二次函数 学案

合集下载

二次函数复习学案

二次函数复习学案

二次函数复习(一)知识点归纳:1.二次函数的定义:一般地,形如c b a c bx ax y ,,(2++=为常数,)0≠a 的函数,叫做二次函数.(其中x 是自变量,c b a ,,分别是函数表达式的二次项系数,一次项系数和常数项)2.二次函数解析式的三种形式:一般式:)0(2≠++=a c bx ax y顶点式:)0()(2≠+-=a k h x a y交点式:)0)()((21≠--=a x x x x a y3.)0(2≠++=a c bx ax y 图象的特征:(1)a 决定了抛物线的形状与大小:其中a 的正负决定其开口方向;||a 越大图象相对开口越小.(2 c b a ,,共同决定了抛物线在坐标系中的位置,其中顶点坐标为:)44,2(2ab ac a b --,对称轴为:直线ab x 2-=,图象在y 轴的截距为c .4.待定系数法求二次函数解析式:(已知函数类型时,求函数解析式的方法)(二) 例题分析例1.考查二次函数的定义:(1)若函数m m x m y --=2)1(2为二次函数,则m 的值为 .(2)函数)1(x x y -=的二项式系数为 ;一次项系数为 ;常数项为 .(3)已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是 .例2.综合考查正比例、反比例、一次函数、二次函数的图像特征:(1) 在同一坐标系中一次函数y ax b =+和二次函数2例3 考查函数、方程、不等式之间的关系:(1)抛物线y=x 2+6x+8与y 轴交点坐标( )(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)((2)二次函数2(0)y ax bx c a =++≠(a )写出方程20ax bx c ++=的两个根.(b )写出不等式20ax bx c ++>的解集. (c )写出y 随x 的增大而减小的自变量x的取值范围.(d )若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(3).如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________.例4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的最值: (1)二次函数y=x2+x-5取最小值是,自变量x的值是(2)抛物线()y x =-+23212的顶点坐标是( )A. (2,1)B. (-21,)C. 231,⎛⎝ ⎫⎭⎪D. -⎛⎝ ⎫⎭⎪231, (3) 心理学家发现,学生对概念的接受能力y 与接受概念所用时间x (单位:min )之间满足()y x x x =-++≤≤0126430302...y 值越大,表示接受能力越强.①x 在什么范围内时,学生的接受能力逐渐增强?x 在什么范围内时,学生的接受能力逐渐降低?②第10 min 时,学生的接受能力是多少?③第几分钟时,学生的接受能力最强?例5.考查用待定系数法求二次函数的解析式:(1)已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。

二次函数的图象和性质(2)学案

二次函数的图象和性质(2)学案

3、如果要得到抛物线 y x 2 4 ,应将抛物线 y x 2 1 作怎样的平移? 【对比归纳】 y=ax2 开口方向 顶点 对称轴 有最高 (低)点 y=ax2+k
2
a>0 时, 当 x=______ 时,y 有最____值为 最值 ________; a<0 时, 当 x=______ 时,y 有最____值为 ________. 增减性 抛物线 y ax2 k 可以看做是由抛物线 y ax2 向上、向下平移 到的.当 k>0 时,抛物线 y ax2 向 当 k<0 时,抛物线 y ax2 向 【当堂训练】 函数 草图 开口 方向 顶点 对称轴 最值 对称轴右侧的 增减性 平移; 平移。 单位得
学习内容
【自主探究】利用描点法画二次函数 y x 2 、 y x 2 1 和 y x 2 2 的图像。 … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …
y x2
y x2 1
y x2 2
y
6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 o -1 -2 -3 -4 -5 -6 1 2 3 4 5 6
y=3x2
y=-3x2+1
y=-4x2-5
1.抛物线 y 2 x 2 向上平移 3 个单位,就得到抛物线__________________; 抛物线 y 2 x 2 向下平移 4 个单位,就得到抛物线__________________. 2.抛物线 y 3x 2 2 向上平移 3 个单位后的解析式为 的形状__________,当 x = 时, y 有最 值是 。 ,开口向 , , ,它们
10.由抛物线 y 5x 2来自 3 平移,且经过(1,7)点的抛物线的解析式 是 ,是把原抛物线向 平移 个单位得到的。 11.二次函数 y ax2 k a 0 的经过点 A(1,-1) 、B(2,5). ⑴求该函数的表达式; ⑵若点 C(-2, m ),D( n ,7)也在函数的上,求 m 、 n 的值。

