二元函数极限的存在性及求法

合集下载

二元函数求极限

二元函数求极限

二元函数求极限
如果能说明二元极限不存在,那么极限也就不用求了,说明极限不存在的方法有:
①令 y=kx 或其他的形式,将其代入,说明极限与 k 有关,代入后除了 k 以外不含有其他字母;
②找两个特殊路径代入,说明两极限不同即可说明极限不存在;
③极坐标换元代入,要根据变量趋势合理换元,说明极限跟极角\theta 有关即可。

2.二元极限存在,计算其极限
若根据题意,极限一定存在,那么可采用以下方法计算:
①等价无穷小替换;
②常用结论:如无穷小量乘以有界量依然为无穷小;
③不严谨的方法:极坐标换元,这种做法本质上还是一类路径而不是任意路径,有时会出错;
④夹逼准则,根据结构合理放缩。

二元函数的极限求法

二元函数的极限求法

二元函数的极限求法二元函数的极限求法是高等数学中的重要内容,它是研究二元函数在某一点处的极限值的方法。

在这篇文章中,我们将介绍二元函数的极限求法的基本概念、方法和应用。

一、二元函数的极限概念二元函数是指有两个自变量的函数,通常表示为f(x,y)。

在二元函数中,我们可以考虑它在某一点(x0,y0)处的极限值。

如果当(x,y)趋近于(x0,y0)时,f(x,y)的值趋近于一个确定的常数L,那么我们就称L 为f(x,y)在点(x0,y0)处的极限值,记作:lim f(x,y) = L(x,y)->(x0,y0)其中,(x,y)->(x0,y0)表示当(x,y)趋近于(x0,y0)时,f(x,y)的极限值存在。

二元函数的极限求法有以下几种方法:1. 二重极限法二重极限法是指先对其中一个自变量求极限,再对另一个自变量求极限的方法。

具体来说,如果f(x,y)在点(x0,y0)处的极限存在,那么我们可以先对x求极限,再对y求极限,即:lim lim f(x,y) = lim lim f(x,y) = Ly->y0 x->x0 x->x0 y->y02. 极坐标法极坐标法是指将二元函数表示为极坐标形式,然后对极角和极径分别求极限的方法。

具体来说,如果f(x,y)在点(x0,y0)处的极限存在,那么我们可以将(x,y)表示为极坐标形式(r,θ),即:x = rcosθy = rsinθ然后对r和θ分别求极限,即:lim f(x,y) = lim f(rcosθ,rsinθ) = L(x,y)->(x0,y0) r->0 θ->θ03. 直角坐标法直角坐标法是指将二元函数表示为直角坐标形式,然后对x和y分别求极限的方法。

具体来说,如果f(x,y)在点(x0,y0)处的极限存在,那么我们可以将(x,y)表示为直角坐标形式(x0+h,y0+k),即:x = x0 + hy = y0 + k然后对h和k分别求极限,即:lim f(x,y) = lim f(x0+h,y0+k) = L(x,y)->(x0,y0) h->0 k->0三、二元函数的极限应用二元函数的极限应用广泛,例如在微积分、物理学、工程学等领域中都有重要的应用。

