土壤中元素铬形态及其含量测定
土壤中重金属铬的3_种测定方法的比较

第52卷第8期 辽 宁 化 工 Vol.52,No. 8 2023年8月 Liaoning Chemical Industry August,2023收稿日期: 2022-07-13土壤中重金属铬的3种测定方法的比较邢云1,段旭1,刘晓艳1,薛皓月2(1. 陕西省地质矿产实验研究所有限公司,陕西 西安 710054; 2. 西北农林科技大学,陕西 咸阳 712100)摘 要: 分别采用ICP-OES 、ICP-MS 和AAS 3种测定方式对土壤中重金属铬的含量进行测定。
通过比较校准曲线、方法精密度、准确度等参数,对3种方法进行了对比。
通过实验结果可知,3种方法均符合相应技术及质量控制要求,但各方法也有自己的优缺点,各实验室可根据实际情况进行选择。
关 键 词:电感耦合等离子体原子发射光谱法;电感耦合等离子体质谱法;原子吸收分光光度法;重金属;铬;土壤中图分类号:X833 文献标识码: A 文章编号: 1004-0935(2023)08-1233-04土壤是地球上所有生物最赖以生存的重要环境介质之一,植物的生长需要土壤提供水肥气热,动物微生物的生存需要土壤提供栖息场所。
然而,正因为土壤的重要性,它却成为了现今大部分污染物的受体。
其中,重金属污染是最主要的土壤污染形式,土壤中的重金属会转运富集到农作物中,进而进入人体,危害人类的健康[1]。
本文探讨的重金属铬就是其中之一。
铬是农用地土壤污染风险筛选值中的必测项目,它的毒性极强。
铬存在的形式主要为三价铬和六价铬,其中,三价铬是难溶的氧化物,在土壤中易被吸附固定,对动植物和微生物的危害较小,毒性较低,而六价铬溶解度极高,具有很强的毒性[2-3]。
铬尤其易通过农作物中的谷类作物富集。
在我国,谷类是人们每天必不可少的主食来源,一旦土壤受到铬污染,铬很容易通过食物链进入人体,从而对我们的健康造成影响。
土壤中的铬总量是影响谷物富集程度最重要的原因之一,因此,准确测定土壤中总铬量,是土壤污染修复治理的前 提[4-5]。
土壤有效铬测定

土壤有效铬测定一、方案名称土壤有效铬测定方案二、目标与需求1. 目标准确测定土壤中的有效铬含量,为土壤质量评估、污染监测等提供可靠的数据支持。
2. 需求需要合适的测定方法、仪器设备、试剂等资源,并且要保证测定结果的准确性和可靠性。
三、方法流程1. 样品采集选择有代表性的土壤采样点,比如在农田里要按照一定的网格或者根据作物种植区域的不同进行采样。
可以使用土钻采集不同深度的土壤样品,一般来说,表层土壤0 - 20厘米是比较关键的,但是如果研究特殊的土壤层或者污染物迁移情况,可能要采集更深层次的土壤,像20 - 50厘米的土壤。
将采集到的土壤样品混合均匀,去除其中的石块、植物根系等杂质。
2. 样品预处理采用合适的消解方法,例如酸消解。
可以选择用硝酸 - 盐酸 - 氢氟酸混合酸对土壤样品进行消解,将土壤中的有效铬转化为可测定的形态。
在消解过程中,要注意控制消解的温度、时间和酸的用量等条件。
消解完成后,进行过滤,得到澄清的消解液,以便后续的测定。
3. 测定方法可以使用原子吸收光谱法进行测定。
将预处理后的消解液导入原子吸收光谱仪中,根据铬元素的特征吸收波长,测定溶液中铬的含量。
在使用原子吸收光谱仪时,要提前对仪器进行校准,选择合适的空心阴极灯,并且要设置好仪器的各项参数,如燃气流量、灯电流等。
四、具体实施步骤1. 准备工作准备好所需的仪器设备,包括原子吸收光谱仪、土钻、消解仪、过滤装置等。
采购足够的试剂,如硝酸、盐酸、氢氟酸等,并且要确保试剂的纯度符合测定要求。
对实验人员进行培训,让他们熟悉整个测定流程、仪器的操作方法以及安全注意事项。
2. 采样阶段根据预先确定的采样方案,到选定的土壤采样地点进行采样。
每个采样点采集一定量的土壤,比如每个点采集1 - 2千克土壤。
将采集到的土壤样品放入干净的样品袋或者样品瓶中,做好标记,标记内容包括采样地点、采样时间、采样深度等信息。
3. 预处理阶段准确称取一定量的土壤样品,例如称取0.5克左右的土壤样品,放入消解罐中。
土壤中总铬的测定

