正弦交流电的基本概念
合集下载
第五章正弦交流电

0 ωt i d(UmSinω t) u=C dt =ω CUmcosω t (a) (b) =ω CUmSin(ω t+90°)=ImSin(ω t+90°) · I 由上式得: (1)i与u是同频率的正弦量。 (2)i超前u相位角。 · U (c) (3)u与i的有效值(或最大值)之比称为容抗。 XC=U/I=Um/Im=1/ω C=1/2∏fC 若电压U和C电容确定时,当f较高时,容抗XC较少,电容中通过的电流较 大,说明电容对高频电流的阻碍作用较小;当f较低时,容抗XC较大,电 容中通过的电流较小,说明电容对低频电流的阻碍作用较大;当f=0,即直 流XC=∞,电容可视为开路. (4)电压u与电流i的波形如图(b) (5)电压与电流相量之比称为复容抗,即
+j
• (2)相量图求。
8v
· U1 10v · U
00
ψ =23° ψ =-30°
6v · U2
+1
第三节电阻元件的正弦交流电路
• 一、电阻的伏安特性: • u=Ri • 设电流i=ImSinω t, 代人得 • u=Ri=RImSinω t=UmSinω t • 则可得,u与i的伏安特性如下: (1)u是与i同频同相的正弦电压。 • (2)u与i的幅值或有效值间是线性关 • 系其比值是线性电阻R,即 • Um/Im=U/I=R • (3)u与i的波形如图(b) 。 • (4)u与i伏安关系的相量形式为: · • I=Iej0°=I∠0°=I, ˙ U=Uej0°=U∠O°=U · U U ej0° U • ·= = = R
第四节电感元件的正弦交流电路
• 一、电感的伏安特性: di • u=-e=L dt • 设电流为参考正弦量代人得
• • • • • • • •
第六讲 正弦交流电的基本概念及

I= √2
Im
U= √2
Um
E=
返回
Em
√2
下一节 上一页 下一页
Байду номын сангаас
2.1.(1) 分析计算正弦交流电时是否也与直流电一样 是从研究它们的大小和方向着手? 【答】不是,应从研究它们的频率、大小和相位着手。
返回
上一页
下一页
例2-2 已知某电网供电频率f为50Hz,试求角频率及周期T。 解:角频率为 =2f=2×50=100 =314rad/s
【答】(a)式中 ( a ) i
10 30
10 sin( t 30 ) A 是瞬时表达式,
是相量表达式,二者不等;(b)式中I为有效值, 5 45 A U 20 60 V 是相量,二者不等;(c)式中 是相量表达式, 是瞬时值表达式,二者不等。 )V 20 2 sin( t 60
2.2 正弦量的相量表示法
一、相量法
正弦交流电动势 e E m sin( t ) 的相量式为:
E E (cos j sin ) E
说明: (1)相量是表示正弦量的一种方式,相量不是时间 函数。
(2)相量是正弦量的复数表示形式,但不是正弦量。
(3)相量的加减只能是同频率正弦量的相加或相减
相位差: 同频率的正弦电量的初相位之差。
i = 100 sin(314 t +30O)A u = 311sin(314 t-60O)V
= u - i = -60O -30O = -90O
返回 下一节 上一页 下一页
交流电相位差分析
e1 = Em1sin( ωt + 1 ) e2= Em2sin( ωt + 2)
正弦交流电

返回
上一页 下一页
(2) 平均功率(有功功率)P
i
瞬时功率在一个周期内的平均值
+
u
1T
1T
P T 0 p dt T 0 u i dt
大写 1 T 1
p
_ p
R
T
0 2 UmIm(1 cos 2ω t)dt
P
1T
UI(1 cos2ω t)dt UI
T0
O
ωt
P U I I 2R U 2 单位:瓦(W)
返 回 上一页 下一页
(3)相量的两种表示形式
相量式: U Uejψ U ψ U( cos ψ jsin ψ)
相量图: 把相量表示在复平面的图形
可不画坐标轴
I
U
(4)只有同频率的正弦量才能画在同一相量图中。
(5)相量的书写方式 • 模用最大值表示 ,则用符号:
U m 、Im
• 实际应用中,模多采用有效值,符号: U 、I
i 10 sin ( ω t 60)?A
最大值
4 2 sin (ω t 30 )A?
