土壤中总铬的测定

合集下载

土壤质量总铬的测定

土壤质量总铬的测定

土壤质量总铬的测定1主题内容与适用范围1.1本标准规定了测定土壤中总铬的火焰原子吸收分光光度法。

1.2本标准的检出限(按称取0.5g试样消解定容至50ml计算)为5mg/kg。

1.3干扰1.3.1铬是易形成耐高温氧化物的元素,其原子化效率受火焰状态和燃烧器高度的影响较大,需使用富燃烧性(还原性)火焰,观测高度以10mm处最佳。

1.3.2加入氯化铵可以抑制铁、钴、镍、钒、铝、镁、铅等共存离子的干扰。

2原理采用盐酸—硝酸—氢氟酸—高氯酸全分解的方法,破坏土壤的矿物晶格,使试样中的待测元素全部进入试液,并且,在消解过程中,所有铬都被氧化成Cr2O72-。

然后,将消解液喷入富燃性空气—乙炔火焰中。

在火焰的高温下,形成铬基态原子,并对铬空心阴极灯发射的特征谱线357.9nm产生选择性吸收。

在选择的最佳测定条件下,测定铬的吸光度。

3试剂本标准所使用的试剂除另有说明外,均使用符合国家标准的分析纯试剂和去离子水或等同纯度的水。

3.1盐酸(HCl),ρ=1.19g/ml,优级纯。

3.2盐酸溶液,1+1:用(3.1)配制。

3.3硝酸(HNO3),ρ=1.42g/ml,优级纯。

3.4氢氟酸(HF),ρ=1.49g/ml。

3.5硫酸(H2SO4),ρ=1.84g/ml,优级纯。

3.6硫酸溶液,1+1:用(3.5)配制。

3.7氯化铵水溶液,质量分数为10%。

3.8铬标准储备液,1.000mg/ml:准确称取0.2829g基准重铬酸钾(K2Cr2O7),用少量水溶解后全量转移入100ml容量瓶中,用水定容至标线,摇匀。

3.9铬标准使用液,50mg/l:移取铬标准储备液(3.8)5.00ml于100ml容量瓶中,加水定容至标线,摇匀。

4仪器4.1一般实验室仪器和以下仪器。

4.2原子吸收分光光度计。

4.3铬空心阴极灯。

4.4乙炔钢瓶。

4.5空气压缩机,应备有除水、除油和除尘装置。

4.6仪器参数不同型号仪器的最佳测定条件不同,可根据仪器使用说明书自行选择。

微波消解-ICAP法测定土壤中总铬含量的研究

微波消解-ICAP法测定土壤中总铬含量的研究

差、 消解 罐 内的 消解 液 量 、 土壤 样 品 中硅 及 有 机 质 含
量, 称样 量 以 01 00 0100g为宜 。 .0 ~ . 5 22 R . F大 小选 择
对不同厂家 、 同生产 L 的试剂 , 不 t 期 干扰 因子的含量
不 可能 相 同 ,引起 了不 同批 次消 解 液 中 的干 扰 不 同 ,
4 54 5 00 0 2 .4 0 0
Cu ( 0 .0n 5 0 : ( 0 .7n 25 0) 2 55 m 00 0) Mo 2 55 m 0
Fe 4 5 3 m 0 ( 2 . 5 n 2 2 0)
2 6 1 4 00 0 0 .5 0 0
2 65 3 00 0 0 .4 5 0
监 测分 析 ・ MONIORNG T I
微 波消解一C P法测定 土壤 中总铬含量 的研究 IA
陆若辉 , 边武英 , 蔡 玮, 沈 月 , 陈思力
( 江省土肥站 , 浙 浙江 杭 州 3 0 2 ) 10 0

要 : 用 微 波 消解 仪 对 土壤 样 品进 行 前 处 理 , I A 采 用 C P测 定 土 壤 中 总铬 含 量 。 过 硝 酸 一 氟 酸 以及 硝 酸 一 酸 一 氧 通 氢 盐 过
量较 多 的元 素 ) 表 4 见 。 我 们用 所 有 1 谱线 对 4个 土壤 样 品进 行 了分 4条
表 4 测 定 谱 线 及 干 扰 元 素
谱 线 R lit e n
主要干扰元素( 波长 、 e it R ln)
28 .6 0 0 Mn (2 .3n 35 15 00 0 836 m 1 0 : 00 0) Mo( 8 .3n 2 35 m 70 0) 0