环境监测土壤中总铬的监测目录一、背景资料 (2)1、土壤中铬的来源 (2)2、土壤中铬的存在形态 (3)3、铬对人体的作用及危害 (3)二、土壤中总铬的测定原理··3三、监测方案设计 (3)1、现场取样方案 (3)2、实验室测定方案 (4)四、监测数据分析 (5)五、参考文献 (5)一、背景资料1、土壤中铬的来源1.1城市郊区的铬主要来源于工业“三废”和城市生活废弃物的污染1.1.1随着大气沉降进入土壤大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。
除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。
据报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg,这类燃料在燃烧时,部分悬浮颗粒和挥发金属随烟尘进入大气。
运输,特别是汽车运输对大气和土壤造成严重污染。
主要以Pb、Zn、Cd、Cr、Cu等的污染为主。
它们来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,据有关材料报道,汽车排放的尾气在公路两侧的土壤中形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。
经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重。
1.1.2随污水灌溉重金属进入农田土壤利用污水灌溉是灌区农业的一项古老的技术,主要把污水作为灌溉水源来利用。
天津市是全国水资源最为缺乏的大城市之一,人均水资源占有量不足200m3,农业用水资源更为缺乏,致使我市近郊大面积引用污水灌溉。
我市在40多年的污灌历程中,已形成大沽、北塘、北京三条排污河,由此形成的三大污水灌溉区是我市近郊农田土壤重金属污染的主要来源,造成近郊农田土壤大面积污染。
污水中Cr有4种形态,一般以3价和6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr,随之被吸附固定。
土壤中铬的形态分析

土壤中铬的形态分析铬(Cr)是自然界中广泛存在的一种金属元素,且通常以三种形态存在于土壤中:Cr(VI)、Cr(III)和有机结合态。
这些不同形态的铬对土壤环境和生态系统有着不同的影响和行为。
因此,对土壤中铬的形态进行分析和研究具有重要的科学价值和实际意义。
1.Cr(VI)Cr(VI)是一种强氧化剂,在土壤中具有良好的可溶性和活性。
它对生物活性高,并且能够通过土壤孔隙迅速迁移。
由于其高毒性和危险性,Cr(VI)在土壤中的含量普遍受到严格的监管和控制。
常用的Cr(VI)形态分析方法主要包括离子交换色谱、荧光光谱、原子吸收光谱和X射线荧光光谱等。
这些方法能够精确地测定土壤中Cr(VI)的含量和分布,为环境监测和风险评估提供重要的数据支持。
2.Cr(III)Cr(III)是一种相对较稳定的铬形态,在土壤中普遍存在。
与Cr (VI)相比,Cr(III)具有较低的生物活性和迁移性。
Cr(III)对土壤和植物的毒性较小,但在高浓度下仍然会对生态系统产生不良影响。
常用的Cr(III)形态分析方法主要包括原子吸收光谱、电感耦合等离子体质谱和电感耦合等离子体发射光谱等。
这些方法能够准确测定土壤中Cr (III)的含量和分布,为土壤质量评价和环境管理提供依据。
3.有机结合态铬在土壤中还可以以有机结合形式存在,主要以有机酸和腐殖质的形式结合。
有机结合态的铬相对较稳定,对环境和生态系统的影响较小。
但在一些特殊情况下,有机结合态的铬可能会被还原为Cr(VI),从而增加了环境污染的风险。
有机结合态铬的分析方法主要包括红外光谱、X射线吸收光谱等。
这些方法能够确定土壤中有机结合态铬的含量和特征,并为了解土壤中铬的迁移和转化过程提供参考。
总之,对土壤中铬的形态进行分析是研究土壤环境和生态系统的关键环节。
不同形态的铬在土壤中的分布和活动特征对环境质量和生物安全产生直接影响。
因此,通过合理选择和应用适当的分析方法,可以准确测定土壤中铬的含量和分布,为土壤污染防控和资源利用提供科学依据。
土壤含铬量测定实验

仪器应存放在 干燥、通风、 避光的地方, 避免受潮、受 热、受污染。
定期对仪器进 行维护和保养,
确保仪器的正 常使用和延长
使用寿命。