瞬时值
4.已知:
U 100 15V
U 100V ?负号 ? U 100 ej15 V
返回
上一页 下一页
2.3 电阻元件、电感元件与电容元件
2.3.1 电阻元件
1 电压与电流的关系
u Ri
2 电阻元件的参数
i 2π
O
ωt
T
周期 T:变化一周所需要的时间(s)
频率 f :1s 内变化的周数(Hz)
f
=
1 T
角频率ω: 正弦量 1s 内变化的弧度数
ω = 2πf
=
2π T
正弦交流电的基本概念

例4.2 已知 u 220 2 sin(t 235 ) V
i 10 2 sin(t 45) A
求u和i的初相及两者间的相位关系
解
u 220 2 sin(t 235 ) 220 2 sin(t 125 ) V
所以电压u的初相角为 125 电流i的初相角为45
ui
u
i
125 45
。
电视载波频率为30MHz~300 MHz。
正弦交流电的基本概念
3. 初相
①θ称为正弦电流的初相。它是正弦量在t=0时的相位,即
θ = (ωt + θ) t=0
②初相的正负与大小与计时起点的选择有关。通常在 的主值 范围内取值。如果离坐标原点最近的正弦量的最大值出现在时间起点之前, 则式中的 θ>0;如果离坐标原点最近的正弦量的最大值出现在时间 起点之后,则式中的θ<0。
170 0
表明电压u滞后于电流i170
注意:初相的取值范围为
正弦交流电的基本概念
例4.3 分别写出图4.6中各电流i1
i1 i2 的相位关系。
i
i1
i2
i2 的相位差,并说明
i i1
3
2
2
2
0
t
i2
0
2
3
2 t
2
(a)
(b)
i
i1
i2
ii1i2来自 2 t22(c)
3 2
t
2
2
3 4
(d)
2. 角频率
①正弦量的相位 随时间变化的角度 (t+ ) 称为正弦量的相位。
②角频率 角频率 d (t ) ,即 是相位随时间的变化率。
dt
反映了正弦量变化的快慢程度,其单位为弧度/秒(rad/s)。
正弦交流电的基本概念、相量表示法

在复平面中,以实轴为电阻轴,虚轴为感抗和容抗之和,将阻抗的相量标在图上,形成阻抗相量 图。
04
交流电路的分析
交流电路的元件
01
02
03
电阻元件
在交流电路中,电阻元件 的阻抗不随时间变化,其 值由电阻的物理性质决定。
电感元件
在交流电路中,电感元件 的感抗随频率变化,其值 由电感的物理性质决定。
电容元件
幅角
相量与实轴正方向的夹角,表示正弦交流电的 相位。
相量运算
加标法题
将•两个文同字频内率容的相量 • 文字内容
按•平行文四字边内形容法则进 • 文行字合内成容。
减法
将一个相量减去另一 个相量,等于将一个 相量的起点平移到另 一个相量的终点后再
进行加法运算。
数乘
一个标量与一个相量 的乘积,表示该标量 乘以相量的模长和幅
表示发电机或变压器的输出功率与输入功 率的比值,反映了设备本身的损耗。
THANKS
角。
比例关系
对于两个同频率的相 量,其比值等于相应 正弦量的比值,即电 压与电流的比值为电 阻,电压与感抗的比 值为电感,电流与容 抗的比值为电容。
03
正弦交流电的相量表示
电压的相量表示
电压的相量表示法
将正弦交流电压的幅度和初相角用复数表示,即$U = U_{m}angletheta$。其 中,$U_{m}$表示电压的幅度,$theta$表示电压的初相角。
电压相量图
在复平面中,以实轴为幅度轴,虚轴为相位轴,将电压的相量标在图上,形成 电压相量图。
电流的相量表示
电流的相量表示法
将正弦交流电流的幅度和初相角用复 数表示,即$I = I_{m}angletheta$。 其中,$I_{m}$表示电流的幅度, $theta$表示电流的初相角。
04
交流电路的分析
交流电路的元件
01
02
03
电阻元件
在交流电路中,电阻元件 的阻抗不随时间变化,其 值由电阻的物理性质决定。
电感元件
在交流电路中,电感元件 的感抗随频率变化,其值 由电感的物理性质决定。
