2018全国硕士研究生考研数学一真题及答案解析

合集下载

考研真题【2018考研数学(一)真题+答案解析】2018年考研数学一真题及答案解析

考研真题【2018考研数学(一)真题+答案解析】2018年考研数学一真题及答案解析

2018年全国硕士研究生入学统一考试数学(一)试卷及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)下列函数中,在0x =处不可导的是()(A)()sin f x x x =(B)()f x x =(C)()cos f x x =(D)()f x =【答案】(D)【解析】根据导数的定义:(A)sin limlim0,x x x x x x x x→→== 可导;(B)0,x x →→==可导;(C)1cos 12limlim0,x x xx xx→→--==可导;(D)000122lim lim,x x x xx x→→→-==极限不存在,故选D。

(2)过点()()1,0,0,0,1,0,且与曲面22z x y =+相切的平面为()(A)01z x y z =+-=与(B)022z x y z =+-=与2(C)1x y x y z =+-=与(D)22x y x y z =+-=与2【答案】(B)【解析】()()221,0,0,0,1,0=0z z x y =+过的已知曲面的切平面只有两个,显然与曲面相切,排除C 、D22z x y =+曲面的法向量为(2x,2y,-1),111(1,1,1),,22x y z x y +-=-==对于A选项,的法向量为可得221.z x y x y z z A B =++-=代入和中不相等,排除,故选(3)()()23121!nn n n ∞=+-=+∑()(A)sin1cos1+(B)2sin1cos1+(C)2sin12cos1+(D)2sin13cos1+【答案】(B)【解析】00023212(1)(1)(1)(21)!(21)!(21)!nn nn n n n n n n n ∞∞∞===++-=-+-+++∑∑∑0012=(1)(1)cos 2sin1(2)!(21)!nn n n l n n ∞∞==-+-=++∑∑故选B.(4)设()(2222222211,,1,1x x xM dx N dx K dx x e ππππππ---++===++⎰⎰⎰则()(A)M N K >>(B)M K N >>(C)K M N >>(D)K N M>>【答案】(C)【解析】22222222222(1)122=(1).111x x x x M dx dx dx x x x πππππππ---+++==+=+++⎰⎰⎰22222111(0)11xx xxx e x N dx dx Meeπππππ--+++<≠⇒<⇒=<=<⎰⎰2222=11K dx dx M πππππ--+>==⎰⎰(,K M N >>故应选C 。

2018年考研数学(一)真题与答案解析(完整版)

2018年考研数学(一)真题与答案解析(完整版)

2018年考研数学一试题与答案解析(完整版)1.下列函数中不可导的是()。

A.()sin()f x x x =B.()f x x =C.()cos f x x=D.()f x =【答案】D 【解析】【解析】A 可导:()()()()-0000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''=====B 可导:()()-000sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''=====C 可导:()()22-000011cos -1cos -1220lim lim 0,0lim lim 0x x x x x x x x f f x x--+++→→→→--''=====D 不可导:()()()()()-000-11-11220lim lim 0lim lim -2200x x x x x x f f x x f f --+++→→→→+--''====''≠2.过点(1,0,0)与(0,1,0)且与22z x y =+相切的平面方程为A.0z =与1x y z +-= B.0z =与222x y z +-=一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.C.y x =与1x y z +-=D.y x =与222x y z +-=【答案】B【解析】因为平面过点(1,0,0)与(0,1,0),故C 、D 排除,22(2,2,1),(1,0,0)2(1)20(0,1,0)z x y x y x X yY Z x y=+--+-==曲面的法向量为因为平面过,则平面方程为,又因为平面过,故由此,取特殊值;令x=1,则法向量为(2,2,1)-,故B 选项正确。

2018年全国硕士研究生入学统一考试数学一试题及答案解析

2018年全国硕士研究生入学统一考试数学一试题及答案解析

2018年全国硕士研究生入学统一考试数学一试题及答案解析一、选择题(4分×8)1.下列函数在x = 0处不可导的是 ( )A 、 ()sin f x x x = B、()f x x = C 、()cos f x x = D、()f x = 解 选D 。