添加标题 添加标题 添加标题 添加标题 添加标题
实验废弃物的处理
实验结束后,将 废弃物分类收集, 如废液、废纸、 废试剂等
废液应倒入指 定的废液桶中, 废纸应放入指 定的废纸桶中
项标题
提高公众对土壤污 染问题的认识和重
视程度。
为环境保护提供依据
02
铬是一种有毒元素,对
环境和人体健康具有潜
01
在危害,测定其含量有
助于评估其对环境和生
通过测定土壤中的铬含
态的影响。
量,了解土壤污染状况,
为环境保护提供数据支
持。
03
通过实验数据的分析,
可以为土壤修复和治理
提壤供资科源学的依可据持04,续促利进用土。
靠性。
测定方法的优缺点
添加 标题
添加 标题
添加 标题
添加 标题
添加 标题
优点:方法准确度高, 缺点:需要专业设备和 适用范围:适用于土壤、 注意事项:实验过程中 改进方向:探索更加快
可测定微量铬;操作简 技术支持,成本较高; 水质等环境样品中铬的 需要注意样品处理、试 速、简便、经济的测定
便,易于掌握。 测定时间较长,不适合
变质
试剂准备
硝酸:用于溶解土壤样品中 的铬元素。
01
高氯酸:与硝酸混合使用, 提高溶解效率。
02
氢氧化钠:调节溶液pH值, 使铬元素转化为可测定的形态。
03
二苯碳酰二肼:与铬元素发生 显色反应,生成有色化合物, 用于比色测定。
04
知识点土壤中总铬的测定

准确移取铬标准使用溶液、、、、、于50mL容量瓶中。分 称取通过100目筛的风干土样5~10g(准确至),置于铝盒或称量瓶中,在105℃烘箱中烘4 ~5h,烘干至恒重。
将试液在与校准曲线相同的条件下,测定吸光度。
土壤水分含量f按下式计算:
标线,摇匀。然后用火焰原子吸收分光光度计测定其吸光度。 视消解情况,可再补加3mL硝酸,3mL氢氟酸,1mL高氯酸,重复上述消解过程,当白烟再次基本冒近且内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖和内壁,并加入3mL(1+1)
硝酸溶液,温热溶解可溶性残渣,然后将溶定容至标线,摇匀,备测。
土壤污染监测
总铬的测定 • 《土壤环境质量标准》(GB15618-1995)规定的三级标准值:
土壤污染监测
总铬的测定(HJ491- )
• 方法原理 ✓采用盐酸-硝酸-氢氟酸-高氯酸全分解的方法,破坏土壤的矿 物晶格,使试样中的待测元素全部进入试液,并且,在消解过 程中,所有铬都被氧化成Cr2O72-。然后,将消解液喷入富燃性 空气-乙炔火焰中。在火焰的高温下,形成各基态原子,并对铬 空心阴极灯发射的特征谱线产生选择性吸收。在选择的最佳测 定条件下,测定铬的吸光度。
土壤污染监测 总铬的测定(HJ491- )
W2——烘干后土样重量,g。 准确移取铬标准使用溶液、、、、、于50mL容量瓶中。 式中:c——试液的吸光度减去空白试验的吸光度,然后在校准曲线上查得铬的 每批样品至少制备2个以上的空白溶液。
含量,mg/L; 总铬的测定(HJ491- )
总铬的测定(HJ491- ) 然后,将消解液喷入富燃性空气-乙炔火焰中。
别加入5mL氯化铵溶液,3mL 的盐酸溶液(1+1),用水定容至 用去离子水代替试样,采用和样品操作相同的步骤和试剂,制备全程序空白溶液,并在与样品相同的条件下测定吸光度。
土壤中总铬的测定

环境监测土壤中总铬的监测目录一、背景资料 (2)1、土壤中铬的来源 (2)2、土壤中铬的存在形态 (3)3、铬对人体的作用及危害 (3)二、土壤中总铬的测定原理 (3)三、监测方案设计 (3)1、现场取样方案 (3)2、实验室测定方案 (4)四、监测数据分析 (5)五、参考文献 (5)一、背景资料1、土壤中铬的来源1、1城市郊区的铬主要来源于工业“三废”与城市生活废弃物的污染1、1、1随着大气沉降进入土壤大气中的重金属主要来源于能源、运输、冶金与建筑材料生产产生的气体与粉尘。
除汞以外,重金属基本上就是以气溶胶的形态进入大气,经过自然沉降与降水进入土壤。
据报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg,这类燃料在燃烧时,部分悬浮颗粒与挥发金属随烟尘进入大气。
运输,特别就是汽车运输对大气与土壤造成严重污染。
主要以Pb、Zn、Cd、Cr、Cu等的污染为主。