求二元函数极限的几种方法二元函数极限定理

求二元函数极限的几种方法二元函数极限定理

1 / 151.二元函数极限概念分析定义1 设函数f 在2D R ⊂上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<,则称f 在D 上当0P P →时,以A 为极限,记0lim ()P P P Df P A →∈=.上述极限又称为二重极限.2.二元函数极限的求法2.1 利用二元函数的连续性命题 若函数(,)f x y 在点00(,)x y 处连续,则0000(,)(,)lim(,)(,)x y x y f x y f x y →=.例1 求2(,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2(,)2f x y x xy =+在点(1,2)处连续,所以122122lim (,)lim(2)12125.x y x y f x y x xy →→→→=+=+⨯⨯=例2 求极限()()221,1,21limy x y x +→.解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即()()221,1,21limy x y x +→=31.2 / 152.2 利用恒等变形法将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求00x y →→解: 00x y →→00x y →→=0x y →→=001.4x y →→==-例4 ()()22220,0,321)31)(21(lim yx y x y x +-++→.解:原式()()())()(),0,02211lim231x y xy →=+()(22,0,0limx y →=+11022=+=.2.3 利用等价无穷小代换一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的等价无穷小((,)0)u x y→,有sin(,)(,)u x y u x y;2(,)1cos(,)2u x yu x y-;[]ln1(,)(,)u x y u x y+;tan(,)(,)u x y u x y;arcsin(,)(,)u x y u x y;arctan(,)(,)u x y u x y(,)1u x yn;(,)1(,)u x ye u x y-;同一元函数一样,等价无穷小代换只能在乘法和除法中应用.例5求xy→→解: 当x→,0y→时,有0x y+→11()2x y+,所以1()2lim1.2xyxyx yx y→→→→+=+=这个例子也可以用恒等变形法计算,如:1.2xyxyxy→→→→→→===3 / 154 / 152.4 利用两个重要极限(,)0sin (,)lim 1(,)u x y u x y u x y →=,[]1(,)(,)0lim 1(,)u x y u x y u x y e →+= 它们分别是一元函数中两个重要极限的推广.例6 求极限 21lim(1)x x yx y axy+→∞→+.解: 先把已知极限化为22()11lim(1)lim (1)x x xy x y xy x yx x y ay a xy xy ++→∞→∞→→⎡⎤+=+⎢⎥⎣⎦,而 211limlim ,()(1)x x y a y a x y xy x y ay x→∞→∞→→==++ 当 ,x y a →∞→时1,0xy xy →∞→,所以 1lim(1).xy x y ae xy →∞→+=故原式=2()11lim (1).x xy x y xy xy a axy e +→∞→⎡⎤+⎢⎥⎣⎦=例7 求 0sin()limx y axy x →→极限.解: 因为sin()sin().xy xy y x xy=,当0,x y a →→时,0xy →,所以 sin()1xy xy→,再利用极限四则运算可得: 000sin()sin()sin()limlim .lim .lim .x x y a xy y a y axy xy xy y y a x xy xy →→→→→→===·1=a .这个例子也可以用等价无穷小代换计算,如: 当 0x →,y a →时,0xy → ,sin()xy xy .5 / 15所以, 00sin()limlim lim .x x y a y a y axy xyy a x x →→→→→===2.5 利用无穷小量与有界量的乘积仍为无穷小量的结论例8 求0011)sin cos x y y x y →→解: 因为00)0x y y →→= 是无穷小量, 11sin cos 1x y ≤ 是有界量 ,故可知,0011)sin cos 0.x y y x y →→=例9 求 22232(3)(2)lim (3)(2)x y x y x y →→---+-解 原式=2232(3)(2)lim(3)(3)(2)x y x y x x y →→--⋅--+-因为 222222(3)(2)(3)(2)1(3)(2)22(3)(2)x y x y x y x y ---+-≤=-+-⎡⎤-+-⎣⎦ 是有界量,又 32lim(3)0x y x →→-= 是无穷小量,所以 , 22232(3)(2)lim0(3)(2)x y x y x y →→--=-+- . 虽然这个方法计算实际问题上不那么多用,但计算对无穷小量与有界量的乘积形式的极限的最简单方法之一 .2.6利用变量替换法通过变量替换可以将某些二元函数的极限转化为一元函数的极限来计算,6 / 15从而使二元函数的极限变得简单.但利用时一定要满足下面的定理。