电容元件
幅角
相量与实轴正方向的夹角,表示正弦交流电的 相位。
相量运算
加标法题
将•两个文同字频内率容的相量 • 文字内容
按•平行文四字边内形容法则进 • 文行字合内成容。
减法
将一个相量减去另一 个相量,等于将一个 相量的起点平移到另 一个相量的终点后再
进行加法运算。
数乘
一个标量与一个相量 的乘积,表示该标量 乘以相量的模长和幅
表示发电机或变压器的输出功率与输入功 率的比值,反映了设备本身的损耗。
THANKS
角。
比例关系
对于两个同频率的相 量,其比值等于相应 正弦量的比值,即电 压与电流的比值为电 阻,电压与感抗的比 值为电感,电流与容 抗的比值为电容。
03
正弦交流电的相量表示
电压的相量表示
电压的相量表示法
将正弦交流电压的幅度和初相角用复数表示,即$U = U_{m}angletheta$。其 中,$U_{m}$表示电压的幅度,$theta$表示电压的初相角。
电压相量图
在复平面中,以实轴为幅度轴,虚轴为相位轴,将电压的相量标在图上,形成 电压相量图。
电流的相量表示
电流的相量表示法
将正弦交流电流的幅度和初相角用复 数表示,即$I = I_{m}angletheta$。 其中,$I_{m}$表示电流的幅度, $theta$表示电流的初相角。
正弦交流电的基本概念

正弦交流电的基本概念
正弦交流电是一种周期性变化的电信号,其波形呈现出正弦曲线。
以下是正弦交流电的几个基本概念:
1. 周期(Period):正弦交流电的周期是指一个完整波形所经过的时间,在物理上通常用秒(s)表示。
周期记作 T。
2. 频率(Frequency):频率是指单位时间内正弦交流电波形重复的次数,用赫兹(Hz)表示。
频率与周期的倒数成反比关系,即频率 f = 1 / T。
3. 幅值 (Amplitude):正弦交流电的幅值是指波形的最大偏移量或振幅,用伏特 (V)表示。
幅值决定了波形的峰值大小。
4. 相位(Phase):正弦交流电的相位表示波形在一个周期内的位置。
相位可以用角度(°)或弧度(rad)来度量,并相对于参考点进行测量。
5. 波形表示:正弦交流电的波形通常用函数表达式或图形表示。
函数表达式可以写为 V(t) = Vm * sin(ωt + φ),其中 V(t) 是时刻 t 的电压值,Vm 是幅值,ω 是角频率,t 是时间,φ 是相位差。
6. 相位差 (Phase Difference):如果存在不同频率或相位的两个正弦交流电信号,它们之间的相位差表示波形的时间偏移量。
相位差可以用角度或时间表示,常常用来描述电路中的相位关系和信号延迟。
正弦交流电是电力系统中最常见的电信号类型,广泛应用于各种电子设备、电路和电力传输。
掌握这些基本概念有助于理解和分析交流电路行为,并在实际应用中进行电气工程设计和故障排除。
第3章 正弦交流电路

3.3.1 单一参数的正弦交流电路
1.纯电阻电路 (1) 电压与电流的关系
+
u iR
u
i I m sin t
_
u iR I m R sin t U m sin t
i R
对于正弦交流电路中的电阻电路(又称纯电阻 电路),一般结论为:
1)电压、电流均为同频率的正弦量。
2)电压与电流初相位相同,即两者同相。
y
i
ω
Im
i1
ωt1 φ
Im
i0
90
o
x
o
ωt1
ωt
φ
t t1 i1 I m sin(t 1)
对于一个正弦量可以找到一个与其对应的旋转矢量,反之, 一个旋转矢量也都有一个对应的正弦量。
3.2.2 复数及复数的运算 1、复数
A a jb
A r cos r sin
e j cos j sin
作相量图时要注意: 只有同频率的正弦量才 能画在一个相量图上,不 同频率的正弦量不能画在 一个相量图上。
+j
U
Φu
o
Φi
+1
I
3.3正弦交流电路的简单分析与运算
电阻元件、电感元件与电容元件都是组成 电路模型的理想元件。
