13;站在D 右边的选手的编号和为31;站在A 右边的选手的编号和为21;站在C 右边的选手的编号和为7.那么最左侧与最右侧的选手编号之和是________.【答案】11【解答】由于31>21>13>7, 说明A 在D 的右边, E 在A 的右边, C 在E 的右边. 由于, 站在C 右边的选手的编号和为7, 推出B 站在C 的右边. 因此, D 是最左侧的选手, B 是最右侧的选手. 所以, B, C, E, D 和 A 的选手编号分别为7, 6, 8, 4, 10. B 与D 的选手编号和为11.8. 甲乙同时出发, 他们的速度如下图所示, 30分钟后, 乙比甲一共多行走了________米.乙甲米/分分10080604020510152025301008060402030252015105分米/分【答案】300【解答】由图所示, 前10分钟, 甲和乙速度相同;第10分钟至第20分钟, 乙速度是100米/分, 甲的速度是80米/分, 故乙多走了200米;第20分钟至第30分钟, 乙的平均速度是80米/分, 甲的平均速度是70米/分, 故乙多走了100米;乙共计多走了300米.9. 四个黑色1×1×1的正方体和四个白色1×1×1的正方体可以组成________种不同的2×2×2的正方体(经过旋转得到相同的正方体视为同一种情况).【答案】7【解答】两个正方体各有一个侧面相互完全贴合, 则称为两个正方体有公共侧面, 以公共侧面个数分类枚举:1)4个黑色正方体, 每个与其他黑色正方体都没有公共侧面, 此时只有1种2×2×2的正方体, 如图5a (是何道理, 请读者思考);2)4个黑色正方体, 每个最多与一个黑色正方体之间有公共侧面, 且至少有1个黑色正方体和某个黑色正方体有公共侧面, 此时只有1种2×2×2的正方体, 如图5b (是何道理, 请读者思考);3)4个黑色正方体中, 至少有1个黑色正方体和另两个黑色正方体有公共侧面的情况:● 有1个且只有1个黑色正方体与另两个黑色正方体之间都有公共侧面, 此时只有1种2×2×2的正方体, 如图5c-1;● 有2个且只有2个黑色正方体, 每个与另两个黑色正方体之间都有公共侧面, 此时有2个2×2×2的正方体, 如图5c-2和图5c-3, 且正如图中的标记, 图5c-2中的4个黑色正方体, 从有1个公共侧面黑色正方体到有2个公共侧面的黑色正方体是逆时针, 而图5c-3则是顺时针, 则图5c-2和图5c-3不可能旋转后相同; ● 显然, 不可能有且仅有3个黑色正方体, 每个都和另两个都有公共侧面;有4个黑色正方体, 每个都和另两个黑色正方体有公共侧面, 此时, 有1种2×2×2的正方体, 如图5c-4;图5c-1至图5c-4显然是不同的2×2×2的正方体.4)4个黑色正方体中, 有1个黑色正方体和其余3个黑色正方体都有公共侧面, 此时, 只有1种 2×2×2的正方体, 如图5d.共有7种2×2×2的正方体, 除此之外, 别无其他不同类型2×2×2的正方体.10. 在一个圆周上有70个点, 任选其中一个点标上1, 按顺时针方向隔一个点的点上标2, 隔两个点的点上标3, 再隔三个点的点上标4, 继续这个操作, 直到1, 2, 3, …, 2014都被标记在点上.每个点可能不只标有一个数, 那么标记了2014的点上标记的最小整数是________.【答案】5【解答】将70个点中某个点为起始点, 然后按顺时针方向依次将这70个点记为第1个, 第2个, 第3个,…, 第70个,第一种方法:用i a 表示第i 个点上标记的数字.依题意13610 =1, =2, =3, =4,a a a a , …, 且按规律得:=2014k a , 这里k 是 201420151232014=20291052⨯++++=除以70的余数, 即:2029105289877015=⨯+,155=a .因此第15个点上标记的最小整数为5.第二种方法:用i a 表示第i a 个点上标记的数字是i .图5a 图5b 图5c-1 图5c-2 图5c-3 图5c-4 图5d依题意1234 =1, =3, =6, =10,a a a a , …, 且按规律得:202910522015201420143212014=⨯=++++= a , 2029105289877015=⨯+,515=a .因此第15个点上标记的最小整数为5.。
华杯赛小高近 真题 附详解 C

2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第21届华杯赛初赛试卷及答案解析(小高组)

第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字0. A.2017B.2016C.2015D.2014【答案】C【解析】 201622016201620152015(101)(102)101999...998000 (001)-=-⨯+=个个2.已知A B ,两地相距300米.甲、乙两人同时分别从,A B 两地出发,相向而行,在距A 地140米处相遇;如果乙每秒多行1米,则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. A.325 B.425 C.3 D.135【答案】D【解析】设甲速1v 乙速2v121214073001408300180211803v v v v ⎧==⎪-⎪⎨-⎪==⎪+⎩解得12145165v v ⎧=⎪⎪⎨⎪=⎪⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】100111137=⨯⨯,ACD 前三位都不是11或13的倍数 9881376=⨯,8841368=⨯,8471177=⨯,4731143=⨯,7371167=⨯4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有( )种不同的排行.A.1152B.864C.576D.288 【答案】A【解析】123...728++++=,8的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356)四种分法共有244!3!1152⨯⨯⨯=种排法5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6,CD =14, AEC ∠是直角,CE CB =,则AE 2等于( )A.84B.80C.75D.64【答案】A【解析】AG BF h ==,10CG =,4CF =2222100AC AG CG h =+=+2222216CE BC BF CF h ==+=+22284AE AC CE =-=6.从自然数1,2,3,…,2015,2016中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5个数,它们的数字和相等.那么n 的最小值等于( )A.109B.110C.111D.112【答案】B【解析】1到2016中,数字和最大28。