二元函数极限的求法和极限不存在的判断

二元函数极限的求法和极限不存在的判断

x→y0
分析:通过观察极限中的二元函数知分子是分母的高阶无穷小,
故极限应为 0。定义证明:坌ε>0,因为
x4+y4 x2+y2
-0

x4 x2+y2
+
y4 x2+y2
姨 ≤x2+y2, 故 要 使
x4+y4 x2+y2
-0
<ε 只 要 取 δ =
ε 4
,则
x4+y4 x2+y2
-0

x4 x2+y2
x2y2ln(x2+y2)
x2y2 x2+y2
x2+y2ln(x2+y2)
(x,y)→(0,0)
(x,y)→(0,0)
(x,y)→(0,0)
由于
0≤
x2y2 x2+y2

(x2+y2)2 x2+y2
≤x2+y2→0,令 x2+y2=t 则
x2y2
lim (x2+y2)ln(x2+y2)=lim tlnt=0,故 lim (x2+y2) =e0=1。
科技信息
高校理科研究
二元函数极限的求法和极限不存在的判断
山东政法学院 唐新华
[摘 要]极限方法是研究函数最主要的方法之一,函数极限是高等数学中的重点、难点内容。文章通过具体例子给出了求二元函数 极限的几种方法和二重极限不存在的判断方法。 [关键词]二元函数 极限 二重极限
引言
二元函数极限定义[1] 设函数 z=f(x,y)在点 P0(x0,y0)的某空心邻域有
=e
x→∞
x

二元函数求极限的定义与基本性质

二元函数求极限的定义与基本性质

二元函数求极限的定义与基本性质在数学中,二元函数是指依赖于两个变量的函数。

求解二元函数的极限是研究其变化趋势和性质的重要手段之一。

本文将介绍二元函数求极限的定义,并探讨一些基本的性质。

一、二元函数求极限的定义对于给定的二元函数 f(x, y),当自变量 (x, y) 的取值趋近于某个点(a, b) 时,如果函数值 f(x, y) 的极限存在且唯一,那么我们称该函数在点 (a, b) 处有极限,记作:lim_(x,y)→(a,b) f(x,y) = L其中 L 为极限值。

二、二元函数极限的性质1. 唯一性:二元函数的极限值在同一点处只能有唯一的取值。

2. 有界性:如果函数在某点 (a, b) 处有极限,那么它在该点周围的某个邻域内是有界的。

3. 保号性:如果函数在某点 (a, b) 处的极限存在且大于零(或小于零),那么在该点附近的某个领域内,函数的取值也大于零(或小于零)。

4. 极限的四则运算性质:设二元函数 f(x, y) 和 g(x, y) 在点 (a, b) 处有极限,则它们的和、差、乘积以及商(当g(x, y) ≠ 0)仍在该点处有极限,并且有以下运算公式:lim_(x,y)→(a,b) (f+g)(x,y) = lim_(x,y)→(a,b) f(x,y) + lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f-g)(x,y) = lim_(x,y)→(a,b) f(x,y) - lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f*g)(x,y) = lim_(x,y)→(a,b) f(x,y) * lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f/g)(x,y) = lim_(x,y)→(a,b) f(x,y) / lim_(x,y)→(a,b)g(x,y)5. 极限的复合性质:设函数 f(x, y) 在点 (a, b) 处有极限 L,函数 g(u) 在点 L 处有极限 M,则复合函数 g(f(x, y)) 在点 (a, b) 处也有极限 M。

二元函数求极限的定义与性质

二元函数求极限的定义与性质

二元函数求极限的定义与性质在数学中,二元函数是指依赖于两个自变量的函数。

求二元函数的极限是数学分析中的一个重要概念,用于计算函数在某一点的趋近性。

本文将探讨二元函数求极限的定义及其性质,并进一步讨论其在实际问题中的应用。

定义设函数f(x,y)定义在点P(x0,y0)的某个去心邻域内,如果对于任意给定的正数ε,存在正数δ,使得当点(x,y)满足0 < √((x-x0)² + (y-y0)²) < δ时,总有|f(x,y) - A| < ε成立,那么称A是函数f(x,y)在点P(x0,y0)处的极限,记作lim_(x,y)→(x0,y0) f(x,y) = A。