所谓理想元件,就是突出元件的主要电磁 性质,而忽略其次要因素。如电阻元件具 有消耗电能的性质(电阻性),其它的电 磁性质如电感性、电容性等忽略不计。。
f = 1/T T = 1/f
i
角频率是指交流电在1s内变化的电 Im
角度。正弦量每经过一个周期T,
o
对应的角度变化了2π弧度,所以
φ
ωt
T
2f 2
正弦交流电的基本概念

在一个正弦交流电路中,电压u和电流i的频率是相同的,但其初相位不 一定相同,设其表达式分别为:
u Um sin(t u) i Im sin(t i)
两个同频率正弦量的相位之差或初相位之差称为相位差,用 表示,即
(t u)(t i) u i
正
弦
交
流
电
的 基 本 概
相 位 和 初
念相
位
1.3
第7页
正
弦
交瞬
流时
电值
的 基 本 概
、 幅 值 和 有
念效
值
1.2
正弦量在任一瞬间的值称为瞬时值,用小写字母表示。瞬时值中的最 大值称为幅值或最大值,它是正弦量在整个振荡过程中达到的最大值,用 大写字母加下标m表示。
为了反映交流电在能量转换方面的实际效果,工程上常采用有效值来 表示正弦量的大小。有效值是根据电流的热效应来规定的,一个交流电流 i和一个直流电流I分别通过相同的电阻R,如果在相同的时间T内,它们产 生的热量相等,那么这个交流电流i 的有效值就等于这个直流电流I的大小。 有效值都用大写字母表示,根据上述定义,有:
若两正弦量的相位差 =π/2,则称两者正交,如下(左)图所示。 若两正弦量的相位差 =π,则称两者反相,如(右)图所示。
电 工 电 子 技 术
U
Um 2
E
Em
2
正
弦
交
流
电
的 基 本 概
相 位 和 初
念相
位
1.3
第9页
ωt+φi称为相位角或相位,它反映了正弦量的变化进程。t=0时的相位 称为初相位角或初相位。初相位与计时起点的选择有关,计时起点不同,初 相位就不同,正弦量的初始状态也就不同。计时起点可以根据需要任意选择, 通常规定初相位在其主值范围内取值,即 |φi|≤π
u Um sin(t u) i Im sin(t i)
两个同频率正弦量的相位之差或初相位之差称为相位差,用 表示,即
(t u)(t i) u i
正
弦
交
流
电
的 基 本 概
相 位 和 初
念相
位
1.3
第7页
正
弦
交瞬
流时
电值
的 基 本 概
、 幅 值 和 有
念效
值
1.2
正弦量在任一瞬间的值称为瞬时值,用小写字母表示。瞬时值中的最 大值称为幅值或最大值,它是正弦量在整个振荡过程中达到的最大值,用 大写字母加下标m表示。
为了反映交流电在能量转换方面的实际效果,工程上常采用有效值来 表示正弦量的大小。有效值是根据电流的热效应来规定的,一个交流电流 i和一个直流电流I分别通过相同的电阻R,如果在相同的时间T内,它们产 生的热量相等,那么这个交流电流i 的有效值就等于这个直流电流I的大小。 有效值都用大写字母表示,根据上述定义,有:
若两正弦量的相位差 =π/2,则称两者正交,如下(左)图所示。 若两正弦量的相位差 =π,则称两者反相,如(右)图所示。
电 工 电 子 技 术
U
Um 2
E
Em
2
正
弦
交
流
电
的 基 本 概
相 位 和 初
念相
位
1.3
第9页
ωt+φi称为相位角或相位,它反映了正弦量的变化进程。t=0时的相位 称为初相位角或初相位。初相位与计时起点的选择有关,计时起点不同,初 相位就不同,正弦量的初始状态也就不同。计时起点可以根据需要任意选择, 通常规定初相位在其主值范围内取值,即 |φi|≤π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U Um 2 0.707 Um
正弦交流电动势的有效值为
E Em 2 0.707E m
2.周期、频率、角频率
(1)周期
正弦交流电完成一次循环变化所用的时间叫做周期, 用字母 T 表示,单位为秒:s 。显然正弦交流电流或电压相 邻的两个最大值 ( 或相邻的两个最小值 ) 之间的时间间隔即 为周期,由三角函数知识可知