它们来自于含铅汽油的燃烧与汽车轮胎磨损产生的粉尘,据有关材料报道,汽车排放的尾气在公路两侧的土壤中形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。
经自然沉降与雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重。
1、1、2随污水灌溉重金属进入农田土壤利用污水灌溉就是灌区农业的一项古老的技术,主要把污水作为灌溉水源来利用。
天津市就是全国水资源最为缺乏的大城市之一,人均水资源占有量不足200m3,农业用水资源更为缺乏,致使我市近郊大面积引用污水灌溉。
我市在40多年的污灌历程中,已形成大沽、北塘、北京三条排污河,由此形成的三大污水灌溉区就是我市近郊农田土壤重金属污染的主要来源,造成近郊农田土壤大面积污染。
污水中Cr有4种形态,一般以3价与6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr, 随之被吸附固定。
土壤中六价铬的测定方法

土壤中六价铬的测定方法
六价铬(Chromium(Ⅵ))是土壤环境污染的一种重要污染物,其存在于土壤中
不仅有害于土壤肥力,而且会通过植物等向人体转移,可能对健康造成危害。
因此,测定土壤中六价铬的值非常重要。
测定土壤中六价铬的方法有物质定量分析法、溶剂提取法以及酸洗分离法等。
其中,物质定量分析法是一种常用的测定方法,这种方法可以排除将六价铬与具有和它一样的物质进行分离的干扰,进而较准确地测定土壤中的六价铬含量。
物质定量分析法测定土壤中六价铬含量需要借助一些仪器设备,常见的仪器是
电感耦合等离子体质谱仪(ICP-MS)、原子吸收光谱仪(AAS)以及气体色谱法(GC),在实际操作中,可以采用大量的土壤抽样,建立标准曲线,根据标准曲线给出六价铬浓度值等方法。
除了物质定量分析法外,溶剂提取和酸洗分离也常用于测定土壤中的六价铬含量。
溶剂提取法的操作过程比较简单,也可以在实际操作中作为补充。
六价铬容易沉积在土壤黏壁中,酸洗分离法可以将六价铬与土壤黏壁分离,使六价铬之结合态彻底松解,以准确检测出土壤中的六价铬含量。
正确准确地测定土壤中六价铬的浓度,对于研究六价铬在土壤中的环境行为有
着重要意义,可以帮助我们更加全面地认识它对环境及人体健康的影响。
因此,对六价铬测定的研究仍然日益增多,以期获得更多的洞察,做出更好的相应措施,让我们的土壤环境可持续发展,从而更好地保障人们的健康。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存档日期:存档编号:土壤中元素铬形态及其含量测定北京化工大学研究生课程论文课程名称:现代环境分析技术课程代号:Env507任课教师:余江完成日期:2012年11月20日专业:环境工程学号:2011030150姓名:贺立军成绩:土壤中元素铬形态及其含量测定(贺立军环境工程2011030150 )摘要:在硝酸介质中,Cr(Ⅵ)能显著阻抑甲基红的褪色,据此采用消化法处理土壤样品,甲基红阻抑褪色光度法来测定土壤中的痕量铬。
结果显示,土壤中总铬、Cr(Ⅲ)和Cr(Ⅵ)平均含量分别为52.2、8.4、43.8mg·kg-1。
该方法用于土壤中铬的测定,灵敏度高,结果令人满意。
关键词:甲基红阻抑褪色光度法;铬(Ⅲ);铬(Ⅵ);Determination of the Valence State and Content of Chromium in the SoilAbstract:The content of Chromium(Cr)in the soil was detected by inhibition of methyl red fading reaction which Cr(VI)could inhibit the fading of methyl red in HNO3medium.The total Cr,Cr(Ⅲ)and Cr (Ⅵ)were52.2,8.4and43.8mg·kg-1.The results indicated that this method was sensitive and effective to detect trace chromium in soil.Keywords:inhibition of methyl red fading reaction;chromium(Ⅲ);chromium(Ⅵ);Total chromium环境铬主要以无机铬和有机铬两种形态存在[1],其中无机铬的含量远大于有机铬。