18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
解析第20届华杯赛决赛试题WORD范本可编辑

解析第20届华杯赛决赛试题WORD范本可编辑解析第20届华杯赛决赛试题第20届华杯赛决赛试题B(小高组)试题及详解内容需要下载文档才能查看科雅数学:彭泽老师谷运增老师杨秀情老师彭艳老师提供详解校区地址:金河路尊城国际1305 小南街128号福华新起点五层第二十届华罗庚金杯少年数学邀请赛决赛试题B(小学高年级组) 答案及详解(时间:2017年4月11日10:00-11:30)答案:内容需要下载文档才能查看内容需要下载文档才能查看的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树13棵。
详解:甲其余三人a+2a=60 a=20 乙其余三人b+3b=60内容需要下载文档才能查看b=15第20届华杯赛决赛试题B(小高组)试题及详解内容需要下载文档才能查看丙其余三人c+4c=60内容需要下载文档才能查看内容需要下载文档才能查看内容需要下载文档才能查看c=12 丁=60-20-15-12=133、当时间为5点8分时,钟表面上的时针与分针成度的角。
详解:5:00时,分针与时针夹角为25*6=150 过八分钟,分针走8*6°=48°,时针走8*0.5=4°内容需要下载文档才能查看内容需要下载文档才能查看5:08时,夹角为150-(48-4)=1064. 某个三位数是2的`倍数,加1是3 的倍数,加2是44是6的倍数,那么这个数最小为详解:这个数除以3余2,除以4余2,除以526N=[3.4.5.6]n+2=60n+2 最小3位数为60*2+2=122没有三个国家两两都是敌国,个6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是,最小的是。
详解:设这四个数字为abcd 共A4=4*3*2*1=24个以a开头=以b开头=以c开头=以d开头的个数=24/4=6个4第20届华杯赛决赛试题B(小高组)试题及详解内容需要下载文档才能查看百位,十位,个位每个字母都出现6次和为b(a+b+c+d)*1111=106656 a+b+c+d=16abcd最大为9421,最小为12497. 见右图,三角形ABC的面积为1,DO:OB=1:3,EO:OA=4:5,内容需要下载文档才能查看内容需要下载文档才能查看若个位是0、0、0,a*b*c末三位为000 若个位是0、5、5,a*b*c末三位为250/750/500 所以有4种可能值二、解答下列各题(每小题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由。
小学华杯赛试题及答案

小学华杯赛试题及答案【篇一:各届华杯赛真题集锦-含答案哦!】届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则a、b、c处填的数各是多少? 4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?【篇二:六年级华杯赛奥数竞赛模拟题(30套)】=txt>一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+?+170)-(41+42+?+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?小学奥数模拟试卷.2 姓名得分一、填空题:1.用简便方法计算下列各题:(3)100+99-98-97+?+4+3-2-1=______.2.上右面算式中a代表_____,b代表_____,c代表_____,d代表_____(a、b、c、d各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟_____岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗_____面,黄旗_____面.6.如图中,能看到的方砖有______块,看不到的方砖有______块. 7.上右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考____次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,??这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若p点在岸上,则a点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点b,他脱鞋的次数与穿鞋的次数和是奇数,那么b点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,1 5 6 7 8 9 10 11 12 13 14 152025 2627 28 29 3035 40 41 42 43 44 4546 47 48 49 50 55 56 57 58 59 603.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.小学奥数模拟试卷.3 姓名得分一、填空题:2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,?,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5. 2.如图,把四边形abcd的各边延长,使得ab=ba′,bc=cb′cd=dc′,daad′,得到一个大的四边形a′b′c′d′,若四边形abcd的面积是1,求四边形a′b′c′d′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?小学奥数模拟试卷.4 姓名得分【篇三:2015小高华杯赛答案及解析】=txt>决赛试题b(小学高年级组)一、填空题(每小题10份,共80分)1. 计算:57.6?81845?28.8?5?14.4?80?1212?________.