正弦交流电的基本概念
一、交流电的产生
如果电流的大小及方向都随时间做周期性变化,并且 在一个周期内的平均值为零的电流称为交流电。
二、正弦交流电
大小及方向均随时间按正弦规律做周期性变化的电流、 电压、电动势叫做正弦交流电流、电压、电动势,在某一 时刻 t 的瞬时值可用三角函数式(解析式)来表示,即
i ( t ) = Imsin( t i 0) u ( t ) = Umsin( t u0) e ( t ) = Emsin( t e0)
一、解析式表示法 二、波形图表示法 三、相量图表示法
一、解析式表示法
i(t) = Imsin( t i0) u(t) = Umsin( t u0) e(t) = Emsin( t e0) 例如已知某正弦交流电流的最大值是 2 A,频率为 100 Hz, 设初相位为 60 ,则该电流的瞬时表达式为 i(t) = Imsin( t i0) = 2sin(2f t 60) = 2sin(628t 60)A
3.相位、初相位、相位差 任意一个正弦量 y = Asin( t 0 )的相位为( t 0 ), 本章只涉及两个同频率正弦量的相位差 (与时间 t 无关)。设 第一个正弦量的初相为 01 ,第二个正弦量的初相为 02 , 则这两个正弦量的相位差为 12 = 01周期的倒数叫做频率(用符号 f 表示),即 f 1
T
它表示正弦交流电流在单位时间内作周期性循环变化的
次数,即表征交流电交替变化的速率 ( 快慢 ) 。频率的国际单 位制是:赫兹(Hz) 。角频率与频率之间的关系为
= 2 f
例如正弦交流电流 i = 2sin( t-30) A 的有效值 I = 2×0.707 = 1.414 A,如果通过 R = 10 的电阻时,在 一秒时间内电阻消耗的电能(又叫做平均功率)为 P = I2R = 20 W,即与 I = 1.414 A 的直流电流通过该电阻 时产生相同的电功率。 我国工业和民用交流电源的有效值为 220 V、频率为 50 Hz,因而通常将这一交流电压简称为工频电压。 因为正弦交流电的有效值与最大值 (振幅值)之间有确 定的比例系数,所以有效值、频率、初相这三个参数也可 以合在一起叫做正弦交流电的三要素。
图 7-1 相位差的同相与反相波形
例如已知 u = 311sin(314t 30) V,i = 5sin(314t 60) A, 则 u 与 I 的相位差为 ui = (30) ( 60) = 90,即 u 比 I 滞后 90,或 I 比 u 超前90。
交流电的表示法
作业:书P82计算题1、2、3
i ( t ) = Imsin( t i0) u ( t ) = Umsin( t u0) e ( t ) = Emsin( t e0) 式中,Im、Um、Em 分别叫做交流电流、电压、电动势的振幅 (也叫做峰值或最大值 ),电流的单位为安培 (A),电压和电动 势的单位为伏特(V); 叫做交流电的角频率,单位为弧度/秒 (rad/s),它表征正弦交流电流每秒内变化的电角度; i0、 u0、 e0 分别叫做电流、电压、电动势的初相位或初相,单位为弧 度 rad 或度( ),它表示初始时刻(t = 0 时)正弦交流电所处 的电角度。 振幅、角频率、初相这三个参数叫做正弦交流电的三要素。 任何正弦量都具备三要素。
2.有效值相量表示法
有效值相量表示法是用正弦量的有效值做为相量的模(长 度大小)、仍用初相角做为相量的幅角,例如
u 220 2 sin( t 53) V,i 0.41 2 sin t A
则它们的有效值相量图如图 7-4 所示。
图 7-4 正弦量的有效值相量图举例
小结:
1.正弦交流电的三要素; 2.正弦交流电的表示方法。
并规定
|12| ≤ 180
或
|12| ≤
