Verilog HDL 综合实用教程
Verilog HDL数字设计实训教程第1章 Verilog HDL数字设计实训基础

图1-2 按键电路连接图和管脚对应图
1.1 实训平台
4个LED灯:
图1-3 LED电路连接图和管脚对应图
1.1 实训平台
2个数码管:
图1-4 数码管电路连接图和管脚对应图
1块液晶:
1.1 实训平台
图1-5 液晶电路连接图和管脚对应图
1个UART:
1.1 实训平台
图1-6 UART电路连接图和管脚对应图
if(p==N-1) begin p=0; clk_p=~clk_p; end else p=p+1; end always @(negedge clk) begin
if(q==N-1) q=0; else q=q+1;
if(p==(N-1)/2) clk_q=~clk_q; end assign clk_N=clk_p^clk_q; endmodule
图1-39 设置USB硬件端口
QuartusII设计流程
5.引脚锁定和硬件验证
图1-40 下载界面
QuartusII设计流程
5.引脚锁定和硬件验证
图1-41 选择下载文件
QuartusII设计流程
5.引脚锁定和硬件验证
图1-42 led灯闪烁的效果
1.3 分频器设计
分频器电路是非常有用的一种电路, 分频的方法很多,最常见的是利用加 法计数器对时钟信号进行分频。
begin if(p==N/2-1) begin p=0; clk_N=~clk_N; end else p=p+1;
end endmodule
图1-44 任意偶数分频仿真波形
1.3 分频器设计
【例1-5】 可设置参数的任意整数分频器:占空比可变。 module divf_parameter(rst,clk,en,clkout); input rst,clk,en; output clkout; integer temp; //最大值为2的32次方 parameter N=7,M=3; //N为分频系数,M/N为占空比 always @(posedge clk)
Verilog_HDL教程

习题
1. Verilog HDL 是在哪一年首次被 IEEE 标准化的? 2. Verilog HDL 支持哪三种基本描述方式? 3. 可以使用 Verilog HDL 描述一个设计的时序吗? 4. 语言中的什么特性能够用于描述参数化设计? 5. 能够使用 Verilog HDL 编写测试验证程序吗? 6. Verilog HDL 是由哪个公司最先开发的? 7. Verilog HDL 中的两类主要数据类型什么? 8. UDP 代表什么? 9. 写出两个开关级基本门的名称。 10. 写出两个基本逻辑门的名称。
2.3 数据流描述方式
用数据流描述方式对一个设计建模的最基本的机制就是使用连续赋值语句。在连续赋 值语句中,某个值指派给线网变量。 连续赋值语句的语法为:
assign [delay] LHS_net = RHS_ expression;
右边表达式使用的操作数无论何时发生变化, 右边表达式都重新计算, 并且在指定的时延后 变化值被赋予左边表达式的线网变量。时延定义了右边表达式操作数变化与赋值给左边表 达式之间的持续时间。如果没有定义时延值, 缺省时延为 0。 下面的例子显示了使用数据流描述方式对 2-4 解码器电路的建模的实例模型。
module HalfAdder (A, B, Sum, Carry); input A, B; output Sum, Carry;
使用Verilog HDL进行数字逻辑设计、综合、仿真的步骤及工具软件使用简要说明