土壤中重金属铬的3_种测定方法的比较

土壤中重金属铬的3_种测定方法的比较

第52卷第8期 辽 宁 化 工 Vol.52,No. 8 2023年8月 Liaoning Chemical Industry August,2023收稿日期: 2022-07-13土壤中重金属铬的3种测定方法的比较邢云1,段旭1,刘晓艳1,薛皓月2(1. 陕西省地质矿产实验研究所有限公司,陕西 西安 710054; 2. 西北农林科技大学,陕西 咸阳 712100)摘 要: 分别采用ICP-OES 、ICP-MS 和AAS 3种测定方式对土壤中重金属铬的含量进行测定。

通过比较校准曲线、方法精密度、准确度等参数,对3种方法进行了对比。

通过实验结果可知,3种方法均符合相应技术及质量控制要求,但各方法也有自己的优缺点,各实验室可根据实际情况进行选择。

关 键 词:电感耦合等离子体原子发射光谱法;电感耦合等离子体质谱法;原子吸收分光光度法;重金属;铬;土壤中图分类号:X833 文献标识码: A 文章编号: 1004-0935(2023)08-1233-04土壤是地球上所有生物最赖以生存的重要环境介质之一,植物的生长需要土壤提供水肥气热,动物微生物的生存需要土壤提供栖息场所。

然而,正因为土壤的重要性,它却成为了现今大部分污染物的受体。

其中,重金属污染是最主要的土壤污染形式,土壤中的重金属会转运富集到农作物中,进而进入人体,危害人类的健康[1]。

本文探讨的重金属铬就是其中之一。

铬是农用地土壤污染风险筛选值中的必测项目,它的毒性极强。

铬存在的形式主要为三价铬和六价铬,其中,三价铬是难溶的氧化物,在土壤中易被吸附固定,对动植物和微生物的危害较小,毒性较低,而六价铬溶解度极高,具有很强的毒性[2-3]。

铬尤其易通过农作物中的谷类作物富集。

在我国,谷类是人们每天必不可少的主食来源,一旦土壤受到铬污染,铬很容易通过食物链进入人体,从而对我们的健康造成影响。

土壤中的铬总量是影响谷物富集程度最重要的原因之一,因此,准确测定土壤中总铬量,是土壤污染修复治理的前 提[4-5]。

原子吸收分光光度法与X射线荧光光谱法测定土壤中总铬的方法比对

原子吸收分光光度法与X射线荧光光谱法测定土壤中总铬的方法比对

原子吸收分光光度法与X射线荧光光谱法测定土壤中总铬的方法比对作者:蔡熹陈素兰来源:《中国科技纵横》2014年第03期【摘要】原子吸收分光光度法和X射线荧光光谱法测定土壤中总铬均具有准确度高,精密度好的特点,两种方法的检测结果无显著性差异。

【关键词】 X射线荧光光谱法原子吸收法方法比对总铬土壤铬(Chromium),化学符号是Cr,原子序数为24。

这是一种具有银白色光泽的金属,无臭,无味,无毒,化学性质很稳定,有延展性,自然界没有游离状态的铬,主要的矿物是铬铁矿。

在人体中,铬是一种必需的微量元素,在肌体的糖代谢和脂代谢中发挥特殊作用。

铬在环境中,在不同条件下价态也有不同,其化学行为和毒性大小亦不同。

如水体中三价铬可吸附在固体物质上而存在于沉积物(底泥)中;六价铬则多溶于水中,比较稳定,但在厌氧条件下可还原为三价铬。

三价铬的盐类可在中性或弱碱性的水中水解,生成不溶于水的氢氧化铬而沉入水底。

由于环境中的三价铬和六价铬可以互相转化,所以近来愈来愈倾向于根据铬的总含量,而不是根据六价铬的含量来制定相关标准。

铬主要用于金属加工、电镀、制革等行业。

由于铬的污染源很多,而且毒性较强。

所以是一项重要的污染控制指标。

《土壤环境质量标准》中,铬是规定监测项目之一。

当前国家对重金属污染防治日益重视,更是将重金属污染防治写入了十二五规划中,为了保障人民群众生活环境健康,如何快速准确有效的分析土壤中铬的含量,已经成为土壤无机元素分析法研究中非常重要的一个方面。