【难度】★【考点】计算:提取公因数【答案】121【解析】原式?57.6?818415?28.8?5?14.4?80?12228.8165?28.8?1845?14.4?80?121228.82005?14.4?80?121228.84014.4240121212122. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.【难度】★★【考点】应用题:分数应用题【答案】13【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁?60?20?15?12?13(棵)3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.【难度】★★【考点】行程:时钟问题【答案】106【解析】4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.【难度】★★【考点】数论:余数、最小公倍数【答案】122【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.【难度】★★★★【考点】计数:组合计数【答案】7【解析】用a1,a2,a3,a4,a5,a6,a7这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7?2?2?7条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.a2必与两个点连接虚线,不妨记为a1,a3,而a3必然再与一个点连接虚线,记为a4;a4虚线连接a5,否则剩下3个点互为敌国关系;a5虚线连接a6,否则剩下两个点无法由2条虚线连接;a6虚线连接a7,最后a7只能虚线连接a1.最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表a1,a2,a3,a4,a5,a6,a7)6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.【难度】★★★【考点】数论:位值原理【答案】9421,1249【解析】设其中最小的四位数为abcd,一共可组成4?3?2?1?24个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为6??a?b?c?d??1111?106656,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形abc的面积为1,do:ob?1:3,eo:oa?4:5,则三角形doe的面积为________.【难度】★★★★【考点】几何:等积变形【答案】11135【解析】ye12xab设三角形doe的面积为4x,由比例关系不难得出图中另三块的面积分别为5x,12x,15x,再设三角形dce的面积为y,则有ceyy?4x?5 be?4x?12x?x12x?15x,得y?14411x,则三角形doe的面积为4?114?5?12?15?135.118. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.【难度】★★★★★【考点】组合:分类讨论数论综合【答案】4【解析】设三个数的个位分别为a,b,c⑴如果a,b,c都相等,则只能都为0;⑵如果a,b,c中有两个相等,①a,a,c且a?c,必有c?a?10?a,则c?10,与c为数字矛盾;②a,a,c且a?c,则有c?a?a,a?a?10?c,则a?5,c?0;⑶如果a,b,c都不相等,设a?b?c,则c?b?10?a,c?a?10?b,则c?10,与c为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5;⑴如果都为0,则乘积末尾3位为000;⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为c0,设另外两个末尾2位为a5,b5,则a5?b5?100ab?50?a?b??25,若?a?b?为奇数,则乘积末尾3位为75;若?a?b?为偶数则乘积为25,在乘上c0,无论c为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程) 9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数【答案】不能【解析】原数的数字和为1?2?3??9?1?0?1?1?48,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为y,5,x的长方体(x,y为整数),余下部分的体积为120,求x和y.x4y15【难度】★★★【考点】几何:长方体正方体【答案】x?3,y?12。
华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。
答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。
答案:每年一次3. 华杯赛的参赛对象是________。
答案:初中生4. 华杯赛的试题难度级别是________。
答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。
答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。
2. 一个圆的半径为5,求该圆的面积。
答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。
3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。
四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。
答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。
2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。
答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
1
A
B
E
D
H
C
6. 一个由边长为 1 的小正方形组成的 n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩
形的 4 个角上的小正方形不全同色,那么正整数 n 的最大值是( ).