使用Verilog HDL进行数字逻辑设计、综合、仿真的步骤及工具软件使用简要说明综合工具使用synplify pro 7.0仿真工具使用modelsim 5.5e (几个菜单排列与5.6有不同,文中有介绍)布局布线工具及时序仿真模型生成使用maxplusII 10.0一.写在开干之前1.涉及到的文件a.源程序(*.v)用户编写的用于描述所需电路的module (可能有多个文件,多个module相互调用)如果用于综合,则源程序内用于描述的V erilog语言必须是可综合风格的。
否则将只能做功能仿真(前仿真),而不能做综合后的仿真和时序仿真(后仿真)。
b.综合后的V erilog HDL 模型(网表) (*.vm)用综合工具synplify对a 进行综合后生成的电路的V erilog HDL 描述。
由synplify自动生成(必须在Implementation Option —Implementation results选项中选中write mapped verilog netlist后才会生成vm文件)。
此文件用于作综合后的仿真c.布局布线后生成的时序仿真模型(网表) (*.vo)文件使用maxplusII对设计进行布局布线之后,生成的带有布局布线及具体器件延迟特性等参数的电路模型的V erilog HDL描述。
要让maxplusII生成vo文件,必须在maxplusII的compile interface中选中verilog netlist writer。
此文件用于作时序仿真(后仿真)d.测试文件(*.v或*.tf)用户编写的V erilog HDL源程序。
用于测试源程序(a,b,c)中所描述电路。
在测试文件中调用被测试的module,生成被测点路所需的输入信号。
所用V erilog HDL语句不需要是可以综合的,只需语法正确。
如果被测试的模型为a,则对应的仿真为前仿真(功能仿真)如果被测试的模型为b, 则对应的仿真为综合后仿真如果被测试的模型为c, 则对应的仿真为后仿真2.强烈建议a.在写用于综合的源程序时,一个源程序文件里只写一个moduleb.源程序文件名与其内所描述的module名相同(如module myadder 文件名myadder.v)c.为了方便管理文件,为每一个设计都单独创建一个目录,目录内创建source, test子目录分别用于存放源程序(用于综合的)和测试文件。
第03讲 Verilog-HDL语法——第1部分 简单的Verilog-HDL模块

2-1多路选择器
module MUX2_1 (out, a, b, sel); output out; input a, b, sel; assign out=~sel&a | sel&b;
endmodule 实例元件
门级描述方式(结构描述) 数据流描述方式 行为级描述方式
模块的测试
被测模块 激励和控制信号
a d b
模块的结构
Verilog-HDL 模块结构完全嵌套在 module 和
endmodule声明语句之间;
每个Verilog-HDL模块包括四个主要部分:
端口定义、 I/O 说明、内部信号声明、功能 定义。
模块端口(module ports)
模块通过端口与外部通信
通过引脚配置,将端口与 CPLD/FPGA联系起来。 端口在模块名字 后的括号中列出
第03讲
简单的Verilog-HDL模块
简单的Verilog-HDL模块
学习目标:
1、通过简单的例子了解Verilog-HDL模块的基本构成
2、了解Verilog-HDL模块的层次结构和行为模块 3、了解Verilog-HDL模块的测试
简单的 Verilog-HDL 模块
下面通过看几个简单的Verilog-HDL描述,从中分析 Verilog-HDL语言的特性。
Testedmd m(.in1(ina), .in2(inb), .out1(outa), .out2(outb) ); //被测模块的实例引用 initial begin …; …; …; end … … //产生测试信号 always #delay begin …; end … … //产生测试信号
描述通过调用一个实例元件bufif1来实现其功能。
VerilogHDL语言基础学习教案课件

o双目运算符(binaryoperator):带两个操作数。 三目运算符(ternaryoperator):带三个操作数。
第27页/共69页
27
第28页/共69页
28
第29页/共69页
格式: assign 连线型变量名=赋值表达式; 持续赋值语句是并发执行的,每条持续赋值语句对应着独 立的逻辑电路,它们的执行顺序与其在描述中的顺序无关。
第51页/共69页
51
第52页/共69页
52
第53页/共69页
53
第54页/共69页
54
4.3.模块的行为描述方式
第20页/共69页
20
wire型数据
用 来 表 示用 assign 语 句 赋 值 的 组 合 逻辑 信 号 。 Verilog HDL模块输入输出端口信号类型说明缺省时,自动定义为wire 型。
wire型变量可以用作任何表达时的输入,也可用作assign 语句、元件调用语句和模块调用语句的输出。
4.1 什么是Verilog HDL?
Verilog HDL 是 目 前 应 用 最 为 广 泛 的 硬 件 描 述 语 言 。 Verilog HDL可以用来进行各种层次的逻辑设计,也可以进行 数字系统的逻辑综合,仿真验证和时序分析等。
Verilog HDL适合算法级,寄存器级,逻辑级,开关级、 系统级和版图级等各个层次的设计和描述。
通过一个例子认识Verilog HDL的3种建模方式,图中电路 实现的功能是,当sel=0时,out=a;当sel=1时,out=b。
第40页/共69页
【学习课件】第三讲可综合VerilogHDL