在讨论两个正弦量的相位关系时: (1)当 12 > 0 时,称第一个正弦量比第二个正弦量越 前(或超前) 12 ; (2)当 12 < 0 时,称第一个正弦量比第二个正弦量滞 后(或落后) | 12 | ; (3)当 12 = 0 时,称第一个正弦量与第二个正弦量同 相如图 7-1(a); (4)当 12 = 或 180 时,称第一个正弦量与第二 个正弦量反相如图 7-1 (b); (5)当 12 = 或 90 时,称第一个正弦量与第二 2 个正弦量正交。
二、波形图表示法
图 7-2 正弦交流电的波形图举例
三、相量图表示法
正弦量可以用最大值相量或有效值相量表示,但通常用 有效值相量表示。
1.振幅相量表示法
最大值相量表示法是用正 弦量的最大值做为相量的模 ( 大 小 ) 、用初相角做为相量的幅角, 例如有三个正弦量为 e = 60 sin( t+60 °) V u = 30 sin( t+30 °) V i = 5 sin( t-30°) A 图 7-3 正弦量的振幅相量图举例 则它们的最大值相量图如图 7-3 所示。
1.(最大值)有效值
表征正弦交流电变化过程中所能达到的最大幅值。 标注:Im(Um)——最大值 在电工技术中,有时并不需要知道交流电的瞬时值,而 规定一个能够表征其大小的特定值——有效值 设正弦交流电流 i( t ) 在一个周期 T 时间内,使一电 阻R 消耗的电能为 QR ,另有一相应的直流电流 I 在时间 T 内也使该电阻 R 消耗相同的电能,即 QR = I2RT 。
就平均对电阻作功的能力来说,这两个电流(i 与 I)是等效 的,则该直流电流 I 的数值可以表示交流电流 i(t) 的大小,于 是把这一特定的数值 I 称为交流电流的有效值。理论与实验均 可证明,正弦交流电流 i 的有效值 I 等于其振幅(最大值)Im 的 0.707 倍,即 Im I = 0.707 I m 2 正弦交流电压的有效值为
正弦交流电动势的有效值为
E Em 2 0.707E m
2.周期、频率、角频率
(1)周期
正弦交流电完成一次循环变化所用的时间叫做周期, 用字母 T 表示,单位为秒:s 。显然正弦交流电流或电压相 邻的两个最大值 ( 或相邻的两个最小值 ) 之间的时间间隔即 为周期,由三角函数知识可知
正弦交流电的基本概念
一、交流电的产生
如果电流的大小及方向都随时间做周期性变化,并且 在一个周期内的平均值为零的电流称为交流电。
二、正弦交流电
大小及方向均随时间按正弦规律做周期性变化的电流、 电压、电动势叫做正弦交流电流、电压、电动势,在某一 时刻 t 的瞬时值可用三角函数式(解析式)来表示,即
i ( t ) = Imsin( t i 0) u ( t ) = Umsin( t u0) e ( t ) = Emsin( t e0)
一、解析式表示法 二、波形图表示法 三、相量图表示法
一、解析式表示法
i(t) = Imsin( t i0) u(t) = Umsin( t u0) e(t) = Emsin( t e0) 例如已知某正弦交流电流的最大值是 2 A,频率为 100 Hz, 设初相位为 60 ,则该电流的瞬时表达式为 i(t) = Imsin( t i0) = 2sin(2f t 60) = 2sin(628t 60)A
3.相位、初相位、相位差 任意一个正弦量 y = Asin( t 0 )的相位为( t 0 ), 本章只涉及两个同频率正弦量的相位差 (与时间 t 无关)。设 第一个正弦量的初相为 01 ,第二个正弦量的初相为 02 , 则这两个正弦量的相位差为 12 = 01周期的倒数叫做频率(用符号 f 表示),即 f 1
T
它表示正弦交流电流在单位时间内作周期性循环变化的
次数,即表征交流电交替变化的速率 ( 快慢 ) 。频率的国际单 位制是:赫兹(Hz) 。角频率与频率之间的关系为
= 2 f