Cr(Ⅵ)在环境中能降低生化需氧量,阻碍氮素的消化过程,使土壤板结,农作物枯死[2,3]。
人体吸收后,可危害肾脏和心肌,并有致癌作用。
而Cr(Ⅲ)却是人体必需元素[4],其主要功能是调节血糖代谢,并与核酸、酯类和胆固醇的合成以及氨基酸的利用有关[5]。
国内外铬的测定方法有分光光度法、原子吸收光谱法、极谱法、无机色谱法、直接电流法以及化学发光法和中子活化法、动力学催化光度法等[6]。
铬的污染主要来源于矿石加工,金属表面处理,皮革制造和印染等行业[7]。
在同种物质中铬几种形态一般都同时存在[8,9],在土壤中同样以Cr(Ⅲ)和Cr(Ⅵ)两种形态存在,但是单从价态来区分并不能完全反映土壤中铬的真实存在形态。
当前较为公认的是Tesseler的形态划分法[10]。
铬的测定对环保及医学研究具有重要的意义[11]。
本课题土壤中铬含量进行测定并进一步分析其形态。
土壤中Cr (Ⅵ)的测定,大多采用动力学光度法、动力学荧光法。
其中分光光度法在铬的形态分析中早已得到应用。
其原理是利用Cr(Ⅵ)的强氧化性及催化活性,可使某些有机试剂褪色或颜色加深而用于定量测量[12]。
本试验采用的是甲基红阻抑褪色光度法。
1材料与方法1.1仪器及试剂722型分光光度计(上海精密科学仪器厂)、过滤装置、DZKW -D型恒温水浴锅(河北省黄骅市渤海电器厂)、101-2恒温干燥箱(上海实验仪器厂)、GR-200型电子天平。
K2Cr2O7、甲基红、乙醇、3mol·L-1HNO3;50g·L-1NaOH;H2O2、HCl(1+1)、浓氨水、硫酸溶液、50%的磷酸溶液、0.5%AgNO3、过硫酸铵、100g·L-1的尿素水溶液、亚硝酸钠。
所有试剂均为分析纯。
1.2样品的采集土壤样品采集后除去杂物,待样品风干后,将其研磨和过筛。
装入聚乙烯塑料袋,贴上标签,常温保存备用。
1.3标准溶液的配制Cr(Ⅵ)标准溶液:配制5.0μg·mL-1的K2Cr2O7工作液待用;Cr(Ⅲ)标准溶液:配制5.0μg·mL-1的Cr(Ⅲ)工作液待用。
1.4样品分析及干扰准确称取1g左右土壤样品于烧杯中,用少量水润湿,加入1.0mLHNO3,4.0mLH2SO4(1+1),盖上表面皿,于电炉上加热至冒大量白烟,若溶液呈棕黑色,再加入HNO3,并再加热至冒白烟,至残渣发白为止。
取下,冷却后用蒸馏水洗烧杯壁及表面皿。
加入几滴0.5%AgNO3溶液,5.0mL20%过硫酸铵溶液,若溶液不含锰,可滴加两滴0.5%MnSO4溶液,加入几颗玻璃珠,于电炉上加热至沸5~6min。
若溶液不呈紫红色,再加过硫酸铵直煮紫红色稳定,再煮沸5~6min取下烧杯,加入5.0mL10%尿素,滴加1%NaNO2至溶液紫红色刚好褪去,煮沸几分钟,用浓氨水调至稳定沉淀物出现,然后连同沉淀一起转入一定体积的容量瓶中,用水定容至刻度,摇匀。
吸取部分上清液待用。
1.5吸收曲线的绘制取两支10mL比色管,加入0.80mL甲基红,0.40mL硝酸,其中一支加入一定量Cr(Ⅵ)标准溶液,另一支不加,加水定容,摇匀,放入90℃水浴中,加热10min取出,流水冷却终止反应。
以水作参比,于400~600nm不同波长处测定其吸光度确定最大吸收波长。
作出吸收曲线。
1.6Cr(Ⅵ)和总铬的测定取6支10mL比色管,分别准确移取含有0、5、10、15、20、30μg铬的Cr(Ⅵ)标准溶液,加入0.80mL甲基红,0.40mL硝酸,加水定容,摇匀,放入90℃水浴中,加热10min取出,流水冷却终止反应。
以水作参比,于最大波长处测定其吸光度。
并作出其标准吸收曲线。
取适量样品处理液于10mL比色管中,按上实验方法操作,并测定其吸光度差值。
取6支10mL比色管,分别准确移取含有0、5、10、15、20、30μgCr的Cr(Ⅲ)和Cr(Ⅵ)的混合标准溶液,加入0.80mL甲基红,0.40mL硝酸,加水定容,摇匀,放入90℃水浴中,加热10min取出,流水冷却终止反应。
以水作参比,于最大波长波长处测定其吸光度。