目前,土壤中铬的测定主要为火焰原子吸收分光光度法(简称FAAS),样品消解过程复杂繁琐,需要使用大量的酸,同时会产生酸雾,易对环境造成二次污染,对实验人员有一定的伤害,且耗时长,分析效率较低。

而使用X射线荧光谱仪(简称XRF)分析,样品无需前处理,只需压制成一定规格的薄片即可进行测定,且测定时间短。

1 方法原理(1)火焰原子吸收分光光度法。

采用盐酸-硝酸-氢氟酸-高氯酸全分解的方法,破坏土壤的矿物晶格,使试样中的待测元素全部进入试液,在消解过程中,所有铬都被氧化成Cr2O72-。

环境分析中六价铬与总铬的测定 蔺凯

环境分析中六价铬与总铬的测定 蔺凯
ቤተ መጻሕፍቲ ባይዱ
无火焰原子吸收分光光度法: 无火焰原子吸收分光光度法: 使用加热石墨炉使样品中被测元素原子激发,常用于直接测定食品、 使用加热石墨炉使样品中被测元素原子激发,常用于直接测定食品、 环境样品中的Cr。 环境样品中的 。
2.3 其它分析方法: 其它分析方法:
化学发光法、荧光分析法、电化学分析法(伏安分析法和电位分析法) 化学发光法、荧光分析法、电化学分析法(伏安分析法和电位分析法) 等。 陕西省环境监测中心站
铬是广泛存在于自然界的一种元素。岩石中的铬,由于风化、 火山爆发、风暴、生物转化等自然作用进入土壤、大气、水及生 物体内,土壤中铬分布极广,含量范围很宽,在水体和大气中铬 含量较少,动植物体内也含有微量铬。铬对人体危害主要来源是 含铬矿石的加工、重金属表面处理、皮革鞣质、印刷、耐火材料、 化工等行业。 铬是人体必需的微量元素,它与脂类代谢有密切联系,能增 加人体内胆固醇的分解和排泄,是机体内葡萄糖能量因子中和一 个有效成分,能辅助胰岛素利用葡萄糖。如食物不能提供足够的 铬,人体会出现铬缺乏症,影响糖类及脂类代谢。

水中的铬 《水和废水监测分析方法》 第四版增补版 中国环境科学出版社 火焰原子吸收法(总铬) 火焰原子吸收法(总铬) ICP-AES法(总铬) 法 总铬) 二苯碳酰二肼分光光度法(六价铬) 二苯碳酰二肼分光光度法(六价铬) 硫酸亚铁铵滴定法(总铬) 硫酸亚铁铵滴定法(总铬) 陕西省环境监测中心站
4.水中铬的分析方法 水中铬的分析方法
4.1.6 校准曲线的绘制:
铬标准液(C=1.00mg/L), 分析编号 标准溶液浓度(mg/L) 标准溶液量(mg) 吸光值 减空白后吸光值 回归方程 相关系数 0 0.00 0.00 0.023 0.000 1 0.20 0.20 0.042 0.019 2 0.50 0.50 0.050 0.027 3 2.00 2.00 0.096 0.073 4 4.00 4.00 0.173 0.510 5 6.00 6.00 0.241 0.218 6 10.00 10.00 0.389 0.366

土壤中总铬的测定

土壤中总铬的测定

环境监测土壤中总铬的监测目录一、背景资料 (2)1、土壤中铬的来源 (2)2、土壤中铬的存在形态 (3)3、铬对人体的作用及危害 (3)二、土壤中总铬的测定原理 (3)三、监测方案设计 (3)1、现场取样方案 (3)2、实验室测定方案 (4)四、监测数据分析 (5)五、参考文献 (5)一、背景资料1、土壤中铬的来源1.1城市郊区的铬主要来源于工业“三废”和城市生活废弃物的污染1.1.1随着大气沉降进入土壤大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。