开这 135 米的距离,需要135 (75 60) 9 分钟.综上,从初始状态到乙追上丙,共用了 9 9 18 分钟,
即乙共走了 6018 1080 米,再加上最后三人共行的 50 米,CD 段总长1080 50 1130 米.
(CD 段的算法二:如果敏锐地注意到甲比乙多的速度,刚好等于乙比丙多的速度的话,那么以乙为参
3. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁 4 位同学有如下的对
话:
甲:“丙、丁之中至少有 1 人捐了款”
乙:“丁、甲之中至多有 1 人捐了款”
丙:“你们 3 人中至少有 2 人捐了款”
丁:“你们 3 人中至多有 2 人捐了款”
已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ).
2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
90000
15975 平方厘米.
(2)连接圆弧交点与正方形底边顶点,如图: A
300
B 300 C 可见 BA BC 300 ,CA CB 300 ,即三角形 ABC 为等边三角形,内角皆为 60 度,故知下半部分阴
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3.
【答案】 D
【解析】根据丙的话可知丙没捐;再根据甲的话知丁捐了;再根据乙的话知甲没捐,故乙捐了,选 D.
4.
【答案】 B
【解析】六名同学总成绩是:92.5 6 555 .第三名同学得分最少,第二名同学得分尽量多,98 分(比第一名少
1 分),第四名、第五名尽量和第三名差 1 分、2 分,所以三、四、五名的总分和是:555 99 98 76 282 ,
A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
3月1 4 相 约 华杯
10. A 地、B 地、C 地、D 地依次分布在同一条公路上,甲、乙、丙三人分别从 A 地、B 地、C 地同时出发,匀 速向 D 地行进,当甲在 C 地追上乙时,甲的速度减少 40%;当甲追上丙时,甲的速度再次减少 40%;甲追 上丙 9 分钟,乙也追上了丙,这时乙的速度减少 25%;乙追上丙后再行 50 米,三人同时到 D 地.已知乙出 发时的速度是每分钟 60 米,那么甲出发时的速度是每分钟________米,A、D 两地间的路程是________米.
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
一、选择题(每小题 10 分,满分 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正 确答案的英文字母写在每题的圆括号内.)
1.
计算:
9 20
11 30
13 42
15 56
17 72
120
1 3
1 4
(2)由于我们所知的唯一时间单位是“甲追上丙后 9 分钟,乙也追上了丙”,故首先考察甲乙到达 C(注
意:这一段讨论设置此时间点为起始时间点),继续追及丙的这一段过程:乙从甲丙碰面到追上丙用了
9 分钟,故这一段追及的路程差为 (60 45) 9 135 米.可是初始时甲乙是同处于 C 地的,甲乙之间拉
(
).
A.42
B.43
C.15 1 3
D.16 2 3
2. 如图,有一排间距相等但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成 45 度角,
最高的小树高 2.8 米,最低的小树高1.4 米,那么从左向右数第 4 棵树的高度是( )米.