由导数定义或左右导数与导数的关系可知:00sin lim lim 0,x x x x x x x x→→==故A 选项不正确;000x x →→==,故B 选项不正确;2002sin cos 12lim lim 0x x x x x x →→-==,故C 选项不正确;20002sin 12lim lim 2x x x x x x→→→-==-,极限不存在,故D 选项正确。

2. 过点(1,0,0),(0,1,0),且与曲面22z x y =+相切的平面为 ( )A 、 01z x y z =+-=与B 、022z x y z =+-=与2C 、1x y x y z =+-=与D 、22x y x y z =+-=与2解 选B 。

由已知,点(1,0,0),(0,1,0)在切平面上,而选项C ,D 显然不满足,故排除C ,D 。

又曲面22z x y =+上任一点(,,)x y z 处的法向量为(2,2,1)x y -,如选项A 正确,1x y z +-=的法向量为(1,1,1)-,可得切点的11,22x y ==,代入曲面方程得12z =,而代入1x y z +-=得0z =,矛盾,故排除A 选项。

3. 023(1)(21)!nn n n +∞=+-=+∑( ) A 、 sin1cos1+ B 、2sin1cos1+C 、2sin12cos1+D 、2sin13cos1+解 选B 。

因00023212(1)(1)(1)(21)!(21)!(21)!nn n n n n n n n n n +∞+∞+∞===++-=-+-+++∑∑∑ 0011(1)2(1)cos12sin1(2)!(21)!n n n n n n +∞+∞===-+-=++∑∑。

2018年全国硕士研究生入学统一考试《数学》真题及详解

2018年全国硕士研究生入学统一考试《数学》真题及详解

2018年全国硕士研究生入学统一考试《数学》真题
(总分150, 考试时间180分钟)
一、单项选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题卡指定位置上
1. f(x)=sinx/x()
A 有界,奇
B 有界,偶
C 无界,奇
D 无界,偶
该问题分值: 4
答案:B
2.
A 单减少,凹
B 单减少,凸
C 单增加,凹
D 单增加,凸
该问题分值: 4
答案:D
3.
A 1/e
B 2/e
C 1+e/e2
D 2/e2
该问题分值: 4
答案:B
4. 已知Z=(x-y2)e1+xy,则|dz|(1,-1)=()
A dx+2dy
B -dx+2dy
C dx-2dy
D -dx-2dy
该问题分值: 4
答案:A
5. 设向量组α1,α2,α3与向量α1,α2等价,则()
A α1与α2线性相关
B α1与α2线性无关
C α1,α2,α3线性相关
D α1,α2,α3线性无关
该问题分值: 4
答案:C
6.
该问题分值: 4
由于矩阵形式比较简申只需要求解几个代数余子式带入验证即可,由于
7. 设随机变x,y相互独立,且x,y分别服从参数为1,2的泊松分布,则p{2x+y=2} = ()
该问题分值: 4
答案:C
8.
A Q统计量;服从分布t(10)
B Q统计量;服从分布t(9)
C Q不是统计量;服从分布t(10)
D Q统计量;服从分布t(9)
该问题分值: 4
答案:D。