除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。

据报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg,这类燃料在燃烧时,部分悬浮颗粒和挥发金属随烟尘进入大气。

运输,特别是汽车运输对大气和土壤造成严重污染。

主要以Pb、Zn、Cd、Cr、Cu等的污染为主。

它们来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,据有关材料报道,汽车排放的尾气在公路两侧的土壤中形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。

经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重。

1.1.2随污水灌溉重金属进入农田土壤利用污水灌溉是灌区农业的一项古老的技术,主要把污水作为灌溉水源来利用。

天津市是全国水资源最为缺乏的大城市之一,人均水资源占有量不足200m3,农业用水资源更为缺乏,致使我市近郊大面积引用污水灌溉。

我市在40多年的污灌历程中,已形成大沽、北塘、北京三条排污河,由此形成的三大污水灌溉区是我市近郊农田土壤重金属污染的主要来源,造成近郊农田土壤大面积污染。

污水中Cr有4种形态,一般以3价和6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr,随之被吸附固定。

因此,污灌区土壤Cr也会逐年累积。

编制说明-土壤中铅、铬、铜、镍、锌含量的测定 电感耦合等离子发射光谱法.docx

编制说明-土壤中铅、铬、铜、镍、锌含量的测定 电感耦合等离子发射光谱法.docx

《土壤中铅、铬、铜、镍、锌含量的测定电感耦合等离子发射光谱法》地方标准编制说明一、标准编制概况1、任务来源本标准由江西省农业科学院土壤肥料与资源环境研究所申请立项、江西省农业农村厅提出,《江西省市场监管局关于下达2020年第五批江西省地方标准制修订计划的通知》(赣市监标函〔2020〕11号)列入制修订计划,计划编号DB36-2020-5-59。

2、起草单位江西省农业科学院土壤肥料与资源环境研究所、江西省农业科学院农产品质量安全与标准研究所3、主要起草人4、编写格式依据GB/T 1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》。

二、编制本标准的必要性和意义1、必要性和意义土壤是环境的重要要素,是物质迁移和能量转化的复杂场所。

土壤在开发和改造的同时,造成了严重破坏和污染。

而重金属是土壤环境质量评价的重要指标,铅、铬、铜、镍、锌是土壤中常见的重金属污染元素,不仅影响农作物的生长,并且能够通过生物链富集,对人、畜的健康造成严重影响。

因此,对土壤中铅、铬、铜、镍、锌的快速准确检测和评价极为重要。

由于土壤基体复杂,干扰因子多,因此,需要开发一种受基体干扰小、线性范围广、灵敏度高、谱线简单、且能同时检测多种重金属元素的检测方法。

目前,国内应用于土壤中重金属元素分析的技术主要是化学法、分光光度法、原子吸收法、原子荧光法等,这些方法前处理复杂繁琐、花费时间长,而且只能单个元素逐一检测,费时费力,而且检出限低测量误差大。

传统的重金属检验技术不适应当前土壤监管、生产、研究和进出口贸易等领域工作对重金属进行快速准确检验的要求。

江西省是农业大省,发展农业具有得天独厚的资源优势。

传统土壤测定不能快速的得到土壤中有害元素含量的确切信息,无法准确把握土壤质量与环境安全的详细情况。

从土壤的质量安全监管角度出发,需要建立一种有效地、同时的、高效的检测手段。

为了充分了解土壤中各种有害重金属元素的含量,更好的指导农业生产,土壤中铅、铬、铜、镍、锌含量的分析对于了解土壤生态安全及其在环境中迁移转化规律具有重要意义。

土壤中铬(Ⅵ)测定方法的探讨

土壤中铬(Ⅵ)测定方法的探讨

土壤中铬(Ⅵ)测定方法的探讨作者:甘文静左小秋王金箐来源:《科学与财富》2018年第29期摘要:研究通过加入碱性消解液、氯化镁、磷酸缓冲溶液浸提,再用二苯碳酰二肼分光光度法测定,方法简单、快速。