性质1.函数极限存在的唯一性:如果函数f(x,y)在点(x0,y0)处有极限,那么该极限必定唯一。

2.函数极限的局部结构:函数极限的存在与否与函数在点(x0,y0)处的局部结构有关,例如,如果函数在点(x0,y0)的某个去心邻域内有界,那么函数在该点处必定存在极限。

3.函数极限与路径无关:对于二元函数而言,极限的求取与路径无关,只依赖于点P(x0,y0)附近的情况。

也就是说,如果沿着不同路径趋向于点P(x0,y0),得到的极限值相同,那么函数在该点处的极限存在。

应用1.二元函数的极限在微积分中有广泛的应用。

例如,在求取二元函数的导数时,常常需要首先求取其极限。

2.二元函数的极限能够帮助我们研究函数在特定点的性质,例如函数的连续性、可导性等。

3.在实际问题中,二元函数的极限也有重要的应用,比如物理学中的质点运动轨迹的研究,经济学中的边际效应分析等。

总结二元函数求极限是数学分析中的重要概念,通过函数在点附近的趋近性,我们可以推导出函数局部的性质和行为。

函数极限的存在与否是判断函数在特定点连续性、可导性等的关键要素。

同时,函数极限的性质也可以帮助我们解决实际问题中的一些复杂情况。

因此,对于二元函数求极限的定义与性质的理解具有重要的意义,为进一步研究和应用数学分析提供了基础。

二元函数求极限的代数性质与解析

二元函数求极限的代数性质与解析

二元函数求极限的代数性质与解析在学习高等数学的过程中,我们经常会遇到求二元函数的极限问题。

二元函数的极限是指当自变量趋近于某个点时,函数的取值趋近于一个确定的值。

在求解这类问题时,我们需要掌握一些代数性质和解析方法。

一、二元函数的极限定义设函数 f(x, y) 在点 (x0, y0) 的某个去心邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得当点 (x, y) 满足不等式0 < √((x-x0)²+(y-y0)²) < δ 时,都有 |f(x, y) - A| < ε 成立,则称函数 f(x, y) 在点(x0, y0) 处的极限为A,记作:lim_(x,y)→(x0,y0) f(x, y) = A二、二元函数极限的代数性质1. 唯一性性质:若二元函数 f(x,y) 在点 (x0, y0) 处极限存在,则极限值 A 唯一确定。

2. 有界性质:若二元函数 f(x,y) 在点 (x0, y0) 处极限存在且有限,则 f(x,y) 在点 (x0, y0) 的某个去心邻域内有界。

3. 保号性质:若二元函数 f(x,y) 在点 (x0, y0) 处的极限存在且不为零,则在点 (x0, y0) 的某个去心邻域内,f(x,y) 与 A 的正负号相同。

三、二元函数极限的解析方法在具体的计算中,我们可以通过一些解析方法来求解二元函数的极限。

1. 分别取极限法:当二元函数 f(x,y) 在点 (x0, y0) 处的极限存在,且其极限可以表示为 A = h(x) + k(y),其中 h(x) 和 k(y) 分别是关于 x 和y 的函数的极限。

则有:lim_(x,y)→(x0,y0) f(x, y) = lim_(x→x0) h(x) + lim_(y→y0) k(y)2. 代数运算法则:对于二元函数与它的极限,可以利用代数运算法则进行运算,如加减乘除、辽有近似计算的阶乘表.png乘幂、复合函数等。