2018年考研数学一试题及答案解析

2018年考研数学一试题及答案解析

2018年全国硕士研究生入学统一考试数学一试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)下列函数中,在0x =处不可导是( )()()()()sin ()()()cos ()A f x x x B f x x xC f x xD f x x====【答案】D(2)过点(1,0,0)与(0,1,0)且与22z x y =+相切的平面方程为(A )01z x y z =+-=与(B )022z x y z =+-=与2(C )1y x x y z =+-=与 (D )22y x x y z =+-=与2【答案】B (3)23(1)(21)!nn n n ∞=+-=+∑(A )sin1cos1+(B )2sin1cos1+(C )2sin12cos1+ (D )3sin12cos1+ 【答案】B(4)设2222(1)1x M dx x ππ-+=+⎰,221x xN dx e ππ-+=⎰,22(1cos )K x dx ππ-=+⎰,则,,M N K 的大小关系为 (A )M N K >> (B )M K N >> (C )K M N >> (D )K N M >>【答案】C 【解析】(5)下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的为 111()011001A -⎛⎫ ⎪ ⎪ ⎪⎝⎭101()011001B -⎛⎫ ⎪ ⎪ ⎪⎝⎭111()010001C -⎛⎫ ⎪ ⎪ ⎪⎝⎭101()010001D -⎛⎫⎪ ⎪⎪⎝⎭【答案】A全国统一服务热线:400—668—2155 精勤求学 自强不息(6) 设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,()X Y 表示分块矩阵,则(A )()()r A AB r A = (B )()()r A BA r A = (C )()max{(),()}r A B r A r B = (D )()()T T r A B r A B =【答案】A(7)设随机变量X 的概率密度函数()f x 满足(1)(1)f x f x +=- ,且2()0.6,f x dx =⎰则{0}P X <=( )(A )0.2 (B )0.3 (C )0.4 (D )0.5【答案】 A 【解析】(8)设总体X 服从正态分布2(,)N μσ,12,,,n X X X 是来自总体X 的简单随机样本,据样本检测:假设:0010:,:H H μμμμ=≠则( )(A)如果在检验水平0.05α=下拒绝0,H 那么在检验水平0.01α=下必拒绝0,H (B) 如果在检验水平0.05α=下拒绝0,H 那么在检验水平0.01α=下必接受0,H (C) 如果在检验水平0.05α=下接受0,H 那么在检验水平0.01α=下必拒绝0,H (D) 如果在检验水平0.05α=下接受0,H 那么在检验水平0.01α=下必接受0,H 【答案】A二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 1sin 01tan lim 1tan kxx x e x →-⎛⎫=⎪+⎝⎭则k=___-2____(10) 设函数()f x 具有2阶连续导数,若曲线()f x 过点(0,0)且与曲线2xy =在点(1,2)处相切,则1()xf x dx ''=⎰_____【答案】2ln22-(11) 设(,,)F x y z xyi yzj zxk =-+则(1,1,0)rotF =_____【答案】(1,0,1)-(12)曲线S 由2221x y z ++=与0x y z ++=相交而成,求Sxyds ⎰【答案】0(13)设2阶矩阵A 有两个不同特征值,12,αα是A 的线性无关的特征向量,且满足21212()A αααα+=+则A =【答案】-1.(14)设随机事件A 与B 相互独立,A 与C 相互独立,BC =∅,若11()(),()24P A P B P AC AB C ==⋃=,则()P C = .【答案】1/4三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求不定积分21x xe e dx -⎰(16)(本题满分10分)将长为2m 的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值。