方法在0.0mg/L-0.2mg/L范围内线性良好,检出限为0.025mg/kg (以2.5g样品计),土壤样品测定的RSD为10%,加标回收率为87%-97%。

关键词:六价铬、分光光度法、土壤铬是一种重要的环境污染物,在一些地方,对土壤及地下水造成了严重的污染。

铬有6种不同的化合价态,在自然界主要以三价铬Cr(Ⅲ)和六价铬Cr(Ⅵ)的形式存在,三价铬多以氢氧化物或氧化物的形态存在,不溶于水,一般不会对环境产生严重污染;但六价铬极易在土壤中迁移扩散,是我国多发,铬(Ⅵ)污染地下水事故的主要原因[1]。

三价铬是人体所需的一种微量元素,不易进入细胞。

六价铬可通过氧阴离子通道进入细胞,具有免疫毒性、神经性、生殖毒性、肾脏毒性及致癌性。

目前国内主要是对土壤中的总铬监测分析[2],土壤中六价铬尚未颁布国家或者行业测定标准。

今采用碱性消解剂[3],防止土壤中的三价铬被氧化成六价铬,对土壤中的六价铬进行浸提实验,浸提出的溶液,用二苯碳酰二肼分光光度法测定其中的六价铬的含量,方法简便、快速。

1试验1.1主要仪器与试剂2100分光光度计、pH酸度计、电子天平、电磁加热搅拌器;实验所用试剂重铬酸钾、丙酮、硫酸、磷酸、氢氧化钠、氯化镁、氯化钾、磷酸氢二钾、磷酸二氢钾、高锰酸钾、尿素、亚硝酸钠、硫酸锌、二苯碳酰二肼都是符合实验要求的基准、优级纯、分析纯试剂;铬标准储备液:称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。

此溶液1ml含0.10mg六价铬。

铬标准使用液:吸取1.00ml铬标准储备液置于100ml容量瓶中,用水稀释至标线,摇匀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环境监测土壤中总铬的监测目录一、背景资料 (2)1、土壤中铬的来源 (2)2、土壤中铬的存在形态 (3)3、铬对人体的作用及危害 (3)二、土壤中总铬的测定原理 (3)三、监测方案设计 (3)1、现场取样方案 (3)2、实验室测定方案 (4)四、监测数据分析 (5)五、参考文献 (5)一、背景资料1、土壤中铬的来源1.1城市郊区的铬主要来源于工业“三废”和城市生活废弃物的污染1.1.1随着大气沉降进入土壤大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。

除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。

据报道,煤含Ce、Cr、Pb、Hg、Ti等金属,石油中含有相当量的Hg,这类燃料在燃烧时,部分悬浮颗粒和挥发金属随烟尘进入大气。

运输,特别是汽车运输对大气和土壤造成严重污染。

主要以Pb、Zn、Cd、Cr、Cu等的污染为主。

它们来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,据有关材料报道,汽车排放的尾气在公路两侧的土壤中形成Pb、Cr、Co污染带,且沿公路延长方向分布,自公路两侧污染强度减弱。

经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近污染的程度就越重。

1.1.2随污水灌溉重金属进入农田土壤利用污水灌溉是灌区农业的一项古老的技术,主要把污水作为灌溉水源来利用。

天津市是全国水资源最为缺乏的大城市之一,人均水资源占有量不足200m3,农业用水资源更为缺乏,致使我市近郊大面积引用污水灌溉。

我市在40多年的污灌历程中,已形成大沽、北塘、三条排污河,由此形成的三大污水灌溉区是我市近郊农田土壤重金属污染的主要来源,造成近郊农田土壤大面积污染。

污水中Cr有4种形态,一般以3价和6价为主,3价Cr很快被土壤吸附固定,而6价Cr进入土壤中被有机质还原为3价Cr,随之被吸附固定。

因此,污灌区土壤Cr也会逐年累积。

1.1.3随固体废弃物扩散及污泥使用重金属进入农田土壤固体废弃物种类繁多,成分复杂,不同种类其危害方式和污染程度不同。

其中矿业和工业固体废弃物污染最为严重。

这类废弃物在堆放或处理过程中,由于日晒、雨淋、水洗,重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。