九年级 二次函数 导学案17个

九年级  二次函数 导学案17个

1NO.1《函数与它的表示法》导学案学习目标:1.熟练掌握函数表示方法,会求自变量取值范围,并能解决生活中的函数问题。

2.体会函数建模思想在实际生活中的应用,3.感受数学在生活中的魅力.预习案出函数图象. (2).据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?【归纳】__________________________________________叫做函数解析式或______________ _________________________叫做解析法___________________________叫做列表法 __________________________________________叫做图像法 【探究点二】2、如图,一辆汽车在行驶中,速度v 随时间t 变化的情况如图所示.(1)在这个问题中,速度v 与时间t 之间的函数关系是 用哪种方法表示的?_______________(2)时间t 的取值范围是什么?______________________。

(3)当时间t =______,汽车行驶的速度最大,最大速度是______; 当时间t =______时,速度为0?当t__________时,汽车的行驶速度逐渐增加?当t__________时,汽车的行驶速度逐渐减少?当t__________时,按匀速运动行驶?【典型例题】3、一根蜡烛长20cm,每小时燃掉4cm.(1)写出蜡烛剩余的长度y (cm )与燃烧时间x (h )之间的函数解析式.(2)求自变量x 可以取值的范围;(3)蜡烛点燃2h 后还剩多长?4、求下列函数中自变量x 的取值范围(1) y=3x+2 335x -(2)y =(3)4y ()探究案1、等腰三角形ABC 的周长为10cm,底边BC 长为y (cm), 腰AB 长为x (cm ) (1)写出y 与x 之间的函数解析式; (2)指出自变量x 可以取值的范围.2的正方形ABCD 的一边BC 上,有一动点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y 。

《2.5二次函数与幂函数》 学案

《2.5二次函数与幂函数》  学案

16 / 23
2.已知函数 f(x)=x2+bx+c 且 f(1+x)=f(-x),则下列不等式中成立的是( A.f(-2)<f(0)<f(2) B.f(0)<f(-2)<f(2) C.f(0)<f(2)<f(-2) D.f(2)<f(0)<f(-2)
)
17 / 23
3.已知函数 f(x)=x2+x+c,若 f(0)>0,f(p)<0,则必有( A.f(p+1)>0 C.f(p+1)=0 B.f(p+1)<0 D.f(p+1)的符号不能确定
7 / 23
三、例题精析 【例题 1】 【题干】已知二次函数 f(x)的图象经过点(4,3),它在 x 轴上截得的线段长为 2,并且对任意 x∈R,都有 f(2-x)=f(2 +x),求 f(x)的解析式.
8 / 23
【解析】∵f(2-x)=f(2+x)对 x∈R 恒成立,∴f(x)的对称轴为 x=2. 又∵f(x)图象被 x 轴截得的线段长为 2,∴f(x)=0 的两根为 1 和 3. 设 f(x)的解析式为 f(x)=a(x-1)(x-3)(a≠0). 又∵f(x)的图象过点(4,3), ∴3a=3,a=1.∴所求 f(x)的解析式为 f(x)=(x-1)· (x-3),即 f(x)=x2-4x+3.
二次函数与幂函数
适用学科 适用区域 知 识 点 数学 新课标 适用年级 课时时长(分钟) 高三 60
二次函数的图像与性质;二次函数在闭区间上的最值;二次函数、一元二次方程、一元二次不等式的关 系;幂函数的概念;幂函数的图象和性质;指、对、幂、二次函数的综合问题 1.了解幂函数的概念. 1 1 2.结合函数 y=x,y=x2,y=x3,y= x ,y=x 2 的图象,了解它们的变化情况. 3.掌握二次函数的概念、图象特征. 4.掌握二次函数的对称性和单调性,会求二次函数在给定区间上的最值. 5.掌握二次函数、二次方程、二次不等式之间的密切关系,提高解综合问题的能力. 二次函数的图像与性质;幂函数的概念、图像与性质. 函数性质、二次函数、方程、二次方程、不等式的综合应用

第18课时 二次函数(复习学案))

第18课时  二次函数(复习学案))

第18课时 二次函数一、 复习目标1、 识记二次函数的一般形式和顶点式,并能用待定系数法求它的解析式。

2、 掌握二次函数的图像和性质。

二、 重点、难点重点:⑴用待定系数法求二次函数的解析式;⑵用配方法求二次函数的最值。

难点:深入理解二次函数图像的特征。

三、 复习过程 ㈠知识梳理1、 二次函数的解析式⑴一般形式: 。

⑵顶点式: 。

2、 二次函数的图像与性质二次函数k h x a y +-=2)(的图像是 ,它的对称轴是直线 ,顶点坐标是 当0>a 时,抛物线开口 ,函数在=x 时,达到最 值 ;当0<a 时,抛物线开口 ,函数在=x 时,达到最 值 。