完整word版,2018考研数学一真题及答案及解析

完整word版,2018考研数学一真题及答案及解析

2018年考研数学一真题及答案解析选择题(斗分)1.T^L^数中在忑=0处不可导的星()A./(z) = |z|am |z|乩f(x) = \x\siny/\^C、f(x) —cos |刎D、f(x)- cos y/\x\【答案】D2.过点(1』,0)T (O:l,0) T且与曲面二=分+诃相切的平面为()A、務=0与£十抄一二=1B、z = 0-^2^ + 2# —左=2JC= y 与JT+ y — w = 1D、迟=眇与2® -\-2y - z —2【答案】BA.sin 1 + coslB. 2 sm 1 -H cos 1C.2sliil + 2<OM1D* 2sinl 十3 cos 1【菩案】B,0'J()A, M>N>K 艮M>K>NC、K>M>ND、K>N > M【答案】C1105 •下列矩阵中f与矩阵0 1 1相似的为()0 0 1111A.011.001K-10-1B.0110■0111-1U010乂0110-1A010.001【答案】A6•设扎助胡介矩阵,记叫X)为矩阵屋的秩「(X,F)表示分块矩阵,311()A、r(A, AB) = r(A)氐r(A,BA) = r(A)J r(X,B) = max{r(4)T r(2;)}D、r(A,B)= r(A T, B T)【答案】A 了.设随机变量X的概率密席子⑵满足和+ x) = /(I -x)t且盘f (工伽=0+6 ,则P{X< 0}=()A、0.2B.03U 0.4D、0.5【答棄】A8.设总体爼駅正态分布N(比a2)「疋,星,…,耳是来自总体筍单随机样本「据此样本检验假设:臥:此=唏圧:“*如」!I ()A.如果在检验水平a = 0.05T拒绝局(那么在检验水平《= 0.01T必拒绝凤匕如果在检验水电-005下垣绝巧.那么在检验水平“ -0.01下必按旻U 如果在检验水平a = 03下接豆顷,那么在检验水平o = 03下必拒绝风D.如果苻椅嘟水平a = 0.05下捋誓比「那么7F检骗水辰=0.0L下必挎爭尿【無】D二頃空题(4分)虫叭⑷(冶拎)血=s贝壮= _____________【答案】k = -2m设函数托工)具有2阶连续导数t若曲线妙=几工)过点© 0)且与曲线® =旷在昌⑴2) 处相切,则人‘工严佃)必- ____________【答案】2(h2-l)11,设F@ 曲z) = xyl - yzj十zxk t则戸(1,1, (I) =__________【答秦】i-k12.1SL为球面护+ j/2+ z2 = 1与平面工十# + 了= 0的交统,则比xyds匸________ 【答案】-£"•设2阶矩阵A有两个不同特征值f a u a2是占的红性无关的特征向量,且:鬲足+ d?) = di + a3,则|且—____________【答案】-114■设随机事件卫与石相互独立‘ &与幅互独立,BC = 0 ,若F(A) = P(B)= 4 ,P(AC\ 4BuC) = ] f则P(C) = ______________【答棄】1三"聲答题(10分)15.求不走积分J 宀arctaiL y/e1—ldx【答案】令疔F = * ,则雷=In(庐+ 1),血二磊也「由第二换元去和分部积分公式可得原式=/ (Q + 1)" - arc tan t -丄令血=J 2t(i2+ 1) ■ arctan tdtR-jHt=+ J arctan + l)2] = *(产十l)X arctani —壬丁 (产 + l)dt=号(产+ 1) ' arctan t —+土' —t + (J=^e22arctan (e1- lp - 1(^ - 1)5 -F C止.将长为2m 的铁丝分成三段「依次围成區、正方形与正三角形’三个图形的面积之«] 是否存在最小值?若荐在「求岀最小值.【答案】设分成的三段分别为x^z, JW 有⑦+甘+芯=2及, IB 的面积为 ® 「正方形的面积为鸟=岂/ ,正三角形09面积为扬=鲁宀总S®S = 士护十善护十生以』则问题转化为在条件雷+y + z = 2,x,y,z >。