磷石膏属于化肥工业废物,由于其有一定量的正磷酸以及不同形态的含磷化合物,并可以改良酸性土壤,从而被大量施人土壤,造成了土壤中Cr、Pb、Mn、As含量增加。

磷钢渣作为磷源施入土壤时,土壤中发现有Cr的累积。

1.2农业投入品的不合理使用造成农田土壤重金属污染1.2.1化肥的污染化肥的利用率只有35%左右,其余则被土壤吸收,大部分随雨水、灌溉进入水域,造成环境污染。

肥料中Pb、Cr和As的含量都较高,施入土壤后会发生一定程度的累积。

1.2.1农药的污染资料统计,在农药使用中,只有20%~30%的农药附着在植物上,50%以上降落到土壤上,约有20%左右漂浮于空气中,绝大多数的农药为有机化合物,少数为有机—无机化合物或纯矿物质。

农药的使用常常会造成土壤中的重金属积累到有毒的浓度。

2、土壤中铬的存在形态铬在土壤中主要以不溶性的,不能被作物所利用的氧化物形态存在。

在正常土壤中,铬以四种形态存在:两种三价的形态即Cr3+阳离子和CrO2-阴离子;两种六价的阴离子形态即Cr2072-和CrO42-。

六价铬在土壤中是可溶性的,易被植物吸收,毒性大;三价铬是难溶性的,难以被植物吸收,毒性小。

3、铬对人体的作用及危害铬是人体必需的微量元素。

三价的铬是对人体有益的元素,而六价铬是有毒的。

人体对无机铬的吸收利用率极低,不到1%;人体对有机铬的利用率可达10~25%。

确切地说,铬的生理功能是与其它控制代的物质一起配合起作用,如激素、胰岛素、各种酶类、细胞的基因物质(DNA和RNA)等。

当缺乏铬时,就很容易表现出糖代失调,如不及时补充这种元素,就会患糖尿病,诱发冠状动脉硬化导致心血管病,严重的会导致白障、失明、尿毒症等并发症。

三价铬对人体几乎不产生有害作用,未见引起工业中毒的报道。

进入人体的铬被积存在人体组织中,代和被清除的速度缓慢。

铬进入血液后,主要与血浆中的球蛋白、白蛋白、r-球蛋白结合。

六价铬还可透过红细胞膜,15分钟可以有50%的六价铬进入细胞,进入红细胞后与血红蛋白结合。

铬的代物主要从肾排出,少量经粪便排出。

六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体主要积聚在肝、肾和分泌腺中。

通过呼吸道进入的则易积存在肺部。

六价铬有强氧化作用,所以慢性中毒往往以局部损害开始逐渐发展到不可救药。

经呼吸道侵入人体时,开始侵害上呼吸道,引起鼻炎、咽炎和喉炎、支气管炎。

美国纽约大学研究员贝兰博士对大量青少年近视病例进行研究之后指出,体缺乏微量元素铬与近视的形成有一定的关系。

二、土壤中总铬的测定原理采用硝酸-氢氟酸-高氯酸全分解的方法,破坏土壤的矿物晶格,使试样中的待测元素全部进入试液,并且,在消解过程中,所有的Cr都被氧化为Cr2O72-。

然后,将消解液喷入富燃性空气-乙炔火焰中,在火焰的高温下,形成Cr基态原子,并对Cr空心阴极灯发射的特征谱线357.9 nm 产生选择性吸收。

在选择的最佳测定条件,测定Cr的吸光度。

三、监测方案设计1、现场取样方案1.1布点由于本组选定的实验地接近长方形,故采用蛇形取样法,取5个采样点。

1.2采样采用管型土钻,取0-20cm的表层土。

1.3保存、运输将采集的土样收集在干净的塑料袋中,贴上标签,拿回实验室进行实验过程。

2、实验室测定方案2.1实验用品2.1.1试剂HNO3[ρ(HNO3)=1.42g/mL]HF[ρ(HF)=1.49g/mL]HClO4[ρ(HClO4)≈1.60g/mL]NH4Cl[ω(NH4Cl) ≈10%]Cr 标准溶液:1.000 mg/mL2.1.2仪器原子吸收分光光度计、铬空心阴极灯、乙炔钢瓶、空气压缩机(应备有除水、除油和除尘装置)。