ppt课件
Spring 2010
电工电子科技创新中心
3.1.1 一些基本概念
• 3.1.1.1 Verilog描述的逻辑的并行性
• Verilog很多语法规则和C语言相似,但两者有本质区别!
• 在编写Verilog代码时,要始终记住:“我在描述一个硬件电 路的连接,而不是顺序执行的代码。”,对于一个硬件电路, 在Verilog描述中各部分语句的“执行”是并发的。
基于FPGA的嵌入式系统设计
Slide 5
ppt课件
Spring 2010
电工电子科技创新中心
3.1.1 一些基本概念
• 3.1.1.1 合理分配模块
• 在设计一个较大的系统时,往往需要将系统分为多个模 块。模块的划分是需要合理考虑的。
• 按实际功能划分模块。 • 划分出来的模块的端口意义尽量简明。
Spring 2010
电工电子科技创新中心
基于FPGA的嵌入式系统设计 ——电工电子工程基础Ⅴ
王贞炎 18607112468 loy.hust@
基于FPGA的嵌入式系统设计
Slide 1
ppt课件
Spring 2010
电工电子科技创新中心
3 可综合VerilogHDL设计
• 3.1 FPGA中逻辑设计的一些概念和原则 • 3.2 组合逻辑的建模 • 3.3 时序逻辑的建模 • 3.4 存储器的建模与使用 • 3.5 有限状态机的建模 • 3.6 课堂操作实验
• 建立时间和保持时间形成一个时间窗,在此窗之内,数据必须 保持稳定。
• 同步设计的速度限制,根本上源于建立时间和保持时间的要求
基于FPGA的嵌入式系统设计
Slide 10
ppt课件
VerilogHDL入门教程

VerilogHDL入门教程第一部分:Verilog HDL概述(约200字)Verilog HDL是一种硬件描述语言,用于描述和建模数字电路和系统。
它是一种被广泛使用的硬件设计语言,特别适合用于逻辑设计和验证。
Verilog HDL提供了一种形式化的方式来表示数字电路和系统的行为和结构,使得工程师可以更轻松地进行硬件设计和验证。
第二部分:Verilog HDL基础(约400字)在Verilog HDL中,最基本的组成单元是模块。
模块是Verilog HDL中的一个独立的、可重用的单元,可以由其他模块实例化和连接。
每个模块由端口(输入和输出)和内部功能(如逻辑代码和信号声明)组成。
module and_gate(input a, input b, output y);assign y = a & b;endmodule这个模块表示一个与门,它有两个输入a和b,一个输出y。
使用assign语句,我们将输出y连接到输入a和b的逻辑与操作。
第三部分:Verilog HDL高级特性(约400字)除了基本的模块和连接之外,Verilog HDL还提供了一些高级特性,用于更复杂的电路建模和验证。
一种特殊的构造是always块。
always块用于描述模块内的行为,基于一个条件或时钟信号的变化。
例如,下面是一个使用always块的模块示例:module counter(input clk, input enable, output reg count);if (enable)count = count + 1;endendmodule这个模块表示一个简单的计数器,在时钟上升沿时根据enable信号增加计数器的值。
Verilog HDL还支持层次化的建模,允许将模块层次化地组织起来,以便更好地管理和复用代码。
层次化建模通过使用模块的层次命名和连接来实现。
例如,我们可以将上面的计数器模块实例化为另一个模块,如下所示:module top_module(input clk, input enable, output reg count);countercounter_inst(.clk(clk), .enable(enable), .count(count));endmodule这个模块实例化了上面定义的计数器模块,并将其内部信号和端口连接到外部接口。
Verilog HDL讲义