2018年全国硕士研究生入学统一考试数学(一)真题及解析

2018年全国硕士研究生入学统一考试数学(一)真题及解析

2018年硕士研究生入学考试数学一 试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1) 下列函数不可导的是:()()()()sin sin cos cosA y x xB y xC y xD y====(2)22过点(1,0,0)与(0,1,0)且与z=x 相切的平面方程为y + ()()()()0与10与222与x+y-z=1与222A zx y z B z x y z C y x D yx c y z =+-==+-===+-=(3)023(1)(2n 1)!nn n ∞=+-=+∑()()()()sin 1cos 12sin 1cos 1sin 1cos 13sin 12cos 1A B C D ++++(4)22222222(1x)1xN= K=(11xM dx dx x e ππππππ---++=++⎰⎰⎰),则M,N,K的大小关系为()()()()A M N K B M K N C K M N D NM K>>>>>>>>(5)下列矩阵中,与矩阵110011001⎛⎫⎪ ⎪⎪⎝⎭相似的为______. A.111011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ B.101011001-⎛⎫⎪ ⎪⎪⎝⎭ C.111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭ D.101010001-⎛⎫⎪ ⎪⎪⎝⎭(6).设A ,B 为n 阶矩阵,记()r X 为矩阵X 的秩,(X Y ) 表示分块矩阵,则A.()()r A AB r A =B.()()r A BA r A =C.()max{(),()}r A B r A r B =D.()()TT r A B r A B =(7)设()f x 为某分部的概率密度函数,(1)(1)f x f x +=-,20()d 0.6f x x =⎰,则{0}p X = .A. 0.2B. 0.3C. 0.4D. 0.6 (8)给定总体2(,)XN μσ,2σ已知,给定样本12,,,n X X X ,对总体均值μ进行检验,令0010:,:H H μμμμ=≠,则A . 若显著性水平0.05α=时拒绝0H ,则0.01α=时也拒绝0H . B. 若显著性水平0.05α=时接受0H ,则0.01α=时拒绝0H . C. 若显著性水平0.05α=时拒绝0H ,则0.01α=时接受0H . D. 若显著性水平0.05α=时接受0H ,则0.01α=时也接受0H .二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)1sin 01tan lim ,1tan kxx x e x →-⎛⎫= ⎪+⎝⎭则k =(10)()y f x =的图像过(0,0),且与x y a =相切与(1,2),求1'()xf x dx =⎰(11)(,,),(1,1,0)F x y z xy yz xzk rot F εη=-+=求(12)曲线S 由22210x y z x y z ++=++=与相交而成,求xydS =⎰ (13)二阶矩阵A 有两个不同特征值,12,αα是A 的线性无关的特征向量,21212()(),=A A αααα+=+则(14)A,B 独立,A,C 独立,11,()()(),()24BC P A P B P AC ABC P C φ≠===,则=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15).求不定积分2x e ⎰(16).一根绳长2m ,截成三段,分别折成圆、三角形、正方形,这三段分别为多长是所得的面积总和最小,并求该最小值。

2018考研数学一参考答案

2018考研数学一参考答案

) 1 1 − tan x sin(kx) = e, 则 k = 9. lim x →0 1 + tan x 【解析】原极限为 1∞ 型, 故恒等变形为
.
−2 tan x lim 1 + x →0 1 + tan x
(
1+tan x )− 2 tan x
−2 tan x (1+tan x ) sin(kx )
−2 tan x = exp lim x →0 (1 + tan x ) sin ( kx )
(
)
=e
第2页 共8页
本科院校 目标院校 目标专业 姓名 .....................................装.......................................订.......................................线.......................................
.
L
xyds =
L
( xy + yz + xz) ds =
)] ( 1 ( x + y + z )2 − x 2 + y2 + z2 ds = 6
L
( −1) ds = −
π 3
13. 设二阶矩阵 A 有两个不同的特征值, α1 , α2 是 A 的线性无关的特征向量, A2 (α1 + α2 ) = α1 + α2 , 则 | A| =
A. 若显著性水平 α = 0.05 时拒绝 H0 , 则 α = 0.01 时必拒绝 H0 B. 若显著性水平 α = 0.05 时接受 H0 , 则 α = 0.01 时必拒绝 H0 C. 若显著性水平 α = 0.05 时拒绝 H0 , 则 α = 0.01 时必接受 H0 D. 若显著性水平 α = 0.05 时接受 H0 , 则 α = 0.01 时必接受 H0 【解析】α 越小, 显著性差异越小, 越容易接受 H0 , 若 α = 0.05 时接受 H0 , 则 α = 0.051 时显著性变弱, 更加容易接受 H0 , 选 D. 评卷人 二、 ( 得分 填空题(每题 4 分, 共 24 分)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档