3、 二次函数与一元二次方程的联系 抛物线c bx ax y ++=2与x 轴是否有交点取决于一元二次方程02=++c bx ax是否有实数根。

⑴当ac b 42- 时,一元二次方程02=++c bx ax有两个不相等的实数根(21x x ≠),抛物线就与x 轴有两个不同的交点,其坐标是( )和( )。

反之亦然。

⑵当ac b 42- 时,一元二次方程02=++c bx ax有两个相等的实数根( 21x x = ),抛物线就与x 轴只有一个交点,其坐标是( ),这一点就是抛物线的顶点。

反之亦然。

⑶当ac b 42- 时,一元二次方程02=++c bx ax 没有实数根,抛物线就与x 轴没有交点。

反之亦然.㈡问题导学2、已知抛物线的顶点是(1,-4),且经过点(0,-3),则这条抛物线的解析式是 。

(第2题)3、抛物线322--=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 4、二次函数322-+-=x x y 的最大值是 。

5、将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位后得到的抛物线的解析式为 . ㈢合作探究例1 求满足下列条件的二次函数的解析式 ⑴图像经过A (-1,3)、B (1,3)、C (2,6)三点; ⑵图像经过A (-1,0)、B (3,0),函数有最大值8; ⑶图像顶点坐标是(-1,9),与x 轴两交点的距离是6.㈣达标检测1.抛物线()412--=x y 的顶点坐标是( )A .(1,4)B .(1.-4)C .(-1,4)D .(-1,-4)2、抛物线c bx x y ++-=2的部分图象如图所示,当0>y 时,x 的取值范围是( ) A .14<<-x B .4-<x 或1>x C .13<<-x D .3-<x 或1>x3、抛物线的对称轴是直线2=x ,与x 轴的两个交点的 距离是8,则这两个交点的坐标是 。

二次函数复习学案(1)

二次函数复习学案(1)

二次函数复习学案(1)班级姓名等级【考点透视】1、理解二次函数的概念;2、会化二次函数的一般式为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3、会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(x-h)2+k的图象,了解特殊与一般相互联系和转化的思想;4、会用待定系数法求二次函数的解析式(一般式、顶点式、交点式);5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和一元二次不等式之间的联系。

【知识梳理】1.二次函数的图象:在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质:我们通常从以下5个方面来理解二次函数的性质,并利用性质解决问题:1、开口方向:由a决定;2、顶点坐标( , );3、对称轴: ;4、极值: ;5函数增减性: 3.利用待定系数法确定二次函数解析式:(1)一般地,所给条件是抛物线上任意三点(或任意三对x,y•的值)•可设一般式为:y=ax2+bx+c,组成三元一次方程组来求解,这是通用的,也是最复杂的方法;(2)若已知顶点坐标或对称轴或最大值时,可设顶点式为:y=a(x-h)2+k,顶点是(h,k),这是简便方法;(3)若已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴或已知一元二次方程ax2+bx+c=0的两个根,都可设交点式为:y=a(x-x1)(x-x2)来求解,简便方法.4.二次函数与一元二次方程的关系:抛物线y=ax2+bx+c,当y=0时转化为一元二次方程ax2+bx+c=0,即(1)当抛物线与x轴有两个交点时==>方程ax2+bx+c=0有两个不相等实根==>⊿ 0,反之,也成立;(2)当抛物线y=ax2+bx+c与x轴有一个交点==>方程ax2+bx+c=0有两个相等实根==>⊿ 0,反之,也成立;(3)当抛物线y=ax2+bx+c与x轴有交点==>•方程ax2+bx+c=0有实根==>⊿ 0,反之,也成立;(4)当抛物线y=ax2+bx+c与x轴无交点==>•方程ax2+bx+c=0无实根==>⊿ 0,反之,也成立;5.二次函数与一元二次不等式的关系:利用二次函数的图象可以解一元二次不等式:1、求一元二次方程ax2+bx+c=0的根;2、利用抛物线与x轴的交点和a 的取值画出二次函数y=ax 2+bx+c 的大致图象;2、结合函数图形解一元二次不等式。