第二章 Verilog HDL设计方法概述前言随着电子设计技术的飞速发展,专用集成电路(ASIC)和用户现场可编程门阵列(FPGA)的复杂度越来越高。
数字通信、工业自动化控制等领域所用的数字电路及系统其复杂程度也越来越高,特别是需要设计具有实时处理能力的信号处理专用集成电路,并把整个电子系统综合到一个芯片上。
设计并验证这样复杂的电路及系统已不再是简单的个人劳动,而需要综合许多专家的经验和知识才能够完成。
由于电路制造工艺技术进步非常迅速,电路设计能力赶不上技术的进步。
在数字逻辑设计领域,迫切需要一种共同的工业标准来统一对数字逻辑电路及系统的描述,这样就能把系统设计工作分解为逻辑设计(前端)和电路实现(后端)两个互相独立而又相关的部分。
由于逻辑设计的相对独立性就可以把专家们设计的各种常用数字逻辑电路和系统部件(如FFT算法、DCT算法部件)建成宏单元(Megcell)或软核(Soft-Core)库供设计者引用,以减少重复劳动,提高工作效率。
电路的实现则可借助于综合工具和布局布线工具(与具体工艺技术有关)来自动地完成。
VHDL和Verilog HDL这两种工业标准的产生顺应了历史的潮流,因而得到了迅速的发展。
作为跨世纪的中国大学生应该尽早掌握这种新的设计方法,使我国在复杂数字电路及系统的设计竞争中逐步缩小与美国等先进的工业发达国家的差距。
为我国下一个世纪的深亚微米百万门级的复杂数字逻辑电路及系统的设计培养一批技术骨干。
2.1.硬件描述语言HDL(Hardware Description Language)硬件描述语言(HDL)是一种用形式化方法来描述数字电路和设计数字逻辑系统的语言。
它可以使数字逻辑电路设计者利用这种语言来描述自己的设计思想,然后利用电子设计自动化(在下面简称为EDA)工具进行仿真,再自动综合到门级电路,再用ASIC或FPGA实现其功能。
目前,这种称之为高层次设计(High-Level-Design)的方法已被广泛采用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《Verilog HDL 综合实用教程》读书笔记——锁存器、触发器
加入收藏
2007-08-29 00:23
转发分享 人人网 开心网 新浪微博 搜狐博客 百度收藏 谷歌收藏 qq 书签 豆瓣 淘江湖 Facebook Twitter Digg Yahoo!Bookmarks
锁存器:
推导出锁存器的一般规则是,如果变量未在 always 语句所有可能的执行过程中被赋值, 就推导出锁存器。
如果变量在 if 的所有分支中都被赋值则综合成组合逻辑。
case、casez、casex 可转成 if、else 形式。
当 case 中不是所有情况都列举出或使用 default 语句时、在 case 语句前对 case 中赋值对象赋初值也可避免综合出锁存器。
若不 是以上各种情况且须综合成组合逻辑可以使用综合命令,如下: 例: always @ (Toggle) case (Toggle) //synthesis full_case 2'b01: NextToggle = 2'b10; 2'b10: NextToggle = 2'b01; end case end module 上例中的//synthesis full_case 是综合命令,告知综合工具 case 中已是全部列举可能的 情况,这样综合后无锁存器。
(正常的 case 语句是有优先级的,先出现的优先级最高,若 case 中各分支是互斥时,综合成译码逻辑。
当使用 casex 时用综合命令//synthesis parallel-case 告知综合工具该 casex 是互斥的)。
触发器: 沿控制的用触发器,且沿控制的赋值用非阻塞的方式“Zee<=A;”。
当 always 中是沿敏感时,此 always 中有 if……else if……且在这些 if……else if 中有多 于 1 个对同一变量赋值时,这个变量很可能被综合成有异步置位或清零的触发器。
例: always @ (negedge Reset or negedge Set or negedge CLKA) if (!Reset) NextState<=12; else if (!Set) NextState<=5;
else NextState<=CurrentState; 上例为异步赋值,最后一个 else 才是时钟控制,前两个不受时钟控制,综合时形成带异步 清零或置位。
(书中说“不提倡使用异步赋值”)使其同步化的方法是将 always 中的敏感变 量表中只有时钟作为触发源则为同步,既 always 中的处理都是在时钟的控制下进行的。
触发器、锁存器优化: 例: always @ (posedge clockA) case (PreserState) 0:begin PresetState<=1; Zont<=4'b0100; end 1:begin PresetState<=0; Zont<=4'b0001; end endcase Zont 的赋值在 clockA 的上升沿触发的 always 语句块中, 所以 Zont 就被综合成四位触发 器,太浪费资源,改为如下: always @ (posedge clockA) case (PresetState) 0:PresetState<=1; 1:PresetState<=0; endcase always @ (PresetState) case (PresetState) 0:Zont=4'b0100; 1:Zont=4'b0001; endcase always @ (Probe or Count)
又例:
if (Probe) Luck=Count; 综合后因 Probe 为 0 时 Luck 保留原值,所以综合成锁存器。
若要去掉锁存器可以改为 always @ (Probe or Count) if (Probe) Luck=Count; else Luck=0; 或 always @ (Probe or Count) begin Luck=0; if (Probe) Luck=Count;
end
。