A. 2.6
B. 2.4
C. 2.2
D. 2.0
ab
c
若最多的一行只有 2 个黑格,则 x 10 ,太小,不再讨论. 综上,为了不出现“黑色四格”,黑色格最多只能有 12 个;那么同理为了不出现“白色四格”,白色格最 多也只能有 12 个.可是共有 25 格,根据抽屉原理,这是不可能做到的. 6 6 的证法与 5 5 类似:若最多行 6 个,则剩余行最多 1 个, x 6 11111 1118 ;若最多行 5 个,则剩余行最多 2 个, x 5 2 2 2 2 2 15 18 ;若最多行 4 个,则第二多行最多 3 个,再一 行最多 2 个(还是以 a、b、c 区域的方法讨论), x 4 3 2 2 2 2 15 18 ;若最多行 3 个,则每 一行都 3 个的答案看似可以,但实际行不通,原因是:一行 6 个格中选 2 个的方法有 C62 15 种,而一 行 3 个会占用其中的 C32 3种,6 行 18 种,根据抽屉原理,必然有某两行有相同的涂色对,会组成“黑 色四格”.可见任何一种涂色方式都有 x 18 ,故知无法涂成. 当 n 取更大的数时,证明方法将更为繁琐(例如 n 7 时可推出最大有 x 21 25 ,找组合数之和的最大 值是思路),这里不再赘述.本题答案为 B. 7. 【答案】 4123 【解析】 要做出本题不必将所有位置全填出来,只需分析中间两宫即可,如图:
a 3月1 4 c b 相约华杯d
看横行:a 可取 2 或 5 或 6,但其中只有 2 与 3 相加是质数,故知 a 2 ;进一步地,“月”与 1 的和是质
数,故只有“月” 6 ,进而 c 5 ;
再看左宫:b,“相”,“约”分别是 1、4、5,但其中只有1 4 是质数,故此时可断定 b 5 ;进一步地,
A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁
4. 六位同学数学考试的平均成绩是 92.5 分,他们的成绩是互不相同的整数,最高的 99 分,最低的 76 分,那么
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依300Fra bibliotek300
这道题比较明显能看出应利用差不变原理,所求差即为:
2S扇形
S正方形
2
π 3002
1 4
3002
45000π
90000
平方厘米.
再继续思考本题,可知本题答案即比上述面积再少一个半圆的面积,即为:
45000π
90000
1 2
π
300 2
2
33750π
3 1、2、3、__、__、__、__、 n 、 n 、n,也就是说 n 必然含有质因数 2 和 3.
32 又由于 n 恰含有 10 个因数,根据因数个数定理,n 的质因数分解式只有两种形式: a9 或者 a1 b4 . 综合以上两点,可知 n 应为 21 34 或 31 24 ,其中 21 34 162 更大. 9. 【答案】 15975;485 【解析】 (1)先看本题的弱化版:求阴影面积之差:
10.
【答案】 125;1880
【解析】(1)“三人同时到达 D 地”的意义即为甲在两次减速后,以及乙在一次减速后的速度,与丙的速度是相 同的,故可设甲的速度是 100 份,则一次、两次减速后的速度分别应是 100 (1 40%) 60 份和
60 (1 40%) 36 份;说明丙的速度就是 36 份;进一步逆推出乙在减速之前的速度为 36 (1 25%) 48
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
份,这样就得到了三人初始的速度比为100 : 48: 36 25:12 : 9 ,由乙的具体初始速度“每分钟 60 米”可解
得甲的初始速度为 60 25 125 米每分(同时可得到丙的初始速度为 60 9 45 米每分,甲一次减速后
12
12
速度是125 (1 40%) 75 米每分).
“相”与 3 的和是质数,只能“相” 4 ,进而“约” 1;
再看右宫:“华”,“杯”,d 分别是 2、3、6,但其中只有 2 3 是质数,故此时可断定 d 6 ;进一步地,