例如正弦交流电流 i = 2sin( t-30) A 的有效值 I = 2×0.707 = 1.414 A,如果通过 R = 10 的电阻时,在 一秒时间内电阻消耗的电能(又叫做平均功率)为 P = I2R = 20 W,即与 I = 1.414 A 的直流电流通过该电阻 时产生相同的电功率。 我国工业和民用交流电源的有效值为 220 V、频率为 50 Hz,因而通常将这一交流电压简称为工频电压。 因为正弦交流电的有效值与最大值 (振幅值)之间有确 定的比例系数,所以有效值、频率、初相这三个参数也可 以合在一起叫做正弦交流电的三要素。
图 7-1 相位差的同相与反相波形
例如已知 u = 311sin(314t 30) V,i = 5sin(314t 60) A, 则 u 与 I 的相位差为 ui = (30) ( 60) = 90,即 u 比 I 滞后 90,或 I 比 u 超前90。
交流电的表示法
作业:书P82计算题1、2、3
i ( t ) = Imsin( t i0) u ( t ) = Umsin( t u0) e ( t ) = Emsin( t e0) 式中,Im、Um、Em 分别叫做交流电流、电压、电动势的振幅 (也叫做峰值或最大值 ),电流的单位为安培 (A),电压和电动 势的单位为伏特(V); 叫做交流电的角频率,单位为弧度/秒 (rad/s),它表征正弦交流电流每秒内变化的电角度; i0、 u0、 e0 分别叫做电流、电压、电动势的初相位或初相,单位为弧 度 rad 或度( ),它表示初始时刻(t = 0 时)正弦交流电所处 的电角度。 振幅、角频率、初相这三个参数叫做正弦交流电的三要素。 任何正弦量都具备三要素。
2.有效值相量表示法
有效值相量表示法是用正弦量的有效值做为相量的模(长 度大小)、仍用初相角做为相量的幅角,例如
u 220 2 sin( t 53) V,i 0.41 2 sin t A
则它们的有效值相量图如图 7-4 所示。
图 7-4 正弦量的有效值相量图举例
小结:
1.正弦交流电的三要素; 2.正弦交流电的表示方法。
并规定
|12| ≤ 180
或
|12| ≤
在讨论两个正弦量的相位关系时: (1)当 12 > 0 时,称第一个正弦量比第二个正弦量越 前(或超前) 12 ; (2)当 12 < 0 时,称第一个正弦量比第二个正弦量滞 后(或落后) | 12 | ; (3)当 12 = 0 时,称第一个正弦量与第二个正弦量同 相如图 7-1(a); (4)当 12 = 或 180 时,称第一个正弦量与第二 个正弦量反相如图 7-1 (b); (5)当 12 = 或 90 时,称第一个正弦量与第二 2 个正弦量正交。
二、波形图表示法
图 7-2 正弦交流电的波形图举例
三、相量图表示法
正弦量可以用最大值相量或有效值相量表示,但通常用 有效值相量表示。
1.振幅相量表示法
最大值相量表示法是用正 弦量的最大值做为相量的模 ( 大 小 ) 、用初相角做为相量的幅角, 例如有三个正弦量为 e = 60 sin( t+60 °) V u = 30 sin( t+30 °) V i = 5 sin( t-30°) A 图 7-3 正弦量的振幅相量图举例 则它们的最大值相量图如图 7-3 所示。
1.(最大值)有效值
表征正弦交流电变化过程中所能达到的最大幅值。 标注:Im(Um)——最大值 在电工技术中,有时并不需要知道交流电的瞬时值,而 规定一个能够表征其大小的特定值——有效值 设正弦交流电流 i( t ) 在一个周期 T 时间内,使一电 阻R 消耗的电能为 QR ,另有一相应的直流电流 I 在时间 T 内也使该电阻 R 消耗相同的电能,即 QR = I2RT 。
就平均对电阻作功的能力来说,这两个电流(i 与 I)是等效 的,则该直流电流 I 的数值可以表示交流电流 i(t) 的大小,于 是把这一特定的数值 I 称为交流电流的有效值。理论与实验均 可证明,正弦交流电流 i 的有效值 I 等于其振幅(最大值)Im 的 0.707 倍,即 Im I = 0.707 I m 2 正弦交流电压的有效值为