2.2实验过程2.2.1土样预处理①将土样中的杂质用镊子拣出,并放在阴凉通风处,自然晾干一星期。

②用研钵研磨,并过100目筛,全部研磨过筛后转移至磨口烧瓶中,待测。

2.2.2实验操作过程2.2.2.1样品预处理①称取0.2000 g ~ 0.3000 g 过100 目的土壤样品于50 mL聚四氟乙烯坩埚中。

②用2 ~ 3 滴水润湿,一次性加入10 mL浓HNO3,为了减少HNO3的挥发,加盖,静置过夜(有机物质含量较多时)。

③于通风橱的电热板上低温加热分解,温度控制在80℃左右,若产生棕黄色烟,说明有机质较多,要反复补加适量HNO3,加热分解至液面平静并不再产生棕黄色烟为止。

④坩埚溶液至2 ml ~ 3 mL时,取下坩埚,稍冷,加入5 mL的HF,加热至微沸10 min。

⑤取下,稍冷,然后分两次加入HClO4 2 mL(每次加入1 mL,两次时间间隔为10 ~ 15 min),开始升温并保持在150℃~ 200℃,加盖中温加热1 h 左右,开盖除硅,蒸发至容物呈粘稠状。

⑥视消解情况可再加1 mL的HClO4,再次蒸发至粘稠状,残渣为灰白色,冷却,加入3 mL HNO3(1:1)溶液,温热溶解可溶性残渣。

⑦全量转移至50 mL容量瓶中,加入5 mL 10% NH4Cl 溶液,冷却后定容至标线,待测。

同时做3组平行样并用去离子水代替土样做空白试验。

2.2.2.2工作曲线的配制储备液的配制:吸取5mL Cr 标准溶液于100mL容量瓶中,用去离子水定容,摇匀,待用。

分别吸取0.00、0.50、1.00、2.00、3.00、4.00 mL 上述储备液于50mL 容量瓶中,再加入5mL NH4Cl 溶液和3mL HNO3 1:1溶液,用去离子水定容并摇匀得工作液。

2.2.2.3测量调节仪器主要参数,在最佳测量条件下测定试样和标准系列的吸光度,并以工作液浓度为纵坐标,吸光度为横坐标绘制标准曲线。

仪器测量条件如下表所示:元素 Cr火焰性质还原性 次灵敏线(nm )359.0;360.5;425.4 ①取小型铝盒在105℃恒温箱中烘烤约2h ,移入干燥器冷却至室温,称重,记为m 1。

②舀取约5g 土样均匀地平铺在铝盒中,盖好,称重,记为m 2。

③将铝盒盖揭开,放在盒底下,置于已预热至105±2。

C 的烘箱中烘烤6h 。

④取出,盖好,移入干燥器冷却至室温,立即称重,记为m 3。

平行做三份,取平均值。

四、监测数据分析2331m m f m m -=-土样含水量()()1c vmg kg m f ⨯=⨯-土样中铬的含量wc —试液的吸光度减去空白溶液的吸光度,然后在校准曲线上查得铬的质量浓度,mg/L ; v —试液定容的体积,mL ;m —称取试样的重量,g ;f —试样中水分的含量,%。

五、参考文献[1]仁林,玉钢,战. 土壤中的铬与植物生长[J]. 农业环境科学学报,1982,03:15-19.[2]王小琳,栾桂云,管泽民,袁天佑. 土壤中总铬测定方法的比较研究[J].土壤,2010,03:497-501.[3]GB/T 17137-1997, 土壤质量 总铬的测定 火焰原子吸收分光光度法[S].[4]鲍士旦,《土壤农化分析》,:中国农业,第三版.[5]田丽梅,贾兰英,建华,胡连艳,马金柱. 天津市土壤重金属污染现状与综合治理对策[J]. 天津农林科技,2006,04:32-34.。

相关文档
最新文档