求二元函数极限的几种方法-二元函数极限定理

求二元函数极限的几种方法-二元函数极限定理

. .word..1.二元函数极限概念分析定义1设函数f 在2D R ⊂上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<,那么称f 在D 上当0P P →时,以A 为极限,记0lim ()P P P Df P A →∈=.上述极限又称为二重极限.2.二元函数极限的求法2.1 利用二元函数的连续性命题假设函数(,)f x y 在点00(,)x y 处连续,那么0000(,)(,)lim(,)(,)x y x y f x y f x y →=.例1求2(,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2(,)2f x y x xy =+在点(1,2)处连续,所以122122lim (,)lim(2)12125.x y x y f x y x xy →→→→=+=+⨯⨯=例2 求极限()()221,1,21limy x y x +→.解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即. .word..()()221,1,21limy x y x +→=31.2.2 利用恒等变形法将二元函数进展恒等变形,例如分母或分子有理化等. 例3 求00x y →→解:00x y →→00x y →→=0x y →→=001.4x y →→==-例4()()22220,0,321)31)(21(limyx y x y x +-++→.解: 原式()()())()(),0,02211lim231x y xy →=+()(22,0,0limx y →=+1122=+=.2.3 利用等价无穷小代换一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的等价无穷小((,)0)u x y→,有sin(,)(,)u x y u x y;2(,)1cos(,)2u x yu x y-;[]ln1(,)(,)u x y u x y+;tan(,)(,)u x y u x y;arcsin(,)(,)u x y u x y;arctan(,)(,)u x y u x y(,)1u x yn;(,)1(,)u x ye ux y-;同一元函数一样,等价无穷小代换只能在乘法和除法中应用.例5求xy→→解:当x→,0y→时,有0x y+→11()2x y+,所以1()2lim1.2xyxyx yx y→→→→+=+=. .word... .word..这个例子也可以用恒等变形法计算,如:00001.2x y x y x y →→→→→→===2.4 利用两个重要极限(,)0sin (,)lim 1(,)u x y u x y u x y →=,[]1(,)(,)0lim 1(,)u x y u x y u x y e →+= 它们分别是一元函数中两个重要极限的推广.例6求极限 21lim(1)x x yx y axy+→∞→+.解:先把极限化为22()11lim(1)lim (1)x x xy x y xy x yx x y ay a xy xy ++→∞→∞→→⎡⎤+=+⎢⎥⎣⎦,而 211limlim ,()(1)x x y a y a x y xy x y ay x→∞→∞→→==++ 当 ,x y a →∞→时1,0xy xy →∞→,所以 1lim(1).xy x y ae xy →∞→+=故原式=2()11lim (1).x xy x y xy xy a axy e +→∞→⎡⎤+⎢⎥⎣⎦=例7 求 0sin()limx y axy x →→极限.. .word..解: 因为sin()sin().xy xy y x xy=,当0,x y a →→时,0xy →,所以 sin()1xy xy→,再利用极限四那么运算可得: 000sin()sin()sin()limlim .lim .lim .x x y a xy y a y axy xy xy y y a x xy xy →→→→→→===·1=a .这个例子也可以用等价无穷小代换计算,如: 当 0x →,y a →时,0xy → ,sin()xy xy .所以, 00sin()limlim lim .x x y a y a y axy xyy a x x →→→→→===2.5 利用无穷小量与有界量的乘积仍为无穷小量的结论例8求0011)sin cos x y y x y →→解:因为00)0x y y →→= 是无穷小量, 11sin cos 1x y ≤ 是有界量 ,故可知,0011)sin cos 0.x y y x y →→=例9 求 22232(3)(2)lim (3)(2)x y x y x y →→---+-解 原式=2232(3)(2)lim(3)(3)(2)x y x y x x y →→--⋅--+-因为 222222(3)(2)(3)(2)1(3)(2)22(3)(2)x y x y x y x y ---+-≤=-+-⎡⎤-+-⎣⎦是有界量,又. .word..32lim(3)0x y x →→-= 是无穷小量,所以 , 22232(3)(2)lim 0(3)(2)x y x y x y →→--=-+- .虽然这个方法计算实际问题上不那么多用,但计算对无穷小量与有界量的乘积形式的极限的最简单方法之一 .2.6利用变量替换法通过变量替换可以将某些二元函数的极限转化为一元函数的极限来计算,从而使二元函数的极限变得简单.但利用时一定要满足下面的定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档