并作出其标准吸收曲线。
取适量样品处理液于10mL比色管中,加入2mLH2O2将Cr(Ⅲ)氧化为Cr(Ⅵ)按上操作,测定其吸光度。
2结果与分析2.1作吸收曲线作吸收曲线,确定其最大吸收波长在试验条件下,试剂空白褪色很快,当加入适量Cr(Ⅵ)后,体系褪色大幅度减慢,说明阻抑甲基红的褪色反应。
大约在520nm波长处,△A最大,因此试验选520nm为测定波长。
2.2绘制工作曲线总Cr和Cr(VI)的标准曲线在试验条件下,分别取不同量的总Cr和Cr(Ⅵ)工作液,按实验方法操作并绘制工作曲线,如图1和图2所示。
结果表明,总Cr和Cr(Ⅵ)量在0~0.25μg·mL-1范围内线性良好。
总Cr线性方程:A=0.285+0.3125C(μg·mL -1),Cr(Ⅵ)线性方程:A=0.254+0.2631C(μg·mL-1)2.3各形态Cr含量从表1可算出各形态Cr含量。
对比土壤中总铬含量是否低于国家土壤环境质量标准GB15618-1995限值≤200mg·kg-1。
2.4干扰离子影响结果表明,在10mL0.20μgCr(Ⅵ)溶液中,相对误差控制在±5%范围内,共存离子允许量(μg)为:K+,Na+,NH4+(>100);Mg2+(120);Ca2+,Ba2+(100);Zn2+,Ni2+,Cd2+(80);Co2+,Sr2+(30);Al3+(15);Pb2+,Mn2+(10);Fe3+(3);Cu2+,NO2-(0.1);在处理样品时Cu2+、NO2-、Ba2+等已被除去。
可见本方法的选择性较好。
土壤中较大量的Mn2+可用尿素及亚硝酸钠除去。
3小结与讨论土壤中铬的生物有效性主要取决于铬在土壤中的结合状态,依据重金属的化学性质,通常将铬分为水溶态、交换态、沉淀态、有机结合态和残渣态。
土壤中的铬主要以有机结合态和残渣态为主,且铬迁移能力较差,在土壤中富集能力较强[13]。
参考文献:[1]严金龙,许琦,杨春生.方波伏安法快速分析废铬液中的铬(Ⅲ)[J].LEATHERCHEMICALS,2003(20):40-42.[2]韩见龙,马冰洁,李海涛,等.微波消解原子吸收法测定土壤中的铬[J].中国卫生检验杂志,2001,11(2):169-170.[3]王碧,马春辉.制革废水与污泥中铬资源的回收及综合利用[J].中国皮革,2002,31(3):10-12.[4]郝素娥,张巨生,丛华,等.镧铬酵母中铬含量的测定[J].分析化学,2003,31(7):840-842.[5]李朝敢,张树球,姚杨玲,等.几种降糖中草药及舒糖宝制剂中铬元素含量分析[J].微量元素与健康研究,2007,24(4):28-29.[6]朱霞石,江祖成,胡斌.铬形态分析的分离富集/原子光谱分析研究进展[J].分析测试学报,2005,24(4):108-115.[7]李建文,黄坚.铬的形态分析研究与展望[J].冶金分析,2006,26(10):39-43.[8]ZBIGNIEWSTASZAK,ADAMSZELAG.Homo-andhetero -nuclearchromium(Ⅲ)complexeswithnaturalligands.Part2.Oxo-andhydroxo-bridgedchromium(Ⅲ)/vanadium(Ⅴ)species [J].TyansitionMetalChemistry,2002,27:587-593.[9]SEHGALK.Hornmealhydrolysate-chromiumcomplexasahighexhaustchrometanningagent-pilotscalestudies [J].CleanTechnEnvironpolicy,2007,10:2-7.[10]朱霞石,江祖成,胡斌,等.浊点萃取-电热原子吸收光谱法分析铬的形态[J].分析化学,2003,31(11):1312-1316.[11]韩长秀.阻抑甲基红褪色光度法测定土壤及废水中Cr(Ⅵ)[J].冶金分析,2003,23(2):54-56.[12]丁绍兰,李桂菊.制革污泥及施含铬污泥土壤中铬含量测定方法的研究[J].中国皮革,2000,29(3):22-24.[13]丁绍兰,李桂菊,章川波,等.施加含铬污泥土壤中铬含量及其存在状态的测定[J].中国皮革,1999,28(23):1-2.。