二次函数性质4学案

二次函数性质4学案

寄语: 播种行为 收获命运 2010、12、315.6二次函数y =ax 2+bx +c 的图象与性质(4) 总编号:NO.56命题人:徐先华 审核人: 初二数学组学习目标:1. 掌握用配方法将二次函数一般式y =ax 2+bx +c 化为顶点式y=a(x -h)2+k 的形式2、会用描点法画出函数y =ax 2+bx +c 的图象,掌握其性质3.经历探索二次函数y =ax 2+bx +c 的开口方向、对称轴和顶点坐标、及性质的过程 学习过程:预习学案1、用配方法解一元二次方程的步骤2、二次函数y=a(x -h)2+k 的性质及平移规律3、用配方法解一元二次方程2x ²-5x -1=0它的步骤是怎样的?4、将二次三项式2x ²-5x -1配方,化为a(x -h)2+k 的形式课中实施学案一、复习引入:我们已经发现,二次函数1)3(22+-=x y 的图象,可以由函数22x y =的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数1)3(22+-=x y 的开口 ,对称轴是 ,顶点坐标是 .那么,对于任意一个二次函数,如6422++-=x x y ,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗? 【自主探究】例1:通过配方,确定抛物线6422++-=x x y 的开口方向、对称轴和顶点坐标,再描点画图,最后请说出这个函数的性质。

列表描点、连线函数的性质: 回顾与反思 (1)列表时选值,应以 为中心,函数值可由对称性得到,. (2)描点画图时,要根据已知抛物线的特点,一般先找出 ,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索2 对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?归纳总结、函数y =ax 2+bx +c 的性质3、规律总结:求函数y =ax 2+bx +c(a ≠0)的顶点的方法: (1)用公式法:顶点( )(2)用配方法变为y=a(x -h)2+k 的形式,顶点( )4、抛物线y =ax 2+bx +c 是由抛物线y =ax 2沿y 轴向上(下)平移______________ 个单位长度,沿x 轴向左(右)平移________________个单位长度得到的。

二次函数全章经典学案

二次函数全章经典学案

二次函数学案第1课时 27.1 二次函数一、学习目标:1.知道二次函数的一般表达式;2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 二、知识点:一般地,形如____________________________的函数,叫做二次函数。

其中x 是________,a 是__________,b 是___________,c 是_____________. 三、基本知识练习1.观察:①y =6x 2;②y =-32x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________.2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2(2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2(5)y =x +1x四、课堂训练 1.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米B .48米C .68米D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式 ___________________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13 时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.五、目标检测1.下列函数中,哪些是二次函数?(1)20y x -= (2)2(2)(2)(1)y x x x =+---(3)21y x x=+(4)223y x x =+-2.对于任意实数m ,下列函数一定是二次函数的是 ( ) A .22(1)y m x =- B .22(1)y m x =+ C .22(1)y m x =+ D .22(1)y m x =- 3. 已知函数27(3)m y m x -=- 是二次函数,求m 的值.4.已知函数()21153my m x x +=-+-是二次函数,求m 的值.5 .已知函数()222845y m m x x =+-++是关于x 的二次函数,则m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30.1 二次函数
【学习目标】
了解二次函数的有关概念;会确定二次函数关系式中各项的系数;确定实际问题中二次函数的关系式。

【学习重点】二次函数的表达式.
【学习难点】二次函数的判断.
【读书思考】阅读课本第内容,思考:1.什么是二次函数,二次函数在课本上是从形式上定义的,特别要注意二次项系数不为0. 2.根据实际意义如何列出二次函数的表达式.
【学习过程】(类比一次函数来学习二次函数,注意知识结构的建立。


一、知识链接:
1、若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2、形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数。

二、自主学习:
1、如果改变正方体的棱长x ,那么正方体的表面积y 会随之改变,y 与x 的函数关系式为 。

2、二次函数关系式有哪些共同之处?它们与一次函数关系式有什么不同?
3、归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。

其中x 是自变量,a 是__________,b 是___________,c 是_____________.
4、思考:二次函数y= ,
(1)二次项系数a 为什么不等于
0? 。

(2)一次项系数b 和常数项c 可以为0吗?
三、典题解析
例1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.
(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2
(4)y =3x 3+2x 2 (5)y =x +1x
例2.已知y=(m -4)x m2-3m-2+2x -3是二次函数,求m 的值
四、巩固练习
1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤
213y x x
=-+;⑥()221y x x =+-.这六个式子中二次函数有 。

(只填序号) 2.2(1)31m m y m x x -=+-+ 是二次函数,则m 的值为______________.
3.若物体运动的路段s (米)与时间t (秒)之间的关系为252s t t =+,则当t =4秒时,该物体所经过的路程为 。

4.二次函数23y x bx =-++.当x =2时,y =3,则这个二次函数解析式为 .
5.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.。

相